
Binding Ontologies & Coding systems to Electronic Health Records
and Messages

AL Rector MD PhD1, R Qamar MSc1 and T Marley MSc2
1School of Computer Science, University of Manchester, Manchester M13 9PL, UK

2Salford Health Informatics Research, University of Salford, Salford, UK

ABSTRACT: A major use of medical ontologies is to
support coding systems for use in electronic healthcare
records and messages. A key task is to define which codes
are to be used where – to bind the terminology to the model
of the medical record or message. To achieve this formally,
it is necessary to recognise that the model of codes and
information models are at a meta-level with respect to the
underlying ontology. A methodology for defining a Code
Binding Interface in OWL is presented which illustrates
this point. It generalises methodologies that have been
used in a successful test of the binding of HL7 messages to
SNOMED-CT codes.

Introduction
A major use of medical ontologies is to support
medical terminologies and coding systems. A major
use of medical terminology and coding systems is for
electronic healthcare records and messages.
Specifying the validation rules for how terminology
and coding systems are to be used in electronic
healthcare records and messages is, therefore, a key
problem for medical ontologies.
We contend that electronic healthcare records
messages are data structures and refer to their models
as “information models”. By contrast we contend
that the model of meaning or “ontology” is a model
of our conceptualisation of the world – of patients,
their illnesses. The function of the information
models is to make it possible to specify and test the
validity of data structures so that they can be
exchanged and re-used in different information
systems. The function of the model of meaning is
accuracy in representing our understanding of the
world so that we can reason about the world in
general or individual patients and their diseases in
particular. Validity neither requires or guarantees
accuracy, nor vice versa.
We contend that codes are also data structures and
the model of codes is also at the level of data
structures. Ideally the “model of codes” or “coding
system” should be a meta model of the model of
meaning. Hence, in the ideal case, we take the
individuals in the model of meaning to represent
patients and their illnesses. We take the individuals
in the model of codes to correspond to
representations of classes of illnesses or
“conditions”.

Pragmatically, it is useful to decouple the coding
system from the model of meaning so that reasoning
about the model of meaning and model of coding
system is always separated.
Using codes in messages and EHRs
Our goal is to assist software developers in
specifying information systems and the use of codes
from coding systems within them. We seek to have
specifications that are sufficiently precise that
separately implemented systems will work together.
To achieve this we need to be able to validate that the
models themselves are self-consistent and that
individual messages conform to the models.
Typically, we want to start with a generic information
model such as the HL7 RIM1 or the OpenEHR
reference model2. We then want to define
progressively more specialised models in which each
more specialised model is consistent with the next
more generic model and ultimately the reference
model. We want to use the models with separately
developed coding systems – e.g. SNOMED, ICD,
CPT, MEDRA, etc. Since we often want to use the
same information model with more than one coding
system, we want the “binding” between the
information and coding system to be separate from
both, analogous to an “Application Programming
Interface” or “API” between software modules. We
call this a “Code Binding Interface”
This problem is often expressed as defining “value
sets” or “code sets” or just “subsets”. For example,
we might wish to specify which codes can be entered
in the family history section of the record or the list
of valid codes for “position” for a blood pressure
measurement. For a coding system such as
SNOMED-CT or GALEN that allow formal
definitions by means of expressions, this includes the
constraints on such expressions. The Archetype
Definition Language [1] used by the CEN standard
EN13606 and OpenEHR specifies an “ontology
section” similar in principle to what we here call a
Code Binding Interface, but provides as yet only

1 http://www.hl7.org
2http://www.openehr.org

KR-MED 2006 "Biomedical Ontology in Action"
November 8, 2006, Baltimore, Maryland, USA

11

limited mechanisms for expressing semantic
constraints.
Basic requirements and tools
This work has been performed as part of a
collaboration with practical users in the UK National
Health Service. Our goal is to satisfy their
requirements that:
1. There be a clear interface between the model of

meaning and the information model, a “Code
Binding Interface” (“CBI”);

2. The binding be expressive enough to capture a)
enumerated lists of codes; b) all subcodes of a
given code (with or without the root); c) all
boolean combinations of a) and b).

3. That it deal with expressions in SNOMED-CT,
whether pre- or post-coordinated.

4. The mutual constraints between the information
and coding models be explicit and testable.

5. The constraints between information and coding
models be part of a coherent methodology for
expressing the constraints on the information
model as a whole.

