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ABSTRACT: A major use of medical ontologies is to 
support coding systems for use in electronic healthcare 
records and messages.  A key task is to define which codes 
are to be used where – to bind the terminology to the model 
of the medical record or message. To achieve this formally, 
it is necessary to recognise that the model of codes and 
information models are at a meta-level with respect to the 
underlying ontology. A methodology for defining a Code 
Binding Interface in OWL is presented which illustrates 
this point.  It generalises methodologies that have been 
used in a successful test of the binding of HL7 messages to 
SNOMED-CT codes. 

Introduction 
A major use of medical ontologies is to support 
medical terminologies and coding systems.  A major 
use of medical terminology and coding systems is for 
electronic healthcare records and messages. 
Specifying the validation rules for how terminology 
and coding systems are to be used in electronic 
healthcare records and messages is, therefore, a key 
problem for medical ontologies. 
We contend that electronic healthcare records 
messages are data structures and refer to their models 
as “information models”.  By contrast we contend 
that the model of meaning or “ontology” is  a model 
of our conceptualisation of the world – of patients, 
their illnesses.  The function of the information 
models is to make it possible to specify and test the 
validity of data structures so that they can be 
exchanged and re-used in different information 
systems.  The function of the model of meaning is 
accuracy in representing our understanding of the 
world so that we can reason about the world in 
general or individual patients and their diseases in 
particular.  Validity neither requires or guarantees 
accuracy, nor vice versa.  
We contend that codes are also data structures and 
the model of codes is also at the level of data 
structures.  Ideally the “model of codes” or  “coding 
system” should be a meta model of the model of 
meaning.  Hence, in the ideal case, we take the 
individuals in the model of meaning to represent 
patients and their illnesses.  We take the individuals 
in the model of codes to correspond to 
representations of  classes of illnesses or 
“conditions”. 

Pragmatically, it is useful to decouple the coding 
system from the model of meaning so that reasoning 
about the model of meaning and model of coding 
system is always separated.   
Using codes in messages and EHRs  
Our goal is to assist software developers in 
specifying information systems and the use of codes 
from coding systems within them.  We seek to have 
specifications that are sufficiently precise that 
separately implemented systems will work together.  
To achieve this we need to be able to validate that the 
models themselves are self-consistent and that 
individual messages conform to the models.  
Typically, we want to start with a generic information 
model such as the HL7 RIM1 or the OpenEHR 
reference model2.  We then want to define 
progressively more specialised models in which each 
more specialised model is consistent with the next 
more generic model and ultimately the reference 
model. We want to use the models with separately 
developed coding systems – e.g. SNOMED, ICD, 
CPT, MEDRA, etc.  Since we often want to use the 
same information model with more than one coding 
system, we want the “binding” between the 
information and coding system to be separate from 
both, analogous to an “Application Programming 
Interface” or “API” between software modules.  We 
call this a “Code Binding Interface” 
This problem is often expressed as defining “value 
sets” or “code sets” or  just “subsets”.  For example, 
we might wish to specify which codes can be entered 
in the family history section of the record or the list 
of valid codes for “position” for a blood pressure 
measurement.  For  a coding system such as 
SNOMED-CT or GALEN that allow  formal 
definitions by means of expressions, this includes the 
constraints on such expressions. The Archetype 
Definition Language [1] used by the CEN standard 
EN13606 and OpenEHR specifies an “ontology 
section” similar in principle to what we here call a 
Code Binding Interface, but provides as yet only 

                                                             
1 http://www.hl7.org 
2http://www.openehr.org 
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limited mechanisms for expressing semantic 
constraints.   
Basic requirements and tools 
This work has been performed as part of a  
collaboration with practical users in the UK National 
Health Service.   Our goal is to satisfy their 
requirements that: 
1. There be a clear interface between the  model of 

meaning and the information model, a “Code 
Binding Interface” (“CBI”); 

2. The binding be expressive enough to capture a) 
enumerated lists of codes; b) all subcodes of a 
given code (with or without the root); c) all 
boolean combinations of a) and b). 

3. That it deal with expressions in SNOMED-CT, 
whether pre- or post-coordinated. 

4. The mutual constraints between the information 
and coding models be explicit and testable. 

5. The constraints between information and coding 
models be part of a coherent methodology for 
expressing the constraints on the information 
model as a whole. 

