
Happy Ever After:
Temporally Attributed Description Logics

Ana Ozaki a, Markus Krötzschb, Sebastian Rudolph c

aKRDB Research Centre, Free University of Bozen-Bolzano, Italy
bCenter for Advancing Electronics Dresden (cfaed), TU Dresden, Germany

cComputational Logic Group, TU Dresden, Germany

Abstract. Knowledge graphs are based on graph models enriched with (sets of)
attribute-value pairs, called annotations, attached to vertices and edges. Many
application scenarios of knowledge graphs crucially rely on the frequent use of
annotations related to time. Based on recently proposed attributed logics, we design
description logics enriched with temporal annotations whose values are interpreted
over discrete time. Investigating the complexity of reasoning in this new formalism,
it turns out that reasoning in our temporally attributed description logic ALCHT@
is highly undecidable; thus we establish restrictions where it becomes decidable,
and even tractable.

1 Introduction

Graph-based data formats play an essential role in modern informationmanagement, since
they offer schematic flexibility, ease information re-use, and simplify data integration.
Ontological knowledge representation has been shown to offer many benefits to such
data-intensive applications, e.g., by supporting integration, querying, error detection, or
repair. However, practical knowledge graphs, such as Wikidata [24] or YAGO2 [13], are
based on enriched graphs where edges are augmented with additional annotations. To
model these enriched graphs, attributed logics have been proposed as a way of integrating
annotations with logical reasoning [20,14,15]. Other formalisms for reasoning over
annotated relations have been studied in the context of data modelling [6].

Annotations in practical knowledge graphs have many purposes, such as recording
provenance, specifying context, or encoding n-ary relations. One of their most important
uses, however, is to encode temporal validity of statements. In Wikidata, e.g., start/end
time and point in time are among the most frequent annotations, used in 5.4 million
statements overall.1 In YAGO2, time and space are the main types of annotations
considered.

Reasoning with time clearly requires an adequate semantics, and many approaches
were proposed. Validity time points and intervals are a classical topic in data management
[9,10], and similar models of time have also been studied in ontologies [2,16]. However,
researchers in ontologies have most commonly focussed on abstract models of time as

1 As of October 2018, the only more common annotations are reference (provenance) and de-
termination method (context); see https://tools.wmflabs.org/sqid/#/browse?type=
properties&sortpropertyqualifiers=fa-sort-desc

https://tools.wmflabs.org/sqid/#/browse?type=properties&sortpropertyqualifiers=fa-sort-desc
https://tools.wmflabs.org/sqid/#/browse?type=properties&sortpropertyqualifiers=fa-sort-desc

used in temporal logics [19,25,5]. Temporal reasoning in ALC with concrete domains
was proposed by Lutz et. al [18]. It is known that satisfiability of ALC with a concrete
domain consisting of a dense domain and containing the predicates = and < is ExpTime-
complete [17]. In the same setting but for discrete time, the complexity of the satisfiability
problem is open, a criterion which only guarantees decidability has been proposed by
Carapelle and Turhan [7]. None of these approaches has been considered for attributed
logics yet, and indeed support for temporal reasoning for knowledge graphs, such as
Wikidata and YAGO2, is still missing today. In this paper, we address this shortcoming
by endowing attributed description logics with a temporal semantics for annotations.
Indeed, annotations are already well-suited for representing time-related data.

Example 1. The fact that Johannes Gutenberg died in Mainz in 1468 could be encoded
in attributed DLs as:

diedIn(Gutenberg,Mainz)@bdtime: 1468ce

Not all annotations are temporal, and we can also annotate concept assertions, e.g., to
state that he lived in Strasbourg:

Lived(Gutenberg)@bdloc:Strasbourgce

Gutenberg’s early life is less certain, and we only know that he was born between 1394
and 1404 in Mainz. Such uncertainty about precise dates is very common in practice.
Nevertheless, we would like to record the information available, which could be expressed
as follows:

bornIn(Gutenberg,Mainz)@bdbetween : [1394, 1404]ce

To deal with such temporally annotated data in a semantically adequate way and to
specify temporal background knowledge, we propose the temporally attributed description
logic ALCHT@, enabling reasoning and querying support for such information. Beyond
defining syntax and semantics of ALCHT@, this paper’s contributions are the following:

– We show that the full formalism is highly undecidable using an encoding of a
recurring tiling problem.

