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Peter Paulovics, Júlia Pukancová and Martin Homola

Comenius University in Bratislava
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Abstract. The tableau algorithm is one of the main reasoning algo-
rithms employed by DL reasoners. It is also often taught as a reasoning
technique at DL courses at universities. As the algorithm proves the ex-
istence of a model for a knowledge base by constructing a completion
tree, the best way to understand this mechanism is to construct this tree
graphically. Realization of this process on the blackboard is usually very
laborious, and mainly the backtracking is chaotic. We have developed
SIVA – a simulation tool for ALC, visualizing the whole process from
initializing a vocabulary and a knowledge base, to building a comple-
tion tree step by step by application of the tableau rules. It allows easy
backtracking to any of the previous states. SIVA is freely available as an
online application.
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1 Introduction

A significant amount of research in DL is focused on tableau reasoning algorithms
[25,15,13,14,12,10,11, i.a.]. They are also taught to students during courses on
knowledge representation and reasoning. Visualization of the tableau algorithm
on the blackboard is helpful, but it is usually quite messy, especially in cases
when the algorithm needs to backtrack. Indeed, a body of research in algorithms
education has been devoted to development of tools for algorithm visualization
[26], e.g., a number of them were developed for various tree-search algorithms.

There is a number of tools [22,28,7,23,24,4,31,18,17,3,6, i.a.] for ontology
visualization. Though as noted by a recent survey [16], the issue of coupling rea-
soning and visualization has not yet been sufficiently explored in the literature.
Notably, OntoTrack [18] uses an external reasoner in order to detect problems
with the currently open ontology. Also, Protégé [9] with its plugins is able to
run the reasoning over an ontology and visualize the inferred data. None of these
tools is instrumental in easing the understanding how the tableau algorithm is
working.

If we extend our outlook beyond ontologies and description logics, both
LoTREC [8] and OOPS [30] are able to visualize tableau proofs for various



modal logics. Also the Tree Proof Generator [29] visualizes tableau proofs for
first-order logic. Out of this tools LoTREC allows to interact with the tableau
once it is generated, otherwise no interaction is possible.

To our best knowledge, none of these tools allows full step-by-step control of
the user while working with the visualized proof, where user has to figure out
the next step of the proof. This is possible e.g. in the Tableau Editor [19,20] for
first-order logic.

We have developed and implemented a web application enabling step-by-step
simulation of the tableau algorithm for the DL ALC [25]. The tool enables to
create a knowledge base; choose one of the decision problems from consistency
checking, instance checking, and concept satisfiability; and consequently to build
a completion tree proving the existence of a model. In accordance with the
educational goal, each action needs to be done by the user, but the tool guides
the user and evaluates the resulting state after each action.

We believe such a tool is a useful aid for students learning the tableau al-
gorithm. In the future, we plan to extend the application to enable reasoning
over more expressive DLs, and to enable the user to add custom tableau rules
or blocking methods. We consider the latter two upgrades to be useful also for
researchers in their works.

2 Description Logics

We build on top of the ALC DL [25]. A DL vocabulary consists of countably
infinite mutually disjoint sets of individuals NI, roles NR, and atomic concepts
NC. Concepts are recursively built using constructors ¬, u, t, ∃, ∀, as shown in
Table 1.

A knowledge base K = (T ,A) consists of a TBox T and an ABox A. A TBox
is a finite set of GCI axioms of the form C v D, where C,D are concepts. An
ABox is a finite set of concept assertions of the form C(a), and role assertions
of the form R(a, b), where a, b ∈ NI, C is a concept, and R ∈ NR.

Table 1. Syntax and Semantics of ALC

Constructor Syntax Semantics

complement ¬C ∆I \ CI

intersection C uD CI ∩DI

union C tD CI ∪DI

existential restriction ∃R.C {x | ∃y (x, y) ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x | ∀y (x, y) ∈ RI → y ∈ CI}
Axiom Syntax Semantics

concept incl. (GCI) C v D CI ⊆ DI

role incl. (RIA) R v S RI ⊆ SI

concept assertion C(a) aI ∈ CI



An interpretation is a pair I = (∆I , ·I), where ∆I 6= ∅ is a domain, and the
interpretation function ·I maps each individual a ∈ NI to aI ∈ ∆I , each atomic
concept A ∈ NC to AI ⊆ ∆I , each role R ∈ NR to RI ⊆ ∆I × ∆I in such a
way that the constraints in Table 1 are satisfied.