6. The models and interfaces be expressed in 
standard languages with well defined semantics 
and tools. 

For the standard language we have chosen OWL-DL,  
the description logic variant of the new W3C 
standard Web Ontology Language. In practice we 
have used some features from the new OWL 1.1 
specification3 which have already been widely 
implemented by tool builders.  We use OWL here 
primarily as  a standard syntax and toolset for 
description logics, a subset of first order logic.  The 

                                                             
3 http://www-db.research.bell-

labs.com/user/pfps/owl/overview.html 

use of OWL does not imply that the information 
models are ‘ontologies’ in any strong sense of that 
word. 
Vocabulary and Notation 
For consistency with OWL’s usage, we use the term 
“class” for what some others would prefer to call 
“types” or “universals”.  We refer to “individuals” 
where some might use the word “instances” and 
reserve the word “instance” for the relation between a 
class and an individual belonging to that class. We 
use the word  “illness” to refer to an individual 
illness – e.g. “John Smith’s diabetes” and the term 
“condition” to refer to a class of illnesses – e.g.  
“Diabetes”.  We use the term “property” to refer to 
relations between individuals. As a typographical 
convention, labels for classes begin with upper case; 
individuals and properties with lower case, and OWL 
keywords are in all upper case.  
All work reported was performed using the Protégé-
OWL tools4. Throughout we adopt the simplified 
Manchester syntax for OWL, a summary of which is 
presented in Figure 1.5   

Binding the models of Meaning, Codes, 
and Information: Principles 

As a simplified example, we wish to specify the 
binding between a fragment  EHR model conforming 
to the constraints expressed informally in Figure 2.  
We show the relation of the models diagrammatically 
in Figure 3.  The upper (yellow) square represents the 
model of meaning or the ontology.  Dots represent 
individual illnesses such as “john_smiths_diabetes”.  

                                                             
4 http://protégé.stanford.edu; http://www.co-ode.org 
5 Extensive experience in tutorials and presentations 

indicate that this notation is more easily understood by 
those less familiar with OWL as well as being more 
compact than either of the official OWL syntaxes.  Note 
that the syntax includes OWL 1.1 constructs for qualified 
cardinality (p MIN|MAX|EXACTLY n C) and 
allDisjoint.   

Field Constraint 

Topic Exact code for diabetes mellitus 

Diagnosis The code for diabetes or any kind of 
diabetes  

Brittleness One of the subcodes of the code for 
“Diabetic Brittleness” 

Figure 2: Some of the fields and constraints for a 
example simplified information structure for 
Diabetes 

 

OWL abstract syntax Simplified 
Syntax 

German DL  
Syntax 

someValuesFrom(C) SOME C ∃.C 
allValuesFrom(C) ONLY C ∀.C 
minCardinality(n C) MIN n C ≤ n. C 
maxCardinality(n C) MAX n C ≥.n C 
cardinality(n C) EXACTLY n C derived 
value(c) VALUE c or 

 IS c 
c 

intersectionOf(C D) C AND D or C 
& D or 
C, D 

C ⊓ D 

unionOf(C D) C OR D or 
C | D 

C ⊔ D 

oneOf(…) {…} {…} 
equivalentClasses  C ≗ D 
subclassOf    C ⊑ D 
Type ∈ ∈ 
allDifferent DIFFERENT  

allDisjoint DISJOINT  

Figure 1: Manchester simplified syntax for OWL 
1.1 
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Ovals represent classes of illnesses or “conditions” 
such as “Diabetes_type_1”.   
The lower two (blue) squares  represent the 
information model on the left and the models of 
codes or “coding system” derived from the model of 
meaning on the right. The class hierarchy on the left 
represents classes of data structures expressed in 

UML diagrams.  The hierarchy on the lower right 
represents hierarchies of codes linked by the 
is_subcode_of property, which is transitive.  The oval 
superimposed on the hierarchy in this model 
represents a class of codes, in this case the class of 
“the code for diabetes and all its subcodes”. 
In this example, the is_subcode_of property precisely 
mirrors the inferred subclass relation in the model of 
meaning and was derived from it by a systematic 
transformation.  However, from the point of view of 
formal reasoning, each model is treated separately.  
The inference that, in the model of codes, 
code_for_diabetes_type_1 is a member of the class 
Diabetes_and_its_subcodes is independent of the 
inference that, in the model of meaning, 
Diabetes_type_1 is a subclass of Diabetes.  