– We present three ways (of increasing reasoning complexity) for regaining decidability:
disallowing variables altogether (ExpTime), disallowing the use of variables only
for temporal attributes (2ExpTime), or disallowing the use of temporal attributes
referencing time points in the future (3ExpTime).

– Finally we single out a lightweight case based on the description logic EL which
features PTime reasoning.

The paper is self-contained. Details on some long proofs can be found in the appendix
of the extended online version [21].

2 Temporally Attributed DLs

We first present the syntax and underlying intuition of temporally attributed description
logics. In DL, a true fact corresponds to the membership of an element in a class, or

of a pair of elements in a binary relation. Attributed DLs further allow each true fact
to carry a finite set of annotations [14] , given as attribute-value pairs. As suggested in
Example 1, the same relationship may be true with several different annotation sets, e.g.,
in case Gutenberg also lived elsewhere.

We define our description logic ALCHT@ as a multi-sorted version of the attributed
DL ALCH@, thereby introducing datatypes for time points and intervals. Elements of
the different types are represented by members of mutually disjoint sets of (abstract)
individual names NI, time points NT, and time intervals N2

T. We represent time points
by natural numbers, and assume that elements of NT (N2

T) are (pairs of) numbers in
binary encoding. We write [k, `] for a pair of numbers k, ` in N2

T. Moreover, we require
that there are the following seven special individual names, called temporal attributes:
time, before, after, until, since, during, between ∈ NI.

The intuitive meaning of temporal attributes is as one might expect: time describes
individual times at which a statement is true, while the others describe (half-open)
intervals. The meaning of before, after, and between is existential in that they require
the statement to hold only at some time in the interval, while until, since, and during are
universal and require something to be true throughout an interval.

Axioms of ALCHT@ are further based on sets of concept names NC, role names NR,
and (set) variables NV. Attributes are represented by individual names, and we associate
a value type vt(a) with each individual a ∈ NI for this purpose: during and between have
value type N2

T, all other temporal attributes have value type NT, and all other individuals
have value type NI. An attribute-value pair is an expression a: v where a ∈ NI and
v ∈ vt(a). Now, concept and role assertions of ALCHT@ have the following form:

C(a)@bda1 : v1, . . . , an : vnce r(a, b)@bda1 : v1, . . . , an : vnce

where C ∈ NC, r ∈ NR, a, b ∈ NI, and ai : vi are attribute-value pairs.
Role and concept inclusion axioms of ALCHT@ introduce additional expressive

power to refer to partially specified and variable annotation sets. An (annotation set)
specifier can be a set variable X ∈ NV, a closed specifier bda1 : v1, . . . , an : vnce, or an open
specifier ba1 : v1, . . . , an : vnc, where ai ∈ NI and either vi ∈ vt(ai) or vi = X .b with
X ∈ NV, b ∈ NI, and vt(ai) = vt(b). Intuitively speaking, closed specifiers define specific
annotation sets whereas open specifiers merely provide lower bounds. The notation X .b
is used to copy all of the zero or more b-values of annotation set X to a new annotation set.
The set of all specifiers is denoted S. A specifier is ground if it does not contain variables.
ALCHT@ role expressions have the form r@S with r ∈ NR and S ∈ S. ALCHT@ concept
expressions C,D are defined recursively:

C,D F > | A@S | ¬C | (C u D) | ∃R.C (1)

with A ∈ NC, S ∈ S and R an ALCHT@ role expression. We use abbreviations (C t D),
⊥, and ∀R.C for ¬(¬C u ¬D), ¬>, and ¬(∃R.¬C), respectively.

ALCHT@ axioms are essentially just DL inclusions between ALCHT@ role and
concept expressions, which may, however, share variables.
Example 2. In an ontology containing biographical information, we might want to make
sure that children cannot be born before their parents. This can be expressed by the axiom

∃bornIn@X .> v ¬∃hasChild@b c .∃bornIn@bbefore: X .timec .>.

Similar axioms can be used, e.g., to state that nobody has more than one birthday (“is
born before being born”).

It is sometimes useful to represent annotations by variables while also specifying
some further constraints on their possible values. This can be accommodated by adding
such constraints as (optional) prefixes to axioms. Hence we define an ALCHT@ concept
inclusion as an expression of the form

X1 : S1, . . . , Xn : Sn (C v D), (2)

whereC,D areALCHT@ concept expressions, S1, . . . , Sn ∈ S are closed or open specifiers,
and X1, . . . , Xn ∈ NV are set variables occurring in C,D or in S1, . . . , Sn. ALCHT@ role
inclusions are defined analogously, but with role expressions instead of the concept
expressions. An ALCHT@ ontology is a set of ALCHT@ assertions, and role and concept
inclusions. To simplify notation, we sometimes omit the specifier b c (meaning “any
annotation set”) in role or concept expressions. In this sense, any ALCH axiom is also
an ALCHT@ axiom.

