
Generic Data Access in XML Based Workflow

Management Systems

Christian Dreier1, Johann Eder2, Marek Lehmann2, and Amirreza Tahamtan2

1 Alps-Adria University of Klagenfurt
Department of Informatics-Systems

cdreier@edu.uni-klu.ac.at

2 University of Vienna
Department of Knowledge and Business Engineering

{first name.last name}@univie.ac.at

Abstract. Various kinds of data are processed in workflow management
systems: from case data to control data, from internal data to access to
external databases or documents exchanged in inter-organizational work-
flows. We propose a uniform treatment of all kinds of business data in
workflows. This is achieved by an abstraction mechanism which enables
the transparent access to data in any source in a uniform way. We de-
scribe an implementation of our extendible generic data access plug-in
which provides the workflow management system with updateable XML
views of relational data.

1 Introduction

Workflow processes may involve different documents like orders, invoices etc. All
these documents represent business data. Each workflow management system
(WfMS) [1] must be able to handle these data, which may come from many dif-
ferent sources. These data are used in two different ways. First, they are required
by individual activities. Second, the WfMS uses data to make automatically the
control flow decisions based on data values. Clearly, workflow management would
be not possible without data. It is perhaps surprising, that the data perspective
in workflow management was usually left in background [4].

Activities in a workflow process frequently manipulate data stored in the
local system environment. Currently, most of the integration work with environ-
mental databases is done manually and requires comprehension of both process
model and data model. Therefore, most of the activity programming is related
to accessing external data sources.

We propose to separate the process logic and the data access mechanisms by
introducing so called data access plug-ins. A data access plug-in is a reusable
and interchangeable wrapper around environmental databases that presents to
the WfMS their content as XML data and manages access to these databases.
This paper is the continuation of our work on data access in WfMSs [7].

The importance of XML technology is increasing tremendously in the work-
flow management. Workflow management systems [13], B2B standards [9], and



Web services [2] use XML as a data format. Complex XML documents published
and exchanged by business processes are usually defined with XML Schema
types. Frequently, hierarchical XML data used by processes and activities has to
be translated into flat relational data model used by environmental databases.

Section 2 presents the idea of generic data access plug-in, whose implemen-
tation is described in Sec. 3. We draw some conclusions in Sec. 4.

2 Generic Data Access Plug-ins

Consider the following frequent scenario: an enterprise has a large database with
the customer data stored in several relations and used in many processes. In
our approach the company defines a complex XML Schema type describing cus-
tomer data and implements a data access plug-in which wraps this database and
retrieves and stores customer data in XML format. This has several advantages:

– Business data from external systems are accessible by the WfMS. Thus, these
data can be passed to activities and used to make control flow decisions.

– Activities can be parameterized with XML documents of predefined types.
The logic for accessing external data sources is hidden in a data access plug-
in fetching documents passed to activities at runtime. This allows activities
to be truly reusable and independent of physical data location.

– Making external data access explicit with the data access plug-ins rather
than hiding it in the activities improves the understandability, maintainabil-
ity and auditability of process definitions.

– Both data access plug-ins and XML Schema type are reusable.
– This solution is easily evolvable. If the customer data have to be moved to

a different database, it is sufficient to use another data access plug plug-in.
The process definition and activities remain basically unchanged.

A proposal we described in [7] required data access plug-ins to be defined
each time from scratch. In this paper we propose a generic data access plug-in
(GDAP) which offers basic operations and can be extended by users to their
specific data.

The task of GDAP is to translate the operations on XML documents to the
underlying databases. GDAP exposes to the WFMS a simple interface which
allows XML documents to be read, written or created. Moreover, GDAP allows
an XPath expression to be evaluated in order to enable data based process rout-
ing. As the relational and object-relational databases are most widely used, our
GDAP is intended to query and update complex XML document containing data
from one or many relational tables. Thus, documents produced by GDAP can
be seen as XML views of relational data. A user can use the basic functionality
offered by GDAP and adapt it to the underlying relational schema. An extension
requires a definition of an XML view and triggers responsible for checking the
freshness of a view.