Why the apparent duplication? There are both 
theoretical and practical reasons. 
• Theoretically – codes are not conditions and data 

structures are not patients.  There are things that 
can be said of codes and data structures that are 
nonsense if said of conditions and patients, and 
vice versa.  For example, both HL7 and OpenEHR 
have attributes in their data structures for “negation 
indicators”.  Clearly, data structures have negation 
indicators; patients do not.  It makes sense to talk 
about whether a patient has, or does not have, 
diabetes.  It makes sense to talk about whether a 

 
Figure 3: Relation of Model of Meaning to classes of data structures and model of individual codes in the 
Information Model 

CLASS Diabetes  
    Metabolic_disorder, 
    has_quality EXACTLY 1 Brittleness. 
CLASS Diabetes_type_1    
   Diabetes,  
   is_caused_by SOME (Damage AND  
        has_locus SOME Pancreatic_islet_cells). 
CLASS Diabetes_type_2  
   Diabetes,  
   is_caused_by SOME  
       (Resistance &  
         has_locus SOME Insulin_metabolism) OR 
       (Reduced_effectiveness & 
         has_locus SOME Insulin). 
CLASS Diabetic_brittleness   
     Brittleness,  
     is_quality_of SOME Diabetes. 
CLASS Diabetic_brittleness  
    has_state EXACTLY 1 Brittleness_state. 
CLASS Diabetic_brittleness_state  
     Brittleness_state,  
     is_value_of SOME Diabetic_brittleness. 
CLASS Diabetic_brittleness_state  
     Brittle OR Well_controlled. 

Figure 4:  Fragment of simplified condition model of 
meaning (‘ontology’) for Diabetes. 
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data structure has its negation indicator set to true, 
false or null.  

• Pragmatically – existing coding systems and 
information models contain many idiosyncrasies 
and errors.  Many coding systems are based on no, 
or a flawed, model of meaning. Separating the 
information model and coding system from the 
model of meaning provides a degree of indirection 
that allows developers to compensate for these 
failings without compromising the underlying 
model of meaning.   

Representing the Binding in OWL 
The Model of Meaning – the “Ontology” 
Figure 4 shows a fragment of a simplified ontology 
of conditions. The first line says that  Diabetes is a 
kind of Metabolic disorder and that it has a quality of 
Brittleness.  The “EXACTLY”6 keyword indicate that 
each illness of class Diabetes has one, and only one, 
Brittleness quality.  The definition is not closed, so 
there is nothing in this limited representation to say 
that Diabetes cannot have other qualities. 
The next two clauses give simplified definitions of 
type 1 and type 2 diabetes.  
The following clause defines Diabetic_brittleness using 
the inverse of the quality relationship to say that any 

                                                             
6 “EXACTLY” is an OWL 1.1 construct 

Brittleness that occurs in the context of being a quality 
of Diabetes is a Diabetic_brittleness. The next clause 
states  that each Diabetic_brittleness quality has one, 
and only one Brittleness_state. The final two clauses 
define Diabetic_brittleness_state as any Brittleness_state 
in the context of Diabetic_brittleness, and then state that 
it includes only the two values: Brittle and 
Well_controlled.  
The model of  codes – the coding system 
Of the information in the ontology, only some is 
likely to be relevant to the coding system.  For 
purposes of illustration we shall concentrate only on 
qualities and omit causation.  The information as to 
which properties  are of interest is ‘meta knowledge’ 
that must be held in a “profile” specifying the 
transformation of the of the ontology to the coding 
system.   
From the ontology fragment in Figure 4, a mirroring 
profile might specify a definitions of individual codes 
as shown in Figure 5a. Based on these definitions of 
individual codes, we can define classes of codes as 
shown in Figure 5b.  Since this model correctly 
mirrors a fragment of the ontology, the hierarchy the 
code classes will mirror the condition classes in the 
ontology.  However, note that the additional 
constraints in the definitions are different in the 
ontology and coding system.  For example, there is 

INDIVIDUAL code_for_diabetes ∈ 
    Code_entity,  
    is_subcode_of VALUE code_for_metabolic_disorder. 
INDIVIDUAL code_for_diabetes_type_1 ∈ 
     Code_entity, 
     has_code VALUE code_for_diabetes. 
INDIVIDUAL code_for_diabetes_type_2 ∈ 
      Code_entry, 
      is_subcode_of VALUE code_for_diabetes. 
INDIVIDUAL code_for_diabetic_brittleness ∈ 
      Code_entry, 
      is_subcode_of VALUE code_for_qualifier. 
INDIVIDUAL code_for_diabetic_brittle ∈ 
       Code_entry, 
       is_subcode_of VALUE Code_for_diabetic_brittleness. 
INDIVIDUAL code_for_diabetic_well_controlled ∈ 
       Code_entry, 
       is_subcode_of VALUE Code_for_diabetic_brittleness. 