3 Formal Semantics

We first recall the general semantics of attributed DLs without temporal attributes. The
semantics of ALCHT@ can then be obtained as a multi-sorted extension that imposes
additional restrictions on the interpretation of time.

An interpretation I = (∆I, ·I) of attributed logic consists of a non-empty domain
∆I and a function ·I . Individual names a ∈ NI are interpreted as elements aI ∈ ∆I .
To interpret annotation sets, we use the set ΦI B Pfin

(
∆I × ∆I

)
of all finite binary

relations over ∆I . Now each concept name C ∈ NC is interpreted as a set CI ⊆ ∆I ×ΦI

of elements with annotations, and each role name r ∈ NR is interpreted as a set
rI ⊆ ∆I × ∆I × ΦI of pairs of elements with annotations. Note that each element
(pair of elements) may appear with multiple different annotations. I satisfies a concept
assertion C(a)@bda1 : v1, . . . , an : vnce if (aI, {(aI

1 , v
I
1), . . . , (a

I
n , v

I
n)}) ∈ CI , and likewise

for role assertions. Expressions with free set variables are interpreted using variable
assignments Z : NV → Φ

I . A specifier S ∈ S is interpreted as a set SI,Z ⊆ ΦI of
matching annotation sets. We set XI,Z B {Z(X)} for variables X ∈ NV. The semantics
of closed specifiers is defined as follows:

(i) bda: bceI,Z B {{(aI, bI)}}
(ii) bda: X .bceI,Z B {{(aI, δ) | (bI, δ) ∈ Z(X)}}
(iii) bda1 : v1, . . . , an : vnceI,Z B {

⋃n
i=1 Fi}where {Fi} = bdai : viceI,Z for all i ∈ {1, . . . , n}.

SI,Z therefore is a singleton set for variables and closed specifiers. For open specifiers,
however, we define ba1 : v1, . . . , an : vncI,Z to be the set

{F ∈ ΦI | F ⊇ G for {G} = bda1 : v1, . . . , an : vnceI,Z }.

Now given A ∈ NC, r ∈ NR, and S ∈ S, we define:

(A@S)I,Z B {δ | (δ, F) ∈ AI for some F ∈ SI,Z },

(r@S)I,Z B {(δ, ε) | (δ, ε, F) ∈ rI for some F ∈ SI,Z }.

Further DL expressions are defined as usual: >I,Z = ∆I , ¬CI,Z = ∆I \ CI,Z , (C u
D)I,Z = CI,Z ∩ DI,Z , and (∃R.C)I,Z = {δ | there is (δ, ε) ∈ RI,Z with ε ∈ CI,Z }.

I satisfies a concept inclusion of the form (2) if, for all variable assignments Z
that satisfy Z(Xi) ∈ SI,Z

i for all 1 ≤ i ≤ n, we have CI,Z ⊆ DI,Z . Satisfaction of role
inclusions is defined analogously. I satisfies an ontology if it satisfies all of its axioms.
As usual, |= denotes both satisfaction and the induced logical entailment relation.

Adding Time Time points t ∈ NT are encodings of natural numbers, which we denote
by tI . Analogously, vI denotes a pair of numbers for a time interval v ∈ N2

T. To
represent time, we consider intervals of natural numbers, which can be finite intervals
[k, `] = {n ∈ N | k ≤ n ≤ `} or infinite intervals [k,∞) = {n ∈ N | k ≤ n}. A temporal
domain ∆IT is a finite or infinite interval such that tI ∈ ∆IT for all t ∈ NT and vI ∈ ∆IT ×∆

I
T

for all v ∈ N2
T. Note that ∆

I
T can be finite if NT and N2

T are (which is always admissible,
since any ontology mentions only finitely many time points).

A time-sorted interpretation I = (∆I, ·I) has a sorted domain ∆I that is a disjoint
union ∆II ∪ ∆

I
T ∪ ∆

I
2T , where ∆

I
I is the abstract domain, ∆IT is a temporal domain, and

∆I2T = ∆
I
T × ∆

I
T . We interpret individual names a ∈ NI as elements aI ∈ ∆II . A pair

(δ, ε) ∈ ∆II × ∆
I is well-typed, if one of the following holds:

(i) δ = aI for a temporal attribute a of value type NT and ε ∈ ∆IT ;
(ii) δ = aI for a temporal attribute a of value type N2

T and ε ∈ ∆I2T ; or
(iii) δ , aI for all temporal attributes a and ε ∈ ∆II .