6. The models and interfaces be expressed in
standard languages with well defined semantics
and tools.

For the standard language we have chosen OWL-DL,
the description logic variant of the new W3C
standard Web Ontology Language. In practice we
have used some features from the new OWL 1.1
specification3 which have already been widely
implemented by tool builders. We use OWL here
primarily as a standard syntax and toolset for
description logics, a subset of first order logic. The

3 http://www-db.research.bell-

labs.com/user/pfps/owl/overview.html

use of OWL does not imply that the information
models are ‘ontologies’ in any strong sense of that
word.
Vocabulary and Notation
For consistency with OWL’s usage, we use the term
“class” for what some others would prefer to call
“types” or “universals”. We refer to “individuals”
where some might use the word “instances” and
reserve the word “instance” for the relation between a
class and an individual belonging to that class. We
use the word “illness” to refer to an individual
illness – e.g. “John Smith’s diabetes” and the term
“condition” to refer to a class of illnesses – e.g.
“Diabetes”. We use the term “property” to refer to
relations between individuals. As a typographical
convention, labels for classes begin with upper case;
individuals and properties with lower case, and OWL
keywords are in all upper case.
All work reported was performed using the Protégé-
OWL tools4. Throughout we adopt the simplified
Manchester syntax for OWL, a summary of which is
presented in Figure 1.5

Binding the models of Meaning, Codes,
and Information: Principles

As a simplified example, we wish to specify the
binding between a fragment EHR model conforming
to the constraints expressed informally in Figure 2.
We show the relation of the models diagrammatically
in Figure 3. The upper (yellow) square represents the
model of meaning or the ontology. Dots represent
individual illnesses such as “john_smiths_diabetes”.

4 http://protégé.stanford.edu; http://www.co-ode.org
5 Extensive experience in tutorials and presentations

indicate that this notation is more easily understood by
those less familiar with OWL as well as being more
compact than either of the official OWL syntaxes. Note
that the syntax includes OWL 1.1 constructs for qualified
cardinality (p MIN|MAX|EXACTLY n C) and
allDisjoint.

Field Constraint

Topic Exact code for diabetes mellitus

Diagnosis The code for diabetes or any kind of
diabetes

Brittleness One of the subcodes of the code for
“Diabetic Brittleness”

Figure 2: Some of the fields and constraints for a
example simplified information structure for
Diabetes

OWL abstract syntax Simplified
Syntax

German DL
Syntax

someValuesFrom(C) SOME C ∃.C
allValuesFrom(C) ONLY C ∀.C
minCardinality(n C) MIN n C ≤ n. C
maxCardinality(n C) MAX n C ≥.n C
cardinality(n C) EXACTLY n C derived
value(c) VALUE c or

 IS c
c

intersectionOf(C D) C AND D or C
& D or
C, D

C ⊓ D

unionOf(C D) C OR D or
C | D

C ⊔ D

oneOf(…) {…} {…}
equivalentClasses C ≗ D
subclassOf C ⊑ D
Type ∈ ∈
allDifferent DIFFERENT

allDisjoint DISJOINT

Figure 1: Manchester simplified syntax for OWL
1.1

12

Ovals represent classes of illnesses or “conditions”
such as “Diabetes_type_1”.
The lower two (blue) squares represent the
information model on the left and the models of
codes or “coding system” derived from the model of
meaning on the right. The class hierarchy on the left
represents classes of data structures expressed in

UML diagrams. The hierarchy on the lower right
represents hierarchies of codes linked by the
is_subcode_of property, which is transitive. The oval
superimposed on the hierarchy in this model
represents a class of codes, in this case the class of
“the code for diabetes and all its subcodes”.
In this example, the is_subcode_of property precisely
mirrors the inferred subclass relation in the model of
meaning and was derived from it by a systematic
transformation. However, from the point of view of
formal reasoning, each model is treated separately.
The inference that, in the model of codes,
code_for_diabetes_type_1 is a member of the class
Diabetes_and_its_subcodes is independent of the
inference that, in the model of meaning,
Diabetes_type_1 is a subclass of Diabetes.

