## A Van Benthem Theorem for Horn Description and Modal Logic (Extended Abstract)

Fabio Papacchini and Frank Wolter

University of Liverpool, UK, {papacchf,wolter}@liverpool.ac.uk

We provide a model-theoretic characterization of the expressive power of Horn- $\mathcal{ALC}$ , the Horn fragment of the basic expressive DL  $\mathcal{ALC}$ . We introduce Horn simulations between interpretations and show that an  $\mathcal{ALC}$  concept is equivalent to a Horn- $\mathcal{ALC}$  concept iff it is preserved under Horn simulations. Using the fact that  $\mathcal{ALC}$  concepts are the bisimulation invariant fragment of FO [2], it also follows that a FO formula  $\varphi(x)$  is equivalent to a Horn- $\mathcal{ALC}$ concept iff it is preserved under Horn-simulations. We also extend this result to characterize Horn- $\mathcal{ALC}$  TBoxes via preservation under global Horn simulations.

Horn DLs were introduced in [9] and since then they have been investigated extensively by the DL community [10, 11, 5, 15, 12, 1, 3, 4, 6, 7, 14, 8]. Horn modal formulas were introduced and investigated in [17]. Once restricted to  $\mathcal{ALC}$ , these notions are equivalent to the following definition. Let  $\mathcal{ELU}$  concepts L be defined by the rule  $L, L' ::= \top |A| L \sqcap L' | L \sqcup L' | \exists r.L$ , where A ranges of concept names and r over role names. Then Horn- $\mathcal{ALC}$  concepts R are defined by the rule

$$R, R' ::= \bot \mid \top \mid \neg A \mid A \mid R \sqcap R' \mid L \to R \mid \exists r.R \mid \forall r.R$$

where A ranges over concept names, r over role names, and L is an  $\mathcal{ELU}$  concept. A Horn- $\mathcal{ALC}$  TBox is a finite set of concept inclusions of the form  $\top \sqsubseteq R$ .

For a binary relation  $\mathcal{R}$  and sets X, Y, we set  $X\mathcal{R}^{\uparrow}Y$  if for all  $d \in X$  there exists  $d' \in Y$  with  $(d, d') \in \mathcal{R}$  and we set  $X\mathcal{R}^{\downarrow}Y$  if for all  $d' \in Y$  there exists  $d \in X$  with  $(d, d') \in \mathcal{R}$ . Let  $\mathcal{I}$  and  $\mathcal{J}$  be interpretations. We write  $(\mathcal{I}, d) \preceq_{\text{sim}}$  $(\mathcal{J}, e)$  if there is a *simulation* between  $\mathcal{I}$  and  $\mathcal{J}$  containing (d, e).  $\mathcal{ELU}$  concepts are preserved under simulations in the sense that  $(\mathcal{I}, d) \preceq_{\text{sim}} (\mathcal{J}, e)$  and  $d \in C^{\mathcal{I}}$ imply  $e \in C^{\mathcal{I}}$ , for all  $\mathcal{ELU}$  concepts C.

**Definition 1 (Horn Simulation).** Let  $\mathcal{I}$  and  $\mathcal{J}$  be interpretations. A Horn simulation between  $\mathcal{I}$  and  $\mathcal{J}$  is a relation  $Z \subseteq \mathcal{P}(\Delta^{\mathcal{I}}) \times \Delta^{\mathcal{J}}$  such that if X Z d then  $X \neq \emptyset$  and the following hold:

- (A) if X Z d and  $X \subseteq A^{\mathcal{I}}$ , then  $d \in A^{\mathcal{J}}$ , for all  $A \in \mathsf{N}_{\mathsf{C}}$ ;
- (F) if X Z d and  $X(r^{\mathcal{I}})^{\uparrow}Y$ , then there exist  $Y' \subseteq Y$  and  $d' \in \Delta^{\mathcal{I}}$  such that  $(d, d') \in r^{\mathcal{I}}$  and Y' Z d', for all  $r \in \mathsf{N}_{\mathsf{R}}$ ;
- (B) if X Z d and  $(d, d') \in r^{\mathcal{J}}$ , then there exists  $Y \subseteq \Delta^{\mathcal{I}}$  with  $X(r^{\mathcal{I}})^{\downarrow}Y$  and Y Z d', for all  $r \in N_{\mathsf{R}}$ ;
- (S)  $(\mathcal{J}, d) \preceq_{sim} (\mathcal{I}, x)$  for all  $x \in X$ .

 $(\mathcal{I}, X)$  is Horn-simulated by  $(\mathcal{J}, d)$ , in symbols  $(\mathcal{I}, X) \preceq_{horn} (\mathcal{J}, d)$ , if there exists a Horn simulation Z between  $\mathcal{I}$  and  $\mathcal{J}$  such that X Z d.

Horn simulations differ from standard bisimulations in at least two respects: they are non-symmetric and they relate sets to points (rather than points to points). They also employ as a 'subgame' the standard simulation game. The definition of Horn simulations is inspired by games used to provide van Benthem style characterizations of concepts in weak DLs such as  $\mathcal{FL}^-$  [13]. We also use the obvious depth k approximation of Horn simulations.