ThenΦI is the set of all finite sets of well-typed pairs. The remainder of the interpretation
function is defined as in the unsorted case, based on this sorted definition of ΦI .

Time-sorted interpretations can be used to interpret ALCHT@ ontologies, but they do
not take the intended semantics of time into account yet. For example, we might find that
A(c)@bdafter: 1993ce holds whereas A(c)@bdtime: tce does not hold for any time t ∈ NT
with tI > 1993. To ensure consistency, we would like to view an interpretation with
temporal domain ∆IT as a sequence (Ii)i∈∆IT of regular (unsorted) interpretations that
define the state of the world at each point in time. Such a sequence represents a local
view of time as a sequence of events, whereas the time-sorted interpretation represents
a global view that can explicitly refer to time points. Axioms of ALCHT@ refer to this
global view, but it should be based on an actual sequence of events. To simplify the
relationship between local and global views, we assume that the underlying abstract
domain ∆II and interpretation of constants remains the same over time.

Definition 3. Consider a temporal domain ∆IT and an abstract domain ∆II , and let
(Ii)i∈∆IT be a sequence of ALCH@ interpretations with domain ∆II , such that, for all
a ∈ NI, we have aIi = aI j for all i, j ∈ ∆IT .

We define a global interpretation for (Ii)i∈∆IT as a multisorted interpretation I =
(∆I, ·I) as follows. Let aI = aIi for all a ∈ NI. For any finite set F ∈ ΦI , let
FI B F ∩ (∆II × ∆

I
I) denote its abstract part without any temporal attributes. For any

A ∈ NC, δ ∈ ∆I , and F ∈ ΦI with F \ FI , ∅, we have (δ, F) ∈ AI if and only if2
(δ, FI) ∈ AIi for some i ∈ ∆IT , and the following conditions hold for all (aI, x) ∈ F:

2 ‘for some i ∈ ∆IT ’ is useful for attributes which universally quantify time points (e.g., until).

– if a = time, then (δ, FI) ∈ AIx ,
– if a = before, then (δ, FI) ∈ AI j for some j < x,
– if a = after, then (δ, FI) ∈ AI j for some j > x,
– if a = until, then (δ, FI) ∈ AI j for all j ≤ x,
– if a = since, then (δ, FI) ∈ AI j for all j ≥ x,
– if a = between, then (δ, FI) ∈ AI j for some j ∈ [x],
– if a = during, then (δ, FI) ∈ AI j for all j ∈ [x],

where [x] for an element x ∈ ∆I2T denotes the finite interval represented by the pair of
numbers x, and j ∈ ∆IT . For roles r ∈ NR, we define (δ, ε, F) ∈ rI analogously.

In words: in a global interpretation all tuples are consistent with the given sequence
of local interpretations. One can see a global interpretation as a snapshot of a local
interpretation, with timestamps encoding the information of the temporal sequence.
If a global interpretation does not contain temporal attributes the characterization of
Definition 3 holds vacuously for any temporal sequence, meaning that without temporal
attributes the semantics is essentially the same as for ALCH@.

Definition 4. An interpretation of ALCHT@ is a time-sorted interpretation I that is a
global interpretation of an interpretation sequence (Ii)i∈∆IT as in Definition 3.

A model of an ALCHT@ ontology O is an ALCHT@ interpretation that satisfies O,
and O entails an axiom α, written O |= α, if α is satisfied by all models of O.

By virtue of the syntax and semantics of ALCHT@ we can express background
knowledge that helps to maintain integrity of the annotated knowledge and allows us to
derive new information from it.

Example 5. Along the lines of Example 2, we can state, e.g., that people cannot live
after their death:

Lived@X u ∃diedIn@bbefore: X .timec .> v ⊥ ∃bornIn@X .> v Lived@X

With these background axioms in place, we can infer from the time-annotated facts in
Example 1, e.g.,

Lived(Gutenberg)@bdbetween:[1394,1468]ce

Some temporal attributes are closely related. Clearly, time can be captured by using
during or between with singleton intervals. Conversely, during can be expressed by
specifying all time points in the respective interval explicitly using time, but this incurs
an exponential blow-up over the binary encoding of time intervals. Similarly, between
could be expressed as a disjunction of statements with specific times. Since time can be
infinite, since and after cannot be captured using finite intervals. It may seem as if until
and before correspond to during and between using intervals starting at 0. However, it is
not certain that 0 is the first element in the temporal domain of an interpretation, and the
next example shows that this cannot be assumed in general.