Why the apparent duplication? There are both
theoretical and practical reasons.
• Theoretically – codes are not conditions and data

structures are not patients. There are things that
can be said of codes and data structures that are
nonsense if said of conditions and patients, and
vice versa. For example, both HL7 and OpenEHR
have attributes in their data structures for “negation
indicators”. Clearly, data structures have negation
indicators; patients do not. It makes sense to talk
about whether a patient has, or does not have,
diabetes. It makes sense to talk about whether a

Figure 3: Relation of Model of Meaning to classes of data structures and model of individual codes in the
Information Model

CLASS Diabetes
 Metabolic_disorder,
 has_quality EXACTLY 1 Brittleness.
CLASS Diabetes_type_1
 Diabetes,
 is_caused_by SOME (Damage AND
 has_locus SOME Pancreatic_islet_cells).
CLASS Diabetes_type_2
 Diabetes,
 is_caused_by SOME
 (Resistance &
 has_locus SOME Insulin_metabolism) OR
 (Reduced_effectiveness &
 has_locus SOME Insulin).
CLASS Diabetic_brittleness
 Brittleness,
 is_quality_of SOME Diabetes.
CLASS Diabetic_brittleness
 has_state EXACTLY 1 Brittleness_state.
CLASS Diabetic_brittleness_state
 Brittleness_state,
 is_value_of SOME Diabetic_brittleness.
CLASS Diabetic_brittleness_state
 Brittle OR Well_controlled.

Figure 4: Fragment of simplified condition model of
meaning (‘ontology’) for Diabetes.

13

data structure has its negation indicator set to true,
false or null.

• Pragmatically – existing coding systems and
information models contain many idiosyncrasies
and errors. Many coding systems are based on no,
or a flawed, model of meaning. Separating the
information model and coding system from the
model of meaning provides a degree of indirection
that allows developers to compensate for these
failings without compromising the underlying
model of meaning.

Representing the Binding in OWL
The Model of Meaning – the “Ontology”
Figure 4 shows a fragment of a simplified ontology
of conditions. The first line says that Diabetes is a
kind of Metabolic disorder and that it has a quality of
Brittleness. The “EXACTLY”6 keyword indicate that
each illness of class Diabetes has one, and only one,
Brittleness quality. The definition is not closed, so
there is nothing in this limited representation to say
that Diabetes cannot have other qualities.
The next two clauses give simplified definitions of
type 1 and type 2 diabetes.
The following clause defines Diabetic_brittleness using
the inverse of the quality relationship to say that any

6 “EXACTLY” is an OWL 1.1 construct

Brittleness that occurs in the context of being a quality
of Diabetes is a Diabetic_brittleness. The next clause
states that each Diabetic_brittleness quality has one,
and only one Brittleness_state. The final two clauses
define Diabetic_brittleness_state as any Brittleness_state
in the context of Diabetic_brittleness, and then state that
it includes only the two values: Brittle and
Well_controlled.
The model of codes – the coding system
Of the information in the ontology, only some is
likely to be relevant to the coding system. For
purposes of illustration we shall concentrate only on
qualities and omit causation. The information as to
which properties are of interest is ‘meta knowledge’
that must be held in a “profile” specifying the
transformation of the of the ontology to the coding
system.
From the ontology fragment in Figure 4, a mirroring
profile might specify a definitions of individual codes
as shown in Figure 5a. Based on these definitions of
individual codes, we can define classes of codes as
shown in Figure 5b. Since this model correctly
mirrors a fragment of the ontology, the hierarchy the
code classes will mirror the condition classes in the
ontology. However, note that the additional
constraints in the definitions are different in the
ontology and coding system. For example, there is

INDIVIDUAL code_for_diabetes ∈
 Code_entity,
 is_subcode_of VALUE code_for_metabolic_disorder.
INDIVIDUAL code_for_diabetes_type_1 ∈
 Code_entity,
 has_code VALUE code_for_diabetes.
INDIVIDUAL code_for_diabetes_type_2 ∈
 Code_entry,
 is_subcode_of VALUE code_for_diabetes.
INDIVIDUAL code_for_diabetic_brittleness ∈
 Code_entry,
 is_subcode_of VALUE code_for_qualifier.
INDIVIDUAL code_for_diabetic_brittle ∈
 Code_entry,
 is_subcode_of VALUE Code_for_diabetic_brittleness.
INDIVIDUAL code_for_diabetic_well_controlled ∈
 Code_entry,
 is_subcode_of VALUE Code_for_diabetic_brittleness.