Figure 5a:  The code individuals corresponding to 
Figure 4. 

CLASS Code_for_diabetes_and_subcodes  
   {code_for_diabetes} OR 
   is_subcode_of VALUE code_for_diabetes. 
CLASS Subcode_of_code_for_diabetic_brittleness  
   is_subcode_of VALUE code_for_diabetic_brittleness. 

Figure 5b: Classes of codes defined from code 
individuals.  The first class corresponds to the shaded 
oval on the bottom right of Figure 2.  

CLASS Coded_Attribute  
   has_code MAX 1 Code. 
CLASS Topic  Coded_Attribute. 
CLASS Diagnosis  Coded_Attribute. 
CLASS Brittleness  Coded_Attribute. 
CLASS Condition_data_structure  
   has_attr EXACTLY 1 Topic, 
   has_attr EXACTLY 1 Diagnosis. 
CLASS Diabetes_data_structure  
   Condition_data_structure,  
   has_attr EXACTLY 1 Brittleness. 

Figure 6a: Basic mapping of data structure model to 
OWL 

CLASS Placeholder_cls_diabetes_only_code    Code. 
CLASS Placeholder_cls_diabetes_or_subcode Code. 
CLASS Placeholder_cls_for_diabetic_brittleness_subcode 
                                                                           Code. 

Figure 6b: Placeholder code classes for use in Code 
Binding Interface (CBI) 

CLASS Diabetes_data_structure  
   has_attr ONLY (Topic & has_code SOME 
      Placeholder_cls_diabetes_only_code), 
   has_attr ONLY (Diagnosis & has_code SOME 
      Placeholder_cls_diabetes_or_subcode), 
   has_attr ONLY (Brittleness & has_code ONLY 
      Placeholder_cls_diabetic_brittleness_subcode). 

Figure 6c: Use of placeholder code classes and 
indication of whether codes are mandatory (SOME) or 
optional (ONLY).  
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no axiom in the coding system that all diabetic codes 
must have a brittleness qualifier, although there is an 
axiom in the ontology that all Diabetes have a quality 
Brittleness. 
The basic information model 
A basic OWL model capturing the structure implied 
in Figure 3 is shown in Figure 6.  We assume that we 
are modelling a class of diabetic data structures 
which have attributes for each item in Figure 2: topic, 
diagnosis, and brittleness.  
The basic OWL mapping is then shown in Figure 6. 
We map each attribute by a class linked to the data 
structure by the property has_attr. We define a 
special subclass of attributes that take codes as their 
values, Coded_Attribute.  Each Coded_Attribute is linked 
to a maximum of one Code as the value by the 
has_code property.   
We assume that there is a generic class of 
Condition_data_structures that all have Topic and 
Dagnosis attributes, but that the Brittleness attribute is 
specific to the class of Diabetes_data_structure.  
Because the class Diabetes_data_structure is a subclass 
of Condition_data_structure, it “inherits” all of the 
attributes of its superclass.  
Although a representation in which attributes are 
mapped to properties (as is done in the mapping 
specified by OMG) might seem simpler, mapping 
each attribute (and each association in the complete 
representation) to its own class makes it easier to 
specify cardinality and closure at the level of detail 
required for HL7 and OpenEHR models.   
Constraining the codes to placeholders 
Given the basic information model defined in Figure 
6a, we want to indicate that there are constraints on 
the codes to be used with each attribute.  However, 
we do not wish to specify the coding system or the 
coding system specific constraints in the information 
model itself.  Therefore, at this stage we state only 
that each attribute is constrained to a placeholder 
class of codes. These placeholder classes of codes are 
defined in Figure 6b.     
Given the placeholder classes of codes, we can then 
use them in general constraints on the information 
model as shown in Figure 6c.   In this example, we 