Example 6. The ontologywith the two axiomsC(a)@bduntil: 10ce andC@bdbefore: 5ce v ⊥
is satisfiable inALCHT@, but it does not have models that have times before 5. Replacing
until: 10 with during: [0, 10] would therefore lead to an inconsistent ontology.

4 Reasoning in ALCHT@
In this section, we study the expressivity and decidability in ALCHT@. Our first result,
Theorem 7, shows that reasoning is on the first level of the analytical hierarchy and
therefore highly undecidable.

Theorem 7. Satisfiability of ALCHT@ ontologies is Σ1
1-hard, and thus not recursively

enumerable. Moreover, the problem is Σ1
1-hard even with at most one set variable per

inclusion and with only the temporal attributes time and after.

Proof. We reduce from the following tiling problem, known to be Σ1
1-hard [12]: given

a finite set of tile types T with horizontal and vertical compatibility relations H and V ,
respectively, and t0 ∈ T , decide whether one can tile N × N with t0 appearing infinitely
often in the first row. We define an ALCHT@ ontology OT,t0 that expresses this property.
In our encoding, we use the following symbols:

– a concept name A, to mark individuals representing a grid position with a time point;
– a concept name P to keep time points associated with previous columns in the grid;
– concept names At , for each t ∈ T , to mark individuals with tile types;
– an individual name a, to be connected with the first row of the grid;
– an auxiliary concept name I, to mark the individual a, and a concept name B, used
to create the vertical axis;

– role names r, s, to connect horizontally and vertically the elements of the grid,
respectively.

We defineOT,t0 as the set of the followingALCHT@ assertion and concept inclusions. We
start encoding the first row of the grid with an assertion I(a) and the concept inclusions:

I v ∃r .A@btime: 0c and ∃r .A@X v ∃r .A@bafter: X .timec .

Every element in A must be marked in at most one time point (in fact, exactly one):

A@X v ¬A@bafter: X .timec (3)

Every element representing a grid position can be associated with exactly one tile type at
the same time point:

A@X v
⊔
t∈T

At@btime: X .timec,

∃r .At@X v ¬∃r .At′@btime: X .timec, for t , t ′ ∈ T .

We also have:

At@X v A@btime: X .timec, for each t ∈ T

to ensure that elements are in At and A at the same time point (exactly one one, see
Eq. 3). The condition that t0 appears infinitely often in the first row is expressed with:

I v ∃r .(At0@btime: 0c t At0@bafter: 0c),
I u ∃r .At0@X v ∃r .At0@bafter: X .timec .

To vertically connect subsequent rows of the grid, we have: I v B and B v ∃s.B. We
add, for each t ∈ T , the following inclusion to ensure compatibility between vertically
adjacent tile types:

∃r .At@X v ∀s.∃r .(
⊔
(t,t′)∈V

At′@btime: X .timec)

We also have:

∃s.∃r .A@X v ∃r .A@btime: X .timec

to ensure that the set of time points in each row is the same. We now encode compatibility
between horizontally adjacent tile types. We first state that, given a node associated with
a time point p, for every sibling node d, if d is associated with a time point after p then
we mark d with P and p:

∃r .A@X v ∀r .(¬A@bafter: X .timec t P@btime: X .timec).

For each node, P keeps the time points associated with previous columns in the grid
(finitely many). We also have:

∃r .P@X v ∃r .A@btime: X .timec and P@X v A@bafter: X .timec

to ensure that P keeps only those previous time points. Finally, for each t ∈ T , we add to
OT,t0 the inclusion:

∃r .At@X v ∀r .(¬A@bafter: X .timec t P@bafter: X .timec t
⊔
(t,t′)∈H

At′).

Intuitively, as P keeps the time points associated with previous columns in the grid, only
the node representing the horizontally adjacent grid position of a node associated with a
time point p will not be marked with P after p.

Theorem 8 shows that even if after is only allowed in assertions reasoning is
undecidable, though, in the arithmetical hierarchy [22].