Figure 5a: The code individuals corresponding to
Figure 4.

CLASS Code_for_diabetes_and_subcodes
 {code_for_diabetes} OR
 is_subcode_of VALUE code_for_diabetes.
CLASS Subcode_of_code_for_diabetic_brittleness
 is_subcode_of VALUE code_for_diabetic_brittleness.

Figure 5b: Classes of codes defined from code
individuals. The first class corresponds to the shaded
oval on the bottom right of Figure 2.

CLASS Coded_Attribute
 has_code MAX 1 Code.
CLASS Topic Coded_Attribute.
CLASS Diagnosis Coded_Attribute.
CLASS Brittleness Coded_Attribute.
CLASS Condition_data_structure
 has_attr EXACTLY 1 Topic,
 has_attr EXACTLY 1 Diagnosis.
CLASS Diabetes_data_structure
 Condition_data_structure,
 has_attr EXACTLY 1 Brittleness.

Figure 6a: Basic mapping of data structure model to
OWL

CLASS Placeholder_cls_diabetes_only_code Code.
CLASS Placeholder_cls_diabetes_or_subcode Code.
CLASS Placeholder_cls_for_diabetic_brittleness_subcode
 Code.

Figure 6b: Placeholder code classes for use in Code
Binding Interface (CBI)

CLASS Diabetes_data_structure
 has_attr ONLY (Topic & has_code SOME
 Placeholder_cls_diabetes_only_code),
 has_attr ONLY (Diagnosis & has_code SOME
 Placeholder_cls_diabetes_or_subcode),
 has_attr ONLY (Brittleness & has_code ONLY
 Placeholder_cls_diabetic_brittleness_subcode).

Figure 6c: Use of placeholder code classes and
indication of whether codes are mandatory (SOME) or
optional (ONLY).

14

no axiom in the coding system that all diabetic codes
must have a brittleness qualifier, although there is an
axiom in the ontology that all Diabetes have a quality
Brittleness.
The basic information model
A basic OWL model capturing the structure implied
in Figure 3 is shown in Figure 6. We assume that we
are modelling a class of diabetic data structures
which have attributes for each item in Figure 2: topic,
diagnosis, and brittleness.
The basic OWL mapping is then shown in Figure 6.
We map each attribute by a class linked to the data
structure by the property has_attr. We define a
special subclass of attributes that take codes as their
values, Coded_Attribute. Each Coded_Attribute is linked
to a maximum of one Code as the value by the
has_code property.
We assume that there is a generic class of
Condition_data_structures that all have Topic and
Dagnosis attributes, but that the Brittleness attribute is
specific to the class of Diabetes_data_structure.
Because the class Diabetes_data_structure is a subclass
of Condition_data_structure, it “inherits” all of the
attributes of its superclass.
Although a representation in which attributes are
mapped to properties (as is done in the mapping
specified by OMG) might seem simpler, mapping
each attribute (and each association in the complete
representation) to its own class makes it easier to
specify cardinality and closure at the level of detail
required for HL7 and OpenEHR models.
Constraining the codes to placeholders
Given the basic information model defined in Figure
6a, we want to indicate that there are constraints on
the codes to be used with each attribute. However,
we do not wish to specify the coding system or the
coding system specific constraints in the information
model itself. Therefore, at this stage we state only
that each attribute is constrained to a placeholder
class of codes. These placeholder classes of codes are
defined in Figure 6b.
Given the placeholder classes of codes, we can then
use them in general constraints on the information
model as shown in Figure 6c. In this example, we

have stated the Topic and Diagnosis codes are
mandatory, as indicated by the keyword “SOME”.
However, by using the keyword ONLY for
Brittleness_code, we have said that it is optional
(because stating that a property can ONLY have
particular codes does not imply that it need have any
such codes).
The Code Binding Interface
The model of the coding system in Figure 5 and the
information model in Figure 6 might reside in
separate modules. It now remains to define the Code
Binding Interface between the two modules, which
might likewise to reside in a third module.
The Code Binding Interface (CBI) consists of logical
equivalences between the placeholder classes defined
in Figure 6b and formal definitions of classes of
codes in terms of the individuals in the model of
codes in Figure 5. A CBI consistent with the
constraints in Figure 3 is shown in Figure 7. The first
line indicates that the placeholder class consists of
just the codes enumerated between the curly brackets,
in this case just the code for diabetes. The second
line indicates that the given placeholder can be either
the code for diabetes or any of its subcodes.
(Remember that the property is_subcode_of is
transitive.) The third line indicates that the code for
brittleness can be any of the subcodes of the code for
diabetic brittleness but not the parent code itself.
They can be combined using the boolean operators
AND, OR, and NOT. These were the three specific
cases to be covered in Requirement 2.
Extension to compositional coding systems
The previous example was limited to simple coding
systems without ‘qualifiers’. However, the same
principles can be extended to a coding system with
qualifiers using suitably more complex constraints.
In this case, since “brittleness” is to be explicitly