have stated the Topic and Diagnosis codes are 
mandatory, as indicated by the keyword “SOME”.  
However, by using the keyword ONLY for 
Brittleness_code, we have said that it is optional 
(because stating that a property can ONLY have 
particular codes does not imply that it need have any 
such codes).  
The Code Binding Interface 
The model of the coding system in Figure 5 and the 
information model in Figure 6 might reside in 
separate modules.  It now remains to define the Code 
Binding Interface between the two modules, which 
might likewise to reside in a third module.  
The Code Binding Interface (CBI) consists of logical 
equivalences between the placeholder classes defined 
in Figure 6b and formal definitions of classes of 
codes in terms of the individuals in the model of 
codes in Figure 5. A CBI consistent with the 
constraints in Figure 3 is shown in Figure 7.  The first 
line indicates that the placeholder class consists of 
just the codes enumerated between the curly brackets, 
in this case just the code for diabetes.  The second 
line indicates that the given placeholder can be either 
the code for diabetes or any of its subcodes.  
(Remember that the property  is_subcode_of is 
transitive.)  The third line indicates that the code for 
brittleness can be any of the subcodes of the code for 
diabetic brittleness but not the parent code itself.   
They can be combined using the boolean operators 
AND, OR, and NOT.  These were the three specific 
cases to be covered in Requirement 2.    
Extension to compositional coding systems 
The previous example was limited to simple coding 
systems without ‘qualifiers’.  However, the same 
principles can be extended to a coding system with 
qualifiers using suitably more complex constraints.  
In this case, since “brittleness” is to be explicitly 

CLASS Qualifier_name_code  Code. 
INDIVIDUAL code_for_diabetic_brittleness_qualifier ∈ 
                                                          Qualifier_name_code. 
CLASS Code_for_diabetes_and_subcodes    
    has_qualifier ONLY  
                              {code_for_diabetic_brittleness_qualifier}. 
INDIVIDUAL code_for_diabetic_brittleness_qualifier ∈  
    has_code EXACTLY 1  
         Subcode_of_code_for_diabetic_brittleness. 

Figure 8a: Extension of Model of Codes to qualifiers 

CLASS Placeholder_diabetes_or_subcode_class  
   ({code_for_diabetes} OR 
         is_subcode_of VALUE code_for_diabetes), 
    NOT (has_qualifier VALUE 
                              code_for_diabetic_brittleness_qualifier). 

Figure 8b: Extension of CBI in Figure 7 to exclude codes 
qualified by brittleness 

CLASS Placeholder_cls_diabetes_only_code  
     {code_for_diabetes}. 
CLASS Placeholder_cls_diabetes_or_subcode  
   {code_for_diabetes} OR 
    is_subcode_of VALUE code_for_diabetes. 
CLASS Placeholder_cls_diabetic_brittleness_subcode  
      is_subcode_of VALUE code_for_diabetic_brittleness. 

Figure 7: Code Binding Interface for Code System in 
Fig 5 and Information Model in Fig 6.  
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catered for in the information model, we want to 
avoid any possibility of a contradiction between the 
value in the information structure and the qualifier in 
the terminology.  The simplest way to do this is to 
exclude the use of codes including the Brittleness 
qualifier from use with the Diagnosis attribute. The 
constraints depend only on whether the coding 
system model contains the necessary definitions.  The 
methodology is the same whether it is for named, 
predefined (pre-coordinated) or  (post-coordinated) 
code expressions (“code phrases” in HL7).   
To represent compositional coding systems in OWL, 
we need to extend the definitions of the coding 
system to say that any code for diabetes or its 
subcodes may be linked to a qualifier view by the 
property has_qualifier by at most one brittleness 
qualifier code which, if present, must be linked to a 
subcode of code_for_diabetic_brittleness.  To do this we 
need a new class of codes, the Qualifier_name_code 
with an instance  code_for_diabetic_brittleness_qualifier.  
Using this scheme we extend Figure 5 as shown in 
Figure 8a.  This is an extension of the coding system 
model, not of the information system model (nor of 
the model of meaning). 
Given the definitions in Figure 8a, we can extend the 
Code Binding Interface in Figure 7 by extending the 
definition of the placeholder for the for the 
diabetes_or_subcode to exclude codes qualified by 
brittleness as shown in Figure 8b.   
A different group might develop a different 
information model that does not include brittleness as 
a separate attribute.  It might, therefore, want to 
include brittleness with the diagnosis code.  To do so, 
they need only change the Code Binding Interface. 
Absence of the Unique Name Assumption and 
differentiating axioms 
The above representations in OWL require a further 
addition. OWL does not make the “Unique name 
assumption”.  In  most formalisms, if two entities 
have different names they are different.  In OWL, any 
two individuals might be the same unless declared 
different and any two classes might overlap unless 
declared disjoint.  
Therefore, to represent the intentions fully, we need a 
set of “differentiating axioms” examples of which are 
shown in Figure 9abc.  If these axioms are omitted, 
the validation in the next section will be incomplete 
because the reasoner will never infer that a code as 
incorrect because it cannot infer that it is different 
from the correct code, even though it has a different 
name.   