Theorem 8. Satisfiability of ALCHT@ ontologies with the temporal attributes time, after
and before but after only in assertions is Σ0

1-complete (recall Σ
0
1 stands for RE). The

problem is Σ0
1-hard even with at most one set variable per inclusion.

To recover decidability, we need to restrictALCHT@ in some way. A simple approach
of doing so is to consider ground ALCHT@ where we disallow set variables altogether.
It is clear from the known complexity of ALCH that reasoning is ExpTime-hard.
We establish a matching membership result by providing a satisfiability-preserving
polynomial time translation to ALCH extended with role conjunctions and disjunctions
(denoted ALCHb), where satisfiability is known to be in ExpTime [23].

Theorem 9. Satisfiability of ground ALCHT@ ontologies is ExpTime-complete.

Proof. Consider a ground ALCHT@ ontology O, and let k0 < . . . < kn be the ascending
sequence of all numbers mentioned (in binary encoding) in time points or in time intervals
inO. We define NO B {ki | 0 ≤ i ≤ n} ∪ {ki + 1 | 0 ≤ i < n}, and let kmin B min(NO)

and kmax = max(NO), where we assume kmin = kmax = 0 if NO = ∅. For a finite interval
v ⊆ N, let Nv

O be the set of all finite, non-empty intervals u ⊆ v with end points in NO.
The number of intervals in Nv

O then is polynomial in the size of O.
We translate O into an ALCHb ontology O† as follows. First, O† contains every

axiom from O, with each annotated concept name A@S and each annotated role name
r@S replaced by a fresh concept name AS and a fresh role name rS , respectively.

Second, given a ground specifier S, we denote by S(a: b) the result of removing
all temporal attributes from S and adding the pair a: b. Moreover, let ST be the set of
temporal attribute-value pairs in S. Then, for each AS and rS with ST , ∅, O† contains
the equivalences (as usual, ≡ refers to bidirectional v here):

AS ≡
/

(a:b)∈ST

(AS(a:b))
] and rS ≡

/
(a:b)∈ST

(rS(a:b))
] (4)

where the concept/role expressions (HS(a:b))
] for H ∈ {A, r} are defined as follows:

– (HS(during:v))
] =

.
u∈Nv

O
HS(during:u)

– (HS(between:v))
] =

⊔
k∈(v∩NO) HS(during:[k,k])

– (HS(time:k))
] = (HS(during:[k,k]))

]

– (HS(since:k))
] = (HS(during:[k,kmax]))

] u HS(since:kmax)

– (HS(until:k))
] = (HS(during:[kmin,k]))

] u HS(until:kmin)

– (HS(after:k))
] = (HS(between:[k+1,kmax]))

] t HS(after:kmax)

– (HS(before:k))
] = (HS(between:[kmin,k−1]))

] t HS(before:kmin)

where k , kmin and k , kmax. If k ∈ {kmin, kmax} then we set (HS(a:k))
] = HS(a:k). Only

polynomially many inclusions in the size of O are introduced by (4) in O†.
Finally, given attribute-value pairs a: b and c: d for temporal attributes a and b, we

say that a: b implies c: d if A(e)@bda: bce |= A(e)@bdc: dce for some arbitrary A ∈ NC and
e ∈ NI. Based on a given NI, this implication relationship is computable in polynomial
time. We then extend O† with all inclusions AS v AT and rS v rT , where AS, AT and
rS, rT are concept and role names occurring inO†, including those introduced in (4), such
that for each temporal attribute-value pair c: d in T there is a temporal attribute-value
pair a: b in S such that a: b implies c: d and:

– T is an open specifier and the set of non-temporal attribute-value pairs in S is a
superset of the set of non-temporal attribute-value pairs in T ; or

– S,T are closed specifiers and the set of non-temporal attribute-value pairs in S is
equal to the set of non-temporal attribute-value pairs in T .

This finishes the construction of O†. As shown in the appendix, O is satisfiable iff O† is
satisfiable.

While ground ALCHT@ can already be used for some interesting conclusions, it
is still rather limited. However, satisfiability of (non-ground) ALCH@ ontologies is

also decidable [14], and indeed we can regain decidability in ALCHT@ by disallowing
expressions of the form X .a to be used with temporal attributes a. Indeed, using a similar
reasoning as in the case ofALCH@, we obtain a 2ExpTime upper bound by constructing
an equisatisfiable (exponentially larger) ground ALCHT@ ontology.

Theorem 10. Satisfiability of ALCHT@ ontologies without expressions of the form X .a
for temporal attributes a is 2ExpTime-complete.