Two concepts C and C ′ are equivalent if CI = C ′I for every interpretation
I. An interpretation I satisfies an axiom ϕ (denoted I |= ϕ) if the respective
constraint in Table 1 is satisfied. It is a model of a knowledge base K if it satisfies
all axioms included in K.

Definition 1 (Model). An interpretation I is a model of a knowledge base
K = (T ,A) (denoted I |= K) iff I |= ϕ for all ϕ ∈ T ∪ A.

The main DL decision problems deal with concept satisfiability checking,
axiom entailment checking, and consistency checking of a knowledge base.

A concept is satisfiable w.r.t. a knowledge base if there is a model of this
knowledge base interpreting the concept into a non-empty set.

Definition 2 (Satisfiability). A concept C is satisfiable w.r.t. a knowledge
base K iff there is a model I of K s.t. CI 6= {}.

An axiom is entailed by a knowledge base if it is satisfied by all the models
of this knowledge base.

Definition 3 (Entailment). A knowledge base K entails an axiom ϕ (denoted
K |= ϕ) iff I |= ϕ for each model I of K.

A knowledge base is consistent, if there is at least one interpretation I such
that I |= K, i.e. it has at least one model.

Definition 4 (Consistency). A knowledge base K is consistent, if there is at
least one interpretation I that is a model of K.

In fact, it is well known that all the decision problems stated above are
reducible to the consistency checking problem [1].

Lemma 1 (Satisfiability reduction). Given a DL knowledge base K, a con-
cept C is satisfiable w.r.t. K iff K ∪ {C(a)} is consistent for some new individ-
ual a.

Lemma 2 (Subsumption entailment reduction). Given a DL knowledge
base K, and concepts C and D, K |= C tD iff K∪ {C uD(a)} is consistent for
some new individual a.

Lemma 3 (Assertion entailment reduction). Given a DL knowledge base
K, a concept C, and an individual a, K |= C(a) iff K∪ {¬C(a)} is inconsistent.

A concept C is in negation normal form (NNF) if the complement construc-
tor ¬ stands only in front of atomic concepts in C. From now on, by nnf(C) we
denote a concept C ′ in NNF that is equivalent to C. At least one such concept
always exists [1].



3 Tableau Algorithm

Thanks to reductions, it is sufficient to have an algorithm that solves the con-
sistency checking problem, and so each of the listed decision problems can be
solved via reduction. Perhaps the most common reasoning technique in DL is
the tableau algorithm.

This algorithm works by proving the existence of a model ofK by constructing
it. More precisely, it works on a structure called completion tree that is iteratively
extended by applying a set of tableau rules until it corresponds to a model, or
until it is clear that this is not possible.

Definition 5 (Completion tree). A completion tree (CTree) is a triple T =
(V,E,L) where (V,E) is an oriented graph with a set of nodes V and a set of
edges E, and L is a labeling function that assigns a label to all nodes and edges
of T as follows:

– L(v) is a set of concepts in NNF for a node v ∈ V ,
– L(〈x, y〉) is a set of roles for an edge 〈x, y〉 ∈ E.

We say that a node y ∈ V is a successor of a node x ∈ V in a CTree
T = (V,E,L) if 〈x, y〉 ∈ E, and that a node y ∈ V is a descendant of x ∈ V if
there is a path from x to y. A node y is an R-successor if y is a successor of x
and R ∈ L(〈x, y〉).

To find out whether a knowledge base K is consistent, the algorithm tries to
construct a corresponding CTree, that is free of any local inconsistency, which
is called a clash; i.e., it tries to assure that the CTree is clash-free.

Definition 6 (Clash). There is a clash in L(v) for a node v ∈ V of a CTree
T = (V,E,L), if {C,¬C} ∈ L(v) for some concept C. A CTree is clash-free if
none of its nodes contains a clash.

However, some models may be infinite [1]. While the algorithm cannot con-
tinue the construction indefinitely, it relies on a technique called blocking to
recognize infinite models by constructing a CTree that is a finite representation
thereof.

Definition 7 (Blocked node). Given a CTree T = (V,E,L), a node y ∈ V is
blocked if it is a descendant of another node x ∈ V s.t.:

– either L(y) ⊆ L(x);
– or x is blocked.