CLASS Qualifier_name_code Code.
INDIVIDUAL code_for_diabetic_brittleness_qualifier ∈
 Qualifier_name_code.
CLASS Code_for_diabetes_and_subcodes
 has_qualifier ONLY
 {code_for_diabetic_brittleness_qualifier}.
INDIVIDUAL code_for_diabetic_brittleness_qualifier ∈
 has_code EXACTLY 1
 Subcode_of_code_for_diabetic_brittleness.

Figure 8a: Extension of Model of Codes to qualifiers

CLASS Placeholder_diabetes_or_subcode_class
 ({code_for_diabetes} OR
 is_subcode_of VALUE code_for_diabetes),
 NOT (has_qualifier VALUE
 code_for_diabetic_brittleness_qualifier).

Figure 8b: Extension of CBI in Figure 7 to exclude codes
qualified by brittleness

CLASS Placeholder_cls_diabetes_only_code
 {code_for_diabetes}.
CLASS Placeholder_cls_diabetes_or_subcode
 {code_for_diabetes} OR
 is_subcode_of VALUE code_for_diabetes.
CLASS Placeholder_cls_diabetic_brittleness_subcode
 is_subcode_of VALUE code_for_diabetic_brittleness.

Figure 7: Code Binding Interface for Code System in
Fig 5 and Information Model in Fig 6.

15

catered for in the information model, we want to
avoid any possibility of a contradiction between the
value in the information structure and the qualifier in
the terminology. The simplest way to do this is to
exclude the use of codes including the Brittleness
qualifier from use with the Diagnosis attribute. The
constraints depend only on whether the coding
system model contains the necessary definitions. The
methodology is the same whether it is for named,
predefined (pre-coordinated) or (post-coordinated)
code expressions (“code phrases” in HL7).
To represent compositional coding systems in OWL,
we need to extend the definitions of the coding
system to say that any code for diabetes or its
subcodes may be linked to a qualifier view by the
property has_qualifier by at most one brittleness
qualifier code which, if present, must be linked to a
subcode of code_for_diabetic_brittleness. To do this we
need a new class of codes, the Qualifier_name_code
with an instance code_for_diabetic_brittleness_qualifier.
Using this scheme we extend Figure 5 as shown in
Figure 8a. This is an extension of the coding system
model, not of the information system model (nor of
the model of meaning).
Given the definitions in Figure 8a, we can extend the
Code Binding Interface in Figure 7 by extending the
definition of the placeholder for the for the
diabetes_or_subcode to exclude codes qualified by
brittleness as shown in Figure 8b.
A different group might develop a different
information model that does not include brittleness as
a separate attribute. It might, therefore, want to
include brittleness with the diagnosis code. To do so,
they need only change the Code Binding Interface.
Absence of the Unique Name Assumption and
differentiating axioms
The above representations in OWL require a further
addition. OWL does not make the “Unique name
assumption”. In most formalisms, if two entities
have different names they are different. In OWL, any
two individuals might be the same unless declared
different and any two classes might overlap unless
declared disjoint.
Therefore, to represent the intentions fully, we need a
set of “differentiating axioms” examples of which are
shown in Figure 9abc. If these axioms are omitted,
the validation in the next section will be incomplete
because the reasoner will never infer that a code as
incorrect because it cannot infer that it is different
from the correct code, even though it has a different
name.

Validating information models
OWL-DL was chosen because it allows efficient
reasoners. In principle, the task of using OWL-DL to
represent and validate a set of information models
and bindings to a coding system simply requires that
the reasoner be used to determine if the combined

models are consistent and the inferences as intended.
Taking into account the previous discussion, the
complete procedure consists of the following steps:
1. Transform the relevant parts of the model of

meaning, i.e. the ontology, into a meta-level
model of codes following the example in Figures
4 and 5.