Another way for regaining decidability is by limiting the temporal attributes that
make reference to time points in the future. Using this assumption, we can translate any
ALCHT@ ontology into a ground ALCHT@ ontology. In this case, however, the resulting
ground ontology is double-exponentially larger if we assume that the size of the temporal
domain has been encoded in binary. We therefore obtain a 3ExpTime upper bound (using
Theorem 9).

Theorem 11. Satisfiability of ALCHT@ ontologies with only the temporal attributes
during, time, before and until is in 3ExpTime.

Our result in our next Theorem 12 below is that this upper bound is tight. The proof is
by reduction from the word problem for double-exponentially space-bounded alternating
Turing machines (ATMs) [8] to the entailment problem for ALCHT@ ontologies. The
main challenge in this reduction is that we need a mechanism that allows us to transfer
the information of a double-exponentially space bounded tape, so that each configuration
following a given configuration is actually a successor configuration (i.e., tape cells are
changed according to the transition relation). We encode our tape using time: we can
have exponentially many time points in an interval with end points encoded in binary. So
considering each time point as a bit position, we construct a counter with exponentially
many bits, encoding the position of double-exponentially many tape cells.

Theorem 12. Satisfiability ofALCHT@ ontologieswith only time andbefore is 3ExpTime-
hard.

5 Lightweight Temporal Attributed DLs

In this section we investigate ELHT@, the fragment of ALCHT@ which uses only ∃, u,
> and ⊥ in concept expressions. Though, even for ground ontologies, the satisfiability
problem for ELHT@ is not tractable.

Theorem 13. Satisfiability of ground ELHT@ ontologies is ExpTime-complete.

Proof. The upper bound follows from Theorem 9. For the lower bound, we show how
one can encode disjunctions (i.e., inclusions of the form > v B t C), which allow us
to reduce satisfiability of ground ALCHT@ to satisfiability of ground ELHT@ ontologies.
In fact, several combinations of the temporal attributes time, between, before and after
suffice to encode > v B t C. As an example, see the following inclusions using the
temporal attributes time and between: > v A@bbetween : [1, 2]c, A@btime : 1c v
B, A@btime : 2c v C. One can also obtain the same type of encoding with before and
after: > v A@b c, A@bbefore : 1c v B, A@bafter : 0c v C.

It is known that the entailment problem for EL ontologies with concept and role
names annotated with time intervals over finite models is in PTime [16]. Indeed, our
temporal attribute during can be seen as a syntactic variant of the time intervals in the
mentioned work and, if we restrict to the temporal attributes time, during, since and until,
the complexity of the satisfiability problem for ground ELHT@ ontologies is in PTime.
Our proof here (for ground ELHT@ over N or over a finite interval in N) is based on a
polynomial translation to ELH extended with role conjunction, where satisfiability is
PTime-complete [23].

Theorem 14. Satisfiability of ground ELHT@ ontologies without the temporal attributes
between, before and after is PTime-complete.

Proof. Hardness follows from the PTime-hardness of EL [4]. For membership, note
that the translation in Theorem 9 for the temporal attributes during, since and until does
not introduce disjunctions or negations. So the result of translating a ground ELHT@
ontology belongs to ELH extended with role conjunction.

6 Discussion and Conclusion

We investigated decidability and complexities of attributed description logics enriched
with special attributes whose values are interpreted over a temporal dimension. We
discussed several ways of restricting the general, undecidable setting in order to regain
decidability. Our complexity results range from PTime to 3ExpTime. Some of the
statements used in our examples can also be naturally expressed in temporal DLs. For
instance, the first statement of Example 5 is expressible by ALC extended with Linear
Temporal Logic [19,25] with:

Lived u ♦∃bornIn.> v ⊥.
Other authors have also considered extending ALC with Metric Temporal Logic
(MTL) [11,3], where the last statement of Example 1 can be expressed with:

♦[1394,1404]bornIn(Gutenberg,Mainz).

However, the statement in Example 2 cannot be naturally expressed by temporal DLs. The
complexity results can also be very different, for instance, the complexity of propositional
MTL is already undecidable over the reals and ExpSpace-complete over the naturals [1],
whereas in Theorem 9 of this paper we show that we can enhance ALC with many types
of time related annotations with time points encoded in binary while keeping the same
ExpTime complexity of ALC. As future work, we plan to study forms of generalising
our logic to capture the semantics of other standard types of annotations in knowledge
graphs, such as provenance and spatial information.