Finally, the algorithm is presented in Definition 8. For K = (T ,A) it firstly
initializes the CTree T by encoding into it the explicit statements from the
ABox A. After this initialization, tableau expansion rules are repetitively applied
in order to expand a CTree. If a clash-free and complete CTree is found, the
algorithm answers that K is consistent, otherwise that K is inconsistent.



Definition 8 (Tableau algorithm for consistency checking). Input: K =
(T ,A) in NNF
Output: answers if K is consistent or not
Steps:

1. Initialize a CTree T as follows:

(a) V := {a | individual a occurs in A};
(b) E := {〈a, b〉 | R(a, b) ∈ A for some role R};
(c) L(a) := {nnf(C) | C(a) ∈ A} for all a ∈ V ;

(d) L(〈a, b〉) := {R | R(a, b) ∈ A} for all a, b ∈ V ;

2. Apply tableau expansion rules from Definition 8 while at least one is appli-
cable:

u-rule: if C uD ∈ L(x), x ∈ V is not blocked, and
{C,D} * L(x)

then L(x)←− L(x) ∪ {C,D}
t-rule: if C tD ∈ L(x), x ∈ V is not blocked, and

{C,D} ∩ L(x) = ∅
then either L(x)←− L(x) ∪ {C} or

L(x)←− L(x) ∪ {D}
∀-rule: if ∀R.C ∈ L(x), x ∈ V is not blocked, and

y is R-successor of x and
C /∈ L(y)

then L(y)←− L(x) ∪ {C}
∃-rule: if ∃R.C ∈ L(x), x ∈ V is not blocked, and

there is no R-successor y of x s.t. C ∈ L(y)
then create a new anonymous node z and

V ←− V ∪ {z} and
L(z) = {C}

T -rule: if C v D ∈ T , x ∈ V is not blocked, and
nnf(¬C tD) /∈ L(x)

then L(x)←− L(x) ∪ {nnf(¬C tD)}

3. Answer “K is consistent” if T is clash-free, otherwise answer “K is incon-
sistent”.

The process of building a CTree is nondeterministic. Specifically, there are
two kinds of rules. All rules but the t-rule are AND-rules: they are deterministic
rules with a single possible way of application. The t-rule is an OR-rule: a
nondeterministic rules with multiple possible ways of application (two, in this
case).

In order to explicitly represent the nondeterministic choices and backtracking
done by the algorithm, we track them in a structure called a tableau.1

1 We are aware that this notion of tableau is different from how this term is usually
used in DL literature [1,25,15,13,14,12,10,11] however it is similar to the notion of a
tableau proof in the tableau calculi for propositional and first order logic [2,27].



Definition 9 (Tableau). A tableau is a triple τ = (V,E, λ) where (V,E) is a
tree and λ is a labeling function s.t.:

– λ(x) = T is a CTree for each x ∈ V ;
– λ(〈x, y〉) = (r, u) if an AND-rule r was applied on a node u from λ(x)

yielding λ(y) in which case y is a sole successor of x;
– λ(〈x, y〉) = (r, u, C) if an OR-rule r was applied on a node u from λ(x)

yielding λ(y) in which L(u) was extended by C; in this case x has as many
successors as many are possible nondeterministic choices for r on u.

The root node in τ is the only node without incoming edges and represents
the initial state of the reasoning process.

4 Implementation

Within our work, we have proposed and implemented a general purpose algo-
rithm visualization system called SIVA (System of Interactive Visualizations of
Algorithms). While designing SIVA, a considerable amount of attention has been
paid to its extensibility and modularity. Currently, the most significant contribu-
tion of our work to the field of DL is enabling visualization and control over every
step of the completion tree version of the tableau algorithm reasoning process
in ALC, which is provided by SIVA’s modules we have implemented (DL mod-
ule and its submodule CTreeTableauReasoning). SIVA’s extensibility promotes
its future development, due to which support for other description languages or
visualization of different algorithms could be implemented.

Our implementation of the tableau algorithm for ALC, utilizes an abstract
tableau, which is not constrained to be used with any particular logic formal-
ism. The tableau is stored as a tree-like data structure with exactly one of its
nodes representing the initial and one node representing the current state of the
reasoning process. Every tableau node except the initial one contains an exact
description of reversible actions that transform the state represented by their
parents to the state represented by them, which makes them freely traversable.
In case of the completion tree version of the tableau algorithm for DL, each
node of the tableau describes how an application of a tableau rule affects the
completion tree.