Validating information models 
OWL-DL was chosen because it allows efficient 
reasoners.  In principle, the task of using OWL-DL to 
represent and validate a set of information models 
and bindings to a coding system simply requires that 
the reasoner be used to determine if the combined 

models are consistent and the inferences as intended. 
Taking into account the previous discussion, the 
complete procedure consists of the following steps: 
1. Transform the relevant parts of the model of 

meaning, i.e.  the ontology, into a meta-level 
model of codes following the example in Figures 
4 and 5. 

2. Map the information model to and OWL model 
including the constraints on the terminology to 
be used as placeholders following the example in  
Figures 6.   

3. Represent the bindings between the information 
model and the coding system model as a set of 
logical equivalences between the placeholders in 
the information model and class expressions in 
the coding system model to form the  Code 
Binding Interface (CBI) module, following the 
example in Figure 7. 

4. Import the three modules into a single OWL 
model. 

5. Use the reasoner to classify the combined 
structure.  Inconsistencies, inferred subclass 
relations, and inferred equivalencies will be 
flagged by the reasoner. 

6. Examine the inferences and correct the errors. 
Note that inferred subclass relations and 
equivalencies as well as inconsistencies may indicate 
errors.  If an inferred subclass relation is not as 
intended, then either the superclass is under-
constrained – i.e.  too general – or the subclass is 
over-constrained – i.e.  too specialised.  If two classes 
that are intended to be different are inferred to be 

 DISJOINT Diabetes_type_1, Diabetes_type_2. 
 DISJOINT Brittle, Well_controlled. 
Figure 9a: Differentiating axioms for the model of 
meaning 

DIFFERENT 
code_for_diabetes    code_for_diabetes_type_1,   
code_for_diabetes_type_2,   
code_for_diabetic_brittleness, 
code_for_diabetic_brittle, 
code_for_diabetic_well_controlled). 

Figure 9b: Differentiating axioms for the model of 
codes – the coding system 
DISJOINT Data_structure, Attribute. 
DISJOINT Topic, Diagnosis, Brittleness. 
Figure 9c: Differentiating axioms for the information 
model. 
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logically equivalent, then  the distinguishing features 
have been omitted or an axiom with unexpected 
consequences included.  (There are a host of subtle 
errors that can occur in OWL models that are beyond 
the scope of this paper – see [2]). 
Validating individual data structures  – the open 
and closed world assumptions 
Before individual data structures can be validated, we 
must take into account a further feature of OWL’s 
semantics.  Databases, logic programs, and most 
related systems are based on a “closed world 
assumption” with “negation as failure” – i.e. anything 
which cannot be found in the data base or proved true 
is treated as false. OWL is based on the “open world 
assumption” – i.e.  things not proved true are treated 
as unknown; only things which can be proved false 
are treated as false.   The open world assumption 
means that one can always add to an OWL model 
unless there is an explicit “closure axiom” to the 
contrary. Without the closure axiom, an OWL model 
or data structure means only “at least what is here”. 
By contrast, most message and EHR formalisms 
assume that the a given data structure contains “what 
is here and only what is here”.  Without closure 
axioms OWL will accept a data structure with 
missing items because, since the representation is 
open, the missing item could always be added   
Closure axioms are required in three places: a) in the 
information model to say that a particular class is 
complete, b) in the model of codes, to say that each 
code has only the subcodes explicitly asserted, and c) 
in each individual data structure to be validated, to 
say that it contains only what is explicitly present.  
Step a: Before validating the model in Figure 6 we 
need to create a new subclass of “complete diabetes 
data structures” with the added the closure axiom.  
The new subclass definition is shown in Figure 10a.  
The second clause is the “closure axiom” that says 
that only these three attributes may occur. 
CLASS Diabetes_data_structure_complete  
   Diabetes_data_structure, 
   has_attr ONLY (Topic OR Diagnosis OR Brittleness). 
Figure 10a: “Complete” subclass of the Diabetes data 
structure class with closure axiom 

