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1 Introduction

Engineering workflow applications is becoming more and more complex, involving
numerous interacting business objects within considerable processes. Analysing the in-
teraction structure of those complex applications will enable them to be well under-
stood, controlled, and redesigned. Our contribution to workflow patterns analysis is a
statistical technique to discover workflow patterns from event-based log. Our approach
is characterised by a ”local” workflow patterns discovery that allows to cover partial
results through a dynamic programming algorithm. Those local discovered workflow
patterns are then composed iteratively until discovering the global workflow model.
Our approach has been implemented within our prototype WorkflowMiner3 that we
present through this demonstration paper as follows: section 2 describes detailed Work-
flowMiner design architecture, and section 3 presents a demonstration case study on
which we base our tool demonstration. Theoretical aspects are to be seen in [1].

Fig. 1. WorkflowMiner Architecture

2 WorkflowMiner Design Overview

Figure 1 shows the general architecture of WorkflowMiner upon four main compo-
nents: Event-based Log Collectors/Adapters, Events Analyser, Patterns Analyser, and
Performance Analyser. WorkflowMiner components spirit inherits from 1st order logic
predicates based reasoning, multidimensional database based business intelligence, and
rich visual reporting. WorkflowMiner components are built on a panel of libraries and
packages which the authors have either developed or integrated into WorkflowMiner.
Data flow between WorkflowMiner components is described in the figure 2.

3 The authors wish to thank all other ENSIAS engineers contributors within WorkflowMiner.



Fig. 2. WorkflowMiner Pipes and Filters Data Flow

2.1 Event-based log Collectors/Adapters

WorkflowMiner Event-based log Collectors/Adapters collect events and adapt them
to WorkflowMiner required XML format as an ETL (Event-Transform-Load). Events
come from existing Workflow engine (WFE) logs (for instance Bonita [2, 3] After col-
lecting ad-hoc heterogeneous events (textual log lines, exchanged network messages),
those events are adapted into XML structured format, and then into 1st order logic Pred-
icates Prolog form. WorkflowMiner event-based log collectors/adapters are developed
using java xml parsers, ad-hoc adapters, and XProlog [4].

2.2 Events Analyser

WorkflowMiner Events Analyser infers, through statistical techniques, causal depen-
dencies over event-based log which are based on a notion of frequency table. A causal
dependency between two events expresses that the occurrence of an event involves the
activation of an other event. While a non-causal dependency specifies other events be-
havioural dependency. Basically, for each event we extract from the log the following
information: (i) The overall occurrence number and (ii) The elementary dependencies
to previous events. Concurrent behaviour, as in patterns (like and-split, and-join, etc.),
may produce interleaved events sequences. As consequence, some dependencies can
indicate non-zero entries that do not correspond to ”real” dependencies. These entries
are erroneous because there are no causal dependencies between these events. Work-
flowMiner Events Analyser discover parallelism that marks these erroneous dependen-
cies. Moreover, for concurrency reasons, an event might not depend on its immediate
predecessor in the events stream, but it might depend on another ”indirectly” preced-
ing event. To discover these indirect dependencies, WorkflowMiner Events Analyser
uses the mechanism of concurrent window. A concurrent window is related to its last
event covering its directly and indirectly preceding events. WorkflowMiner partitions
the workflow log as a set of partially overlapping windows, then, it computes final de-
pendencies, and adjusts dynamically, through the width of the concurrent window, the
process calculating event dependencies. WorkflowMiner events analyser is developed
using java xml parsers, and XProlog.



2.3 Patterns Analyser

WorkflowMiner Patterns Analyser uses 1st order logic predicates rules to discover a set
of the most useful patterns which are divided into three categories: sequence pattern,
split patterns (xor-split, and-split, or-split patterns) and join patterns (xor-join, and-join
and M-out-of-N-Join patterns). Workflow patterns analysis is expressed using statis-
tical properties rules that tailor the main behaviour features of the chosen discovered
patterns. We define three types of properties: sequential, concurrent and choice. Se-
quential and concurrent properties inherit from causal dependency. These patterns rules
specify an indicator function defining as a unique manner a pattern. Indeed, each pat-
tern has its own statistical rules which abstract statistically its causal or/and non-causal
dependencies. These rules are characterised by a ”local” patterns discovery. They pro-
ceed through a local log analysing that allows to recover partial results of structural
workflow patterns. In fact, to discover a particular pattern we need only events relating
to pattern’s elements. Thus, even using only fractions of log, we can discover correctly
corresponding patterns (which their events belong to these fractions). WorkflowMiner
patterns analyser is developed using XProlog, and JGraph [5].

2.4 Performance Analyser

WorkflowMiner Performance Analyser uses adaped event-based log, discovered causal
dependencies, and discovered partial and global workflow patterns to measure workflow
performance metrics. Those metrics (aka key performance indicators -KPI-) measure
the performance of a workflow in a transverse vision of its activities instances. The per-
formance analyser proposes strategical versus operational indicators insuring the coher-
ence, the coordination and the balance of the piloting at the operational level. Indicators
seek to appreciate a workflow process performance according to three complementary
axes: process instance, activity instances, and the execution time. WorkflowMiner per-
formance analyser is developed using Pentaho [6] for OLAP multidimensional storage
and browsing, and JFreeChart [7] and Birt [8] for visual reporting.

3 Demonstration Case Study

To demonstrate WorkflowMiner, we have used a process application in the banking
domain. Figure 3 shows loan request processing workflow that covers 9 process ac-
tivities, starting when a customer contacts the bank and finishing when the customer
receives the appropriate response from the bank, either a denial or a granting of the
loan. (1) The customer enters the amount and loan terms through the Loan Terms ac-
tivity. Then, (2) the workflow instance retrieves customer information and assesses the
credit worthiness through the Credit Worthness activity. After that, (3) the bank makes
its decision choosing exclusively between these three options: either (3.1) the bank
evaluates the credit risk through (3.1.1) Risk Evaluation activity and the value of the
banks total involvement through (3.1.2) Risk Update activity which is performed only
if the Risk Evaluation Risk Evaluation activity succeeds. It also implicitly assumes that
the loan request will eventually be granted which is not necessarily the case ; or (3.2)



the customer may be important and have a convincing argument enbaling the loan to
be granted, without risk evaluation or despite the evaluation failing. Under these cir-
cumstances an executive officer of the loan department would have to accept the risk
through Risk Acceptance activity ; or (3.3) the bank rejects the loan through Loan Re-
jection. Then (4) the Enter Decision activity states the decision to either grant or reject
the loan request and records the relevant information on the agreed terms of the loan
in bank database. The (6) Decision Delivery activity (loan contract or rejection notifi-
cation) cannot be executed towards the customer without the bank direction decision.
Indeed, (5) a Direction Decision activity supervises the whole process throughout the
decision process. Thus, the loan can only be granted if the supervisor agent agrees. This
agent may reject the loan request even if we have a positive decision in Enter Decision
activity. The supervisor can give freely his decision at any time during the loan process.

Fig. 3. Demonstration workflow example

Scenarios on complex use of WorkflowMiner will be presented in the demo to il-
lustrate how WorkflowMiner analyses workflow patterns, and computes workflow per-
formance KPI. We show how, from a workflow data log, WorkflowMiner can extract
precious hidden intelligent knowledge in a graphical smart manner. Complete Work-
flowMiner screen shots are not shown due to space reasons.
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