A view produced by GDAP which supports all its operations (i.e. read and
write) is an updateable XML view of relational data. The view updateability



Program
Interaction
Manager

Worklist

Manager

Data Access

Plug-ins

Data Access
PlugIn Manager

WfMS

External
Systems

Workflow

Engine

Worklist handler

External Data Sources

Workflow
Repository

Fig. 1. Workflow management system architecture with data access plug-ins

problem is well known in relational and object- relational databases [5]. The
mismatch between flat relational and hierarchical XML models is an additional
challenge. This problem is addressed in [12]. However, most proposals of update-
able XML views [11] and commercial RDBMS (e.g. [8]) assume that XML view
updateability problem is already solved.

The processes and activities managed by the WfMS can run for a long time.
At the same time the relations in the original database can be modified by other
systems. This raises the problem of view freshness. GDAP offers a possibility to
check the view freshness. In case of view update operations GDAP automatically
checks whether the view is not stale before propagating update to the original
database.

3 Implementation

To validate our approach we implemented a generic data access plug-in [6] which
was integrated into our prototype WfMS [10]. A general architecture of our
WfMS is presented in Fig. 1. The workflow engine provides operational func-
tions to support the execution of processes. The workflow repository stores both
workflow definition and instance data. The program interaction manager calls
programs implementing automated activities. The worklist manager is respon-
sible for worklists of the human actors and for the interaction with the worklist
handlers. The data access plug-in manager is responsible for registering and
managing data access plug-ins. Apart from the generic data access plug-in there
may be specialized plug-ins for specific data sources (e.g. legacy systems). Our
implementation included GDAP for relational databases and another one for
XML files stored in a file system.

The current implementation of our GDAP for relational databases takes ad-
vantage of XML-DBMS middleware for transferring data between XML docu-
ments and relational databases [3]. XML-DBMS maps the XML document to
the database according to an object-relational mapping in which element types



are generally viewed as classes and attributes and XML text data as properties
of those classes. An XML-based mapping language allows the user to define an
XML view of relational data by specifying these mappings. The XML-DBMS
supports also insert, update and delete operations. We follow in our implemen-
tation an assumption made by the XML-DBMS that the view updateability
problem has been already resolved.

Our GDAP controls the freshness of generated XML views using the pre-
defined triggers and so called view-tuple lists (VTLs). Triggers are defined on
tables which were used to create a view and log in special log tables information
about modifications made to data source tables. A VTL is managed and stored
internally by GDAP and contains primary keys of tuples which were selected
into the view. The exact method of checking view freshness is not in the scope
of this paper and can be found in [6].

4 Conclusions

The concept and the architecture we propose strives for achieving true physi-
cal and logical independence of process and data. The abstraction represented in
exchangeable plug-ins for data access frees workflow definitions from the acciden-
tiality of representation formats. The implemented general data access plug-in
enables flexible publication of relational data as XML documents. Besides the
obvious advantages for intra- and interorganizational exchange of data and docu-
ments, maintenance and evolution of workflow systems will benefit considerably.

References

1. W. van der Aalst, K. van Hee. Workflow Management: Models, Methods, and
Systems. MIT Press, 2002

2. T. Andrews et al. Business Process Execution Language for Web Services
(BPEL4WS). Tech.Rep., BEA, IBM, Microsoft, SAP, Siebel Systems, 2003.

3. R. Bourret. XML-DBMS Middleware. http://www.rpbourret.com/xmldbms.
4. Ch. Bussler. Has workflow lost sight of dataflow?, HPTS Workshop, 1999.
5. C.J. Date. An Introduction to Database Systems. Addison Wesley, 2003.
6. Ch. Dreier. Generic Data Access in XML-Based Lighweight Workflow Management

System. In German. Master’s thesis, University of Klagenfurt, 2005.
7. J. Eder and M. Lehmann. Uniform access to data in workflows. EC-Web 2004,

LNCS 3182, pp. 66–75, Springer, 2004.
8. Oracle Corp. XML Database Developer’s Guide - Oracle XML DB. (9.2), 2002.
9. M. Sayal, F. Casati, U. Dayal, and M.-Ch. Shan. Integrating workflow management

systems with business-to-business interaction standards. In: ICDE’02, IEEE, 2002.
10. M.Siekierski, A.Wojnowska. XForms Workflow Engine. Univ. of Klagenfurt, 2004.
11. I.Tatarinov,Z.G. Ives,A.Y. Halevy,D.S. Weld. Updating XML. SIGMOD, 2001.
12. L. Wang and E.A. Rundensteiner. On the updatability of XML views published

over relational data. ER 2004, Springer, 2004.
13. Workflow Management Coalition. Process definition interface - XML process def-

inition language (XPDL 2.0). 2005.