Step b: The model of codes must similarly be closed, 
downwards by adding closure axioms to state that 
each node only has the subcodes listed and the 
terminal codes have no  (MAX 0) subcodes. 
INDIVIDUAL code_for_metabolic_disorcer ∈ 
    has_subcode ONLY {…code_for_diabetes…}. 
INDIVIDUAL code_for_diabetes ∈ 
    has_subcode ONLY {code_for_diabetes_type_1 
                                       code_for_diabetes_type_2}. 
INDIVIDUAL code_for_diabetes_type_1 ∈ 
    has_subcode MAX 0. 

INDIVIDUAL code_for_diabetes_type_2 ∈ 
    has_subcode MAX 0. 

Figure 10b:  Closure axioms for code for diabetes 

Step c: An OWL mapping of a data structure that 
conforms to the model in Figures 6 is shown in 
Figure 10c.  The final line is the closure axiom.   
(The use of SOME and  ONLY rather than VALUE 
avoids the need to define individuals for each data 
structure’s Topic, Diagnosis and Brittleness 
attributes.) 
INDIVIDUAL diabetic_data_structure_123  ∈ 
   has_attr SOME  (Topic & has_code VALUE 
                                                     code_for_diabetes), 
   has_attr SOME (Diagnosis & has_code  VALUE 
                                                    code_for_diabetes_type_1), 
   has_attr SOME (Brittleness  & has_code VALUE  
                                                     code_for_diabetic_brittle), 
   has_attr ONLY (Topic OR Diagnosis OR Brittleness). 

Figure 10c: The OWL mapping of a  Diabetic data 
structure including closure axiom. 

Therefore, the steps to validate that a data structure 
conforms to the information model are: 
1. Map the data structure to an OWL individual 

following the example in Figure 10c. 
2. Add closure axiom as shown in Figure 10c.  
3. Use the reasoner to check if the data structure is 

a valid instance of the intended class in the 
information model. 

Limitations of OWL 
OWL-DL is based on a subset of first order logic 
deliberately limited so that inference is 
computationally tractable. There are two main 
limitations relevant to the work reported here: 
• Limited support for data types.  Both HL7 and 

Archetypes have very elaborate structures of 
datatypes that go beyond the usual XML datatypes 
supported by OWL.  This can be overcome by 
encapsulating datatype in “holders”.  What OWL 
provides is a check on the constraints on which 
data types should be used where.  Separate 
datatype syntax checkers will be required to check 
the datatype formats themselves. 

• Lack of variables. To preserve computational 
tractability, OWL lacks auxiliary variables and 
expressions such as “same-as”.  For example, one 
can say that the left hand must be part of the left 
arm, but not that hands must be part of arms on the 
same side. Usually, it is possible to work around 
this limitation by having separate axioms for each 
case, e.g.  for left-sided and right-sided rather than 
a single axiom for “same side”. UML, and most 
other object oriented formalisms, share this 
limitation.  It has not proved a serious limitation in 
practice in the experience reported below or in 
related applications. 
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Experience 
Representing HL7 message fragments developed 
by the NHS Connecting for Health 
The methods in this paper are a refinement and 
generalisation of methods that were developed to 
represent the constraints in a set of message models 
developed by the UK NHS Connecting for Health 
Programme and their binding to SNOMED CT. The 
set of messages related to administration of 
medication were represented, a total of between 
twenty and thirty message formats (depending on 
how variants are counted).  The methods were 
successful in representing all of the constraints 
identified, both in the HL7 models themselves and in 
the accompanying documentation, including the 
complex constraints on compositional forms required 
to maintain consistency between the SNOMED 
Context Model and the HL7 mood and status codes.  
The representation, however, was tedious.  Existing 
OWL tools are adapted to representing ontologies 
and models of meaning rather than data structures.  
Wider use of the methods presented here would 
benefit from the development of alternative tools, or 
at least alternative front-ends.  In this respect OWL is 
best viewed as an assembly language.  A high level 
language adapted to the task of representing 
information systems and their binding to coding 
systems is required along with ‘compilers’ to 
transform it to OWL in a standard way.  