2. Map the information model to and OWL model
including the constraints on the terminology to
be used as placeholders following the example in
Figures 6.

3. Represent the bindings between the information
model and the coding system model as a set of
logical equivalences between the placeholders in
the information model and class expressions in
the coding system model to form the Code
Binding Interface (CBI) module, following the
example in Figure 7.

4. Import the three modules into a single OWL
model.

5. Use the reasoner to classify the combined
structure. Inconsistencies, inferred subclass
relations, and inferred equivalencies will be
flagged by the reasoner.

6. Examine the inferences and correct the errors.
Note that inferred subclass relations and
equivalencies as well as inconsistencies may indicate
errors. If an inferred subclass relation is not as
intended, then either the superclass is under-
constrained – i.e. too general – or the subclass is
over-constrained – i.e. too specialised. If two classes
that are intended to be different are inferred to be

 DISJOINT Diabetes_type_1, Diabetes_type_2.
 DISJOINT Brittle, Well_controlled.
Figure 9a: Differentiating axioms for the model of
meaning

DIFFERENT
code_for_diabetes code_for_diabetes_type_1,
code_for_diabetes_type_2,
code_for_diabetic_brittleness,
code_for_diabetic_brittle,
code_for_diabetic_well_controlled).

Figure 9b: Differentiating axioms for the model of
codes – the coding system
DISJOINT Data_structure, Attribute.
DISJOINT Topic, Diagnosis, Brittleness.
Figure 9c: Differentiating axioms for the information
model.

16

logically equivalent, then the distinguishing features
have been omitted or an axiom with unexpected
consequences included. (There are a host of subtle
errors that can occur in OWL models that are beyond
the scope of this paper – see [2]).
Validating individual data structures – the open
and closed world assumptions
Before individual data structures can be validated, we
must take into account a further feature of OWL’s
semantics. Databases, logic programs, and most
related systems are based on a “closed world
assumption” with “negation as failure” – i.e. anything
which cannot be found in the data base or proved true
is treated as false. OWL is based on the “open world
assumption” – i.e. things not proved true are treated
as unknown; only things which can be proved false
are treated as false. The open world assumption
means that one can always add to an OWL model
unless there is an explicit “closure axiom” to the
contrary. Without the closure axiom, an OWL model
or data structure means only “at least what is here”.
By contrast, most message and EHR formalisms
assume that the a given data structure contains “what
is here and only what is here”. Without closure
axioms OWL will accept a data structure with
missing items because, since the representation is
open, the missing item could always be added
Closure axioms are required in three places: a) in the
information model to say that a particular class is
complete, b) in the model of codes, to say that each
code has only the subcodes explicitly asserted, and c)
in each individual data structure to be validated, to
say that it contains only what is explicitly present.
Step a: Before validating the model in Figure 6 we
need to create a new subclass of “complete diabetes
data structures” with the added the closure axiom.
The new subclass definition is shown in Figure 10a.
The second clause is the “closure axiom” that says
that only these three attributes may occur.
CLASS Diabetes_data_structure_complete
 Diabetes_data_structure,
 has_attr ONLY (Topic OR Diagnosis OR Brittleness).
Figure 10a: “Complete” subclass of the Diabetes data
structure class with closure axiom

Step b: The model of codes must similarly be closed,
downwards by adding closure axioms to state that
each node only has the subcodes listed and the
terminal codes have no (MAX 0) subcodes.
INDIVIDUAL code_for_metabolic_disorcer ∈
 has_subcode ONLY {…code_for_diabetes…}.
INDIVIDUAL code_for_diabetes ∈
 has_subcode ONLY {code_for_diabetes_type_1
 code_for_diabetes_type_2}.
INDIVIDUAL code_for_diabetes_type_1 ∈
 has_subcode MAX 0.

INDIVIDUAL code_for_diabetes_type_2 ∈
 has_subcode MAX 0.