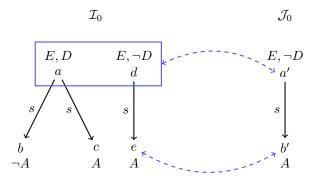
An  $\mathcal{ALC}$  concept  $\widehat{C}$  is preserved under (k-)Horn simulations if for all  $(\mathcal{I}, X)$ and  $(\mathcal{J}, d), X \subseteq C^{\mathcal{I}}$  and  $(\mathcal{I}, X) \preceq_{\text{horn}}^{(k)} (\mathcal{J}, d)$  imply  $d \in C^{\mathcal{J}}$ .

**Theorem 1.** Let C be an ALC concept of depth k. Then the following conditions are equivalent:

- 1. C is equivalent to a Horn-ALC concept;
- 2. C is preserved under Horn simulations;
- 3. C is preserved under k-Horn simulations.

The proof is inspired by Otto's finitary proofs of (extensions of) van Benthem's bisimulation characterization of modal logic via finitary bisimulations [16]. Theorem 1 can be lifted to characterize Horn- $\mathcal{ALC}$  TBoxes via preservation under global (k-)Horn simulations.

Theorem 1 allows us to show that Horn- $\mathcal{ALC}$  does not capture the intersection of  $\mathcal{ALC}$  and Horn FO. For example, the  $\mathcal{ALC}$  concept  $C = ((\exists s.\top) \sqcap (E \sqcap \forall s.A) \rightarrow D))$  is not preserved under Horn simulations. In fact, for the interpretations  $\mathcal{I}_0$ and  $\mathcal{J}_0$ , and the Horn simulation Z defined in the figure below,  $\{a, d\} \subseteq C^{\mathcal{I}_0}$  but  $a' \notin C^{\mathcal{J}_0}$ . Thus, C is not equivalent to any Horn- $\mathcal{ALC}$  concept. C is, however, equivalent to the Horn FO formula  $\exists y (s(x, y) \land (\neg E(x) \lor \neg A(y) \lor D(x))).$ 



The full paper is available at https://cgi.csc.liv.ac.uk/ frank/publ/publ.html. The authors were supported by EPSRC UK grant EP/M012646/1.

## References

- Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness in ontology-based data access. J. Artif. Intell. Res. (JAIR) 56, 1–59 (2016)
- 2. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis (1983)

- Bienvenu, M., Hansen, P., Lutz, C., Wolter, F.: First order-rewritability and containment of conjunctive queries in horn description logics. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. pp. 965–971 (2016)
- Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Games for query inseparability of description logic knowledge bases. Artif. Intell. 234, 78– 119 (2016)
- Eiter, T., Gottlob, G., Ortiz, M., Simkus, M.: Query answering in the description logic horn-SHIQ. In: Logics in Artificial Intelligence, 11th European Conference, JELIA 2008, Dresden, Germany, September 28 - October 1, 2008. Proceedings. pp. 166–179 (2008)
- Glimm, B., Kazakov, Y., Tran, T.: Ontology materialization by abstraction refinement in horn SHOIF. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA. pp. 1114–1120 (2017)
- Gutiérrez-Basulto, V., Jung, J.C., Sabellek, L.: Reverse engineering queries in ontology-enriched systems: The case of expressive horn description logic ontologies. In: Proceedings of IJCAI-ECAI-18. AAAI Press (2018)
- Hernich, A., Lutz, C., Papacchini, F., Wolter, F.: Horn-rewritability vs ptime query evaluation in ontology-mediated querying. In: Proceedings of IJCAI-ECAI. AAAI Press (2018)
- Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: IJCAI. pp. 466–471 (2005)
- Kazakov, Y.: Consequence-driven reasoning for Horn-SHIQ ontologies. In: Boutilier, C. (ed.) IJCAI. pp. 2040–2045 (2009)
- Krötzsch, M.: Description Logic Rules, Studies on the Semantic Web, vol. 8. IOS Press (2010), https://doi.org/10.3233/978-1-61499-342-1-i
- Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics. ACM Trans. Comput. Log. 14(1), 2:1–2:36 (2013), http://doi.acm.org/10.1145/2422085.2422087
- Kurtonina, N., de Rijke, M.: Expressiveness of concept expressions in first-order description logics. Artif. Intell. 107(2), 303–333 (1999)
- Lutz, C., Wolter, F.: The data complexity of description logic ontologies. Logical Methods in Computer Science 13(4) (2017)
- Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of the description logics SHOIQ and SROIQ. In: IJCAI. pp. 1039–1044 (2011)
- Otto, M.: Modal and guarded characterisation theorems over finite transition systems. Ann. Pure Appl. Logic 130(1-3), 173–205 (2004)
- 17. Sturm, H.: Modal horn classes. Studia Logica 64(3), 301–313 (2000)