 Discussion 
In previous papers [3-5] we have identified the 
interface between models of meaning – the ontology– 
and models of use as critical to clinical systems.  This 
paper clarifies the relation between the model of 
meaning and one sort of model of use, the 
information model used for validating EHRs and 
messages.  It contends that these information models 
are, in fact, models of data structures, and that they 
are formulated at a meta level with respect to the 
model of use, the ontology proper.  It further 
contends that codes are likewise data structures and 
that the model of codes, or coding system, is likewise 
at a meta-level with respect to the model of 
meaning – the ontology.   
The paper illustrates a methodology for formulating a 
“Code Binding Interface” (CBI) to specify and 
constrain how codes are to be used in data structures. 
This task is essentially “syntactic” – it is concerned 
with whether the data structures can be processed 
reliably rather than with whether the information 
conveyed is accurate or correct.  The structure of the 
information model is motivated by adequacy to 
convey meanings, but the constraints in the model are 
on the data structures rather than on the meaning 

itself.  We suggest that the controversies around 
coding systems and standards such as HL7 arise, in 
part, from lack of clarity about this distinction 
between validity and accuracy. 
The methodology has been used in practice and 
proved effective in supporting a range of 
independently formulated constraints.   
This theoretical justification and practical experience 
is further supported by the observation that the 
requirements in the introduction cannot be met by a 
first order model of meaning directly linked to the 
information model.  Requirement 2 includes being 
able to restrict the value of an attribute to a specific 
code at any level of abstraction – e.g. to “the specific 
code for diabetes” – or to any of the subcodes of a 
parent code but not the parent code itself – e.g. “to 
any subcode of brittleness”.  However, the semantics 
of the model of meaning are defined in terms of 
classes of illnesses.  The class “all diabetic illnesses 
that are neither type 1 nor type 2” would be all those 
diabetic illnesses of some alternative type – a class 
which is quite probably empty.  It would not be the 
parent class, Diabetes, as required.  By contrast, if 
dealing with classes of codes at the meta-level, the 
required expressions,  as shown in Figure 7, are 
straightforward.  Implicitly, this is what most users of 
terminologies such as SNOMED actually do – they 
query the coding system in a “distribution form” 
which does not give access to the underlying 
semantics.  However, without explicit recognition of 
the separation of the models of meaning and meta-
level models of coding systems, these mechanisms 
remain ad hoc and cannot be specified formally. 
This paper deals with only the first two steps in using 
patient information – formulating meanings and 
storing or transmitting meanings in data structures.  
The third step – using the information for clinical 
decisions about individual patients – requires a 
further model – a model of clinical action – to be 
discussed in a further paper. 
The methodology given here meets the requirements 
given in the introduction for binding ontologies, 
coding and information models. There is great 
controversy over the flaws in both SNOMED and 
HL7.  The indirection in this methodology can help 
provide rigorous specifications that allows systems to 
interoperate using valid message despite flaws in 
such models. However, even if the models were 
ideal, the ontology sound, the coding system a 
faithful meta model of the ontology, and the 
information model founded on a sound model of the 
information to be conveyed, a Code Binding 
Interface would still need to be specified to specify 
what constituted valid bindings of codes to the data 
structures.  Any given message or record fragment 
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will provide places for only a limited view on all 
possible meanings and hence all possible 
combinations of codes.  Even in a near ideal world, if 
the information model and ontology are developed 
independently, there will still be overlaps and 
consequent need for mutual constraints between 
them. 
Whether the methodology presented here is the best 
means to do so remains open to investigation. OWL 
has the technical advantage of being highly 
expressive, of supporting inverse properties which 
can be used to represent context, and of having 
available sound and complete reasoners. Its status as 
a standard brings the organisational advantage of a 
broad community developing tools and techniques.   
However, potential alternatives might include F-
Logic [7], broader epistemic extensions to OWL and 
description logics [8] or other epistemic and or higher 
order logics.  A principled layered version of OWL 
similar to that in this paper has also been suggested 
by others [6].  We hope that the issues are presented 
here in sufficient detail to allow alternatives to be 
formulated and compared.  
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