The CTreeTableauReasoning module enables access to the completion tree
data structure and its interactive visualization. The completion tree is repre-
sented by a graph-like data structure, whose nodes and edges are labeled by
sets of concepts and roles, respectively. While applying tableau expansion rules,
the application automatically extends respective labels of nodes and edges and
transforms concepts to their NNF.

The DL module processes input in the form of DL expressions in original
mathematical notation and provides a virtual keyboard with all necessary math-
ematical symbols. User input is automatically parsed and checked for errors,
which have to be fixed before choosing a desired DL problem to solve. SIVA cur-
rently supports three types of problems within ALC, which can be interactively
solved using the completion tree version of tableau algorithm:



Fig. 1. Visualization of a DL knowledge base

– concept satisfiability checking,

– instance checking,

– knowledge base consistency checking.

All instances of these decision problems are solved by reducing them to knowl-
edge base consistency checking. SIVA’s extensible design allows broadening its
support beyond ALC and the mentioned set of reasoning problems in DL.

Functionality of external modules can be made accessible to users through
SIVA’s API by providing a so called workspace – a container component, which
assembles all visual and functional components required to perform actions spec-
ified by the module. Our implementation of CTreeTableauReasoning contains
a workspace that assembles visualizations and functionality of DL vocabular-
ies, knowledge bases, completion trees and tableaux and enables communication
between these components.

We have implemented SIVA as a heavily client-side oriented web application.
It has been built using the React framework with TypeScript as the main script-
ing language. The application’s internal workflow follows the Flux architecture,
which is standardly used within React-based applications.

5 Web application

During the initial access of SIVA, the user is provided by a list of workspaces
available for initialization, which currently contains only the workspace allow-
ing visual simulation of reasoning using the completion tree version of tableau
algorithm in ALC. Prior to any actual reasoning, the user has to establish a



DL vocabulary and a knowledge base, either by typing them manually into des-
ignated input boxes or by loading existing ones, which have been previously
exported using our application.

In Fig. 1 an example knowledge base about owners of potentially murder
weapons (PMW) and a butcher owning a meat cleaver is shown. If the provided
input is error-free, the user can choose one of the supported types of reasoning
problems to solve and define its instance using the provided input controls.

While solving a reasoning problem, the application guides the user through
the completion tree (Fig. 4) initialization phase, which, due to reduction to
knowledge base consistency checking, always consists of creating nodes repre-
senting individuals from a non-empty ABox.

Afterwards, the user can freely apply tableau rules, essentially replacing the
algorithm’s non-determinism. Application of the T -rule is accessed through a
dedicated button present in the labels of completion tree nodes and it is per-
formed by choosing a TBox axiom associated with the desired T -rule (Fig. 2).
All other tableau rules are applied by simply clicking on concepts in labels of
nodes associated with the tableau rule. When applying the t-rule, the user also
chooses one of the two ways he wants it to be applied (Fig. 3).

After encountering a clash or a fully expanded completion tree, the appli-
cation visually informs the user and no more tableau expansion rules can be
applied. The user can utilize the tableau (Fig. 5) in order to backtrack the rea-
soning state to any of the previously discovered ones. The tableau is visualized
as a simple rooted tree, whose nodes can be freely traversed by clicking on them,
which transforms the current state to the one represented by the clicked tableau
node. The user can also quickly traverse the states represented by the current
tableau node’s parent and its children by using dedicated buttons without the
need to access the tableau visualization.

Our application is accessible online at http://siva.6f.sk/.

6 Conclusions

We have developed SIVA – an educational tool for visual simulation of the
tableau algorithm for the description logic ALC. The web application is freely
accessible. It allows the user to create a knowledge base, and to solve a decision
problem by running a step-by-step simulation of the tableau algorithm. Avail-
able decision problems are consistency checking, instance checking, and concept
satisfiability.

In the future, we would like to extend the application for more expressive
description logics, and to allow the user to specify own tableau rules, block-
ing strategy, etc. We hope that this could make our tool interesting also for
researchers. The application can also be extended by some standard tableau ex-
pansion strategies or optimization techniques. We would like to integrate the
application with a course ware, such as Moodle [5].

http://siva.6f.sk/


Fig. 2. Example of the T -rule application dialog

Fig. 3. Example of the t-rule application dialog



Fig. 4. Visualization of a completion tree

Fig. 5. Visualization of a tableau
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