Acknowledgements This work was partially supported by the DFG within the cfaed
Cluster of Excellence, CRC 912 (HAEC), and Emmy Noether grant KR 4381/1-1, and
by the ERC in Consolidator Grant DeciGUT.

References

1. R. Alur and T.A. Henzinger. Real-time logics: Complexity and expressiveness. Information
and Computation, 104(1):35 – 77, 1993.

2. Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Temporal
description logic for ontology-based data access. In IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, pages 711–717, 2013.

3. Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost. Metric
temporal description logics with interval-rigid names. In Frontiers of Combining Systems -
11th International Symposium, FroCoS, pages 60–76, 2017.

4. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack
Kaelbling and Alessandro Saffiotti, editors, Proc. 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI’05), pages 364–369. Professional Book Center, 2005.

5. Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic axioms. ACM
Trans. Comput. Log., 13(3), 2012.

6. Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML class
diagrams. Artif. Intell., 168(1-2):70–118, 2005.

7. Claudia Carapelle and Anni-Yasmin Turhan. Description logics reasoning w.r.t. general
Tboxes is decidable for concrete domains with the EHD-property. In ECAI 2016 - 22nd
European Conference on Artificial Intelligence, pages 1440–1448, 2016.

8. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. of the ACM,
28(1):114–133, 1981.

9. Jan Chomicki. Temporal query languages: A survey. In Dov M. Gabbay and Hans Jürgen
Ohlbach, editors, Proc. 1st Int. Conf. on Database Theory (ICDT’94), volume 827 of LNCS,
pages 506–534. Springer, 1994.

10. Michael David Fisher, Dov M. Gabbay, and Lluis Vila, editors. Handbook of Temporal
Reasoning in Artificial Intelligence. Elsevier, 2005.

11. Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Ana Ozaki. Onmetric temporal description
logics. In Proc. of the 22nd Eur. Conf. on Artificial Intelligence (ECAI’16), pages 837–845.
IOS Press, 2016.

12. DavidHarel. Effective transformations on infinite trees, with applications to high undecidability,
dominoes, and fairness. J. ACM, 33(1):224–248, 1986.

13. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2:
A spatially and temporally enhanced knowledge base from Wikipedia. J. of Artif. Intell.,
194:28–61, 2013.

14. Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost. Attributed description
logics: Ontologies for knowledge graphs. In The Semantic Web - ISWC - 16th International
Semantic Web Conference, pages 418–435, 2017.

15. Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost. Attributed description
logics: Reasoning on knowledge graphs. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI, pages 5309–5313, 2018.

16. Jared Leo, Ulrike Sattler, and Bijan Parsia. Temporalising EL concepts with time intervals. In
Proc. 27th Int. Workshop on Description Logics (DL’14), volume 1193 of CEUR Workshop
Proceedings, pages 620–632. CEUR-WS.org, 2014.

17. Carsten Lutz. Combining interval-based temporal reasoning with general tboxes. Artificial
Intelligence, 152(2):235 – 274, 2004.

18. Carsten Lutz, Volker Haarslev, and Ralf Möller. A concept language with role-forming
predicate restrictions. Technical report, University of Hamburg, 1997.

19. Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A
survey. In 15th International Symposium on Temporal Representation and Reasoning, TIME,
pages 3–14, 2008.

20. Maximilian Marx, Markus Krötzsch, and Veronika Thost. Logic on MARS: Ontologies for
generalised property graphs. In Carles Sierra, editor, Proc. 26th Int. Joint Conf. on Artificial
Intelligence (IJCAI’17), pages 1188–1194. IJCAI, 2017.

21. Ana Ozaki, Markus Krötzsch, and Sebastian Rudolph. Happy ever after: Temporally attributed
description logics (extended technical report). Available online at https://iccl.inf.
tu-dresden.de/web/Inproceedings3101, 2018.

22. Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,
paperback edition edition, 1987.

23. Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Cheap Boolean role constructors
for description logics. In Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing, editors,
Proc. 11th European Conf. on Logics in Artificial Intelligence (JELIA’08), volume 5293 of
LNAI, pages 362–374. Springer, 2008.

24. Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowledgebase.
Commun. ACM, 57(10), 2014.

25. Frank Wolter and Michael Zakharyaschev. Temporalizing description logics. Frontiers of
Combining Systems, 2:379–402, 1999.

https://iccl.inf.tu-dresden.de/web/Inproceedings3101
https://iccl.inf.tu-dresden.de/web/Inproceedings3101