Figure 10b: Closure axioms for code for diabetes

Step c: An OWL mapping of a data structure that
conforms to the model in Figures 6 is shown in
Figure 10c. The final line is the closure axiom.
(The use of SOME and ONLY rather than VALUE
avoids the need to define individuals for each data
structure’s Topic, Diagnosis and Brittleness
attributes.)
INDIVIDUAL diabetic_data_structure_123 ∈
 has_attr SOME (Topic & has_code VALUE
 code_for_diabetes),
 has_attr SOME (Diagnosis & has_code VALUE
 code_for_diabetes_type_1),
 has_attr SOME (Brittleness & has_code VALUE
 code_for_diabetic_brittle),
 has_attr ONLY (Topic OR Diagnosis OR Brittleness).

Figure 10c: The OWL mapping of a Diabetic data
structure including closure axiom.

Therefore, the steps to validate that a data structure
conforms to the information model are:
1. Map the data structure to an OWL individual

following the example in Figure 10c.
2. Add closure axiom as shown in Figure 10c.
3. Use the reasoner to check if the data structure is

a valid instance of the intended class in the
information model.

Limitations of OWL
OWL-DL is based on a subset of first order logic
deliberately limited so that inference is
computationally tractable. There are two main
limitations relevant to the work reported here:
• Limited support for data types. Both HL7 and

Archetypes have very elaborate structures of
datatypes that go beyond the usual XML datatypes
supported by OWL. This can be overcome by
encapsulating datatype in “holders”. What OWL
provides is a check on the constraints on which
data types should be used where. Separate
datatype syntax checkers will be required to check
the datatype formats themselves.

• Lack of variables. To preserve computational
tractability, OWL lacks auxiliary variables and
expressions such as “same-as”. For example, one
can say that the left hand must be part of the left
arm, but not that hands must be part of arms on the
same side. Usually, it is possible to work around
this limitation by having separate axioms for each
case, e.g. for left-sided and right-sided rather than
a single axiom for “same side”. UML, and most
other object oriented formalisms, share this
limitation. It has not proved a serious limitation in
practice in the experience reported below or in
related applications.

17

Experience
Representing HL7 message fragments developed
by the NHS Connecting for Health
The methods in this paper are a refinement and
generalisation of methods that were developed to
represent the constraints in a set of message models
developed by the UK NHS Connecting for Health
Programme and their binding to SNOMED CT. The
set of messages related to administration of
medication were represented, a total of between
twenty and thirty message formats (depending on
how variants are counted). The methods were
successful in representing all of the constraints
identified, both in the HL7 models themselves and in
the accompanying documentation, including the
complex constraints on compositional forms required
to maintain consistency between the SNOMED
Context Model and the HL7 mood and status codes.
The representation, however, was tedious. Existing
OWL tools are adapted to representing ontologies
and models of meaning rather than data structures.
Wider use of the methods presented here would
benefit from the development of alternative tools, or
at least alternative front-ends. In this respect OWL is
best viewed as an assembly language. A high level
language adapted to the task of representing
information systems and their binding to coding
systems is required along with ‘compilers’ to
transform it to OWL in a standard way.

 Discussion
In previous papers [3-5] we have identified the
interface between models of meaning – the ontology–
and models of use as critical to clinical systems. This
paper clarifies the relation between the model of
meaning and one sort of model of use, the
information model used for validating EHRs and
messages. It contends that these information models
are, in fact, models of data structures, and that they
are formulated at a meta level with respect to the
model of use, the ontology proper. It further
contends that codes are likewise data structures and
that the model of codes, or coding system, is likewise
at a meta-level with respect to the model of
meaning – the ontology.
The paper illustrates a methodology for formulating a
“Code Binding Interface” (CBI) to specify and
constrain how codes are to be used in data structures.
This task is essentially “syntactic” – it is concerned
with whether the data structures can be processed
reliably rather than with whether the information
conveyed is accurate or correct. The structure of the
information model is motivated by adequacy to
convey meanings, but the constraints in the model are
on the data structures rather than on the meaning

itself. We suggest that the controversies around
coding systems and standards such as HL7 arise, in
part, from lack of clarity about this distinction
between validity and accuracy.
The methodology has been used in practice and
proved effective in supporting a range of
independently formulated constraints.
This theoretical justification and practical experience
is further supported by the observation that the
requirements in the introduction cannot be met by a
first order model of meaning directly linked to the
information model. Requirement 2 includes being
able to restrict the value of an attribute to a specific
code at any level of abstraction – e.g. to “the specific
code for diabetes” – or to any of the subcodes of a
parent code but not the parent code itself – e.g. “to
any subcode of brittleness”. However, the semantics
of the model of meaning are defined in terms of
classes of illnesses. The class “all diabetic illnesses
that are neither type 1 nor type 2” would be all those
diabetic illnesses of some alternative type – a class
which is quite probably empty. It would not be the
parent class, Diabetes, as required. By contrast, if
dealing with classes of codes at the meta-level, the
required expressions, as shown in Figure 7, are
straightforward. Implicitly, this is what most users of
terminologies such as SNOMED actually do – they
query the coding system in a “distribution form”
which does not give access to the underlying
semantics. However, without explicit recognition of
the separation of the models of meaning and meta-
level models of coding systems, these mechanisms
remain ad hoc and cannot be specified formally.
This paper deals with only the first two steps in using
patient information – formulating meanings and
storing or transmitting meanings in data structures.
The third step – using the information for clinical
decisions about individual patients – requires a
further model – a model of clinical action – to be
discussed in a further paper.
The methodology given here meets the requirements
given in the introduction for binding ontologies,
coding and information models. There is great
controversy over the flaws in both SNOMED and
HL7. The indirection in this methodology can help
provide rigorous specifications that allows systems to
interoperate using valid message despite flaws in
such models. However, even if the models were
ideal, the ontology sound, the coding system a
faithful meta model of the ontology, and the
information model founded on a sound model of the
information to be conveyed, a Code Binding
Interface would still need to be specified to specify
what constituted valid bindings of codes to the data
structures. Any given message or record fragment

18

will provide places for only a limited view on all
possible meanings and hence all possible
combinations of codes. Even in a near ideal world, if
the information model and ontology are developed
independently, there will still be overlaps and
consequent need for mutual constraints between
them.
Whether the methodology presented here is the best
means to do so remains open to investigation. OWL
has the technical advantage of being highly
expressive, of supporting inverse properties which
can be used to represent context, and of having
available sound and complete reasoners. Its status as
a standard brings the organisational advantage of a
broad community developing tools and techniques.
However, potential alternatives might include F-
Logic [7], broader epistemic extensions to OWL and
description logics [8] or other epistemic and or higher
order logics. A principled layered version of OWL
similar to that in this paper has also been suggested
by others [6]. We hope that the issues are presented
here in sufficient detail to allow alternatives to be
formulated and compared.

Acknowledgements
This work supported in part by the UK Department of
Health “Connecting for Health” programme, the UK MRC
CLEF project (G0100852), the JISC and UK EPSRC
projects CO-ODE and HyOntUse (GR/S44686/1) and the
EU Funded Semantic Mining Network of Excellence. The

HL7 Terminfo working group stimulated and contributed to
many of the ideas presented here.

References
1. Beale T. Archetypes: Constraint-based domain models

for future-proof information systems. In: OOPSLA-
2002 Workshop on behavioural semantics; 2002;

2. Rector A, Drummond N, Horridge M, Rogers J,
Knublauch H, Stevens R, et al. OWL Pizzas: Common
errors & common patterns from practical experience of
teaching OWL-DL. In: EKAW-2004; October, 2004;
Northampton, England: Springer; p. 63-81.

3. Rector AL. The Interface between Information,
Terminology, and Inference Models. In: Patel V, (ed)
Proc Medinfo-2001; London, England; p. 246-250.

4. Rector AL, Johnson PD, Tu S, Wroe C, Rogers J.
Interface of inference models with concept and medical
record models. In: Quaglini S, Barahona P, Andreassen
S, editors. Artificial Intelligence in Medicine Europe
(AIME); 2001; Cascais, Portugal: Springer. p. 314-323.

5. Rector A, Taweel A, Rogers J. Models and inference
methods for clinical systems: A principled approach.
In: Proc Medinfo-2004; San Francisco: North Holland;
p. 79-83

6. Pan JZ, Horrocks I, Schreiber G. OWL FA: A
metamodeling extensions of OWL DL. In: Proc OWL-
ED 2005

7. Kifer, M, Lausen G. F-logic: a higher-order language
for reasoning about objects, inheritance, and schemas.
Portland, Oregon, United States: ACM Press; 1989.

8. Donini F, M L, Nardi D, Shaerf A, Nutt W. An
epistemic operator for description logics. Artificial
Intelligence 1998;100(1-2):225-274.

19

