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Mlynská dolina, 84248 Bratislava

drahosmrozek@gmail.com,{pukancova,homola}@fmph.uniba.sk

Abstract. We have implemented an ABox abduction solver based on
Reiter’s minimal hitting set algorithm. Our solver runs a DL reasoner as
a black box, similarly to the existing AAA solver. The advantage of the
current work is the use of OWL API, which allows to plug-in a number of
different DL reasoners. In this paper we describe our implementation and
present an evaluation results comparing AAA, which is tightly coupled
with Pellet, and the current implementation running with three different
reasoners: Pellet, JFact, and HermiT. The latter combination showed the
most promising results.
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1 Introduction

Abduction, originally introduced by Peirce [18], is non-standard reasoning prob-
lem whose goal is to provide explanations why some observation does not follow
from a knowledge base. Abduction in DL naturally distinguishes between TBox
and ABox abduction [5] the former working with observations and explanations
on the TBox level, the latter assuming that observations and explanations are
ABox assertions. We focus on ABox abduction which has interesting applica-
tions, e.g. in diagnostic reasoning [13,5,19] or in multimedia-interpretation [6,2].
A number of theoretical algorithms for ABox abduction were presented [14,10,9],
and some were also implemented into abduction solvers [4,15,6,2,3].

In this paper, we extend the AAA solver [20] which focuses on expressive DLs.
Compared to previous works, this solver is able to handle any DL expressivity
up to SROIQ, due to using a DL reasoner as a black box, and it is sound and
complete. However, the main disadvantage of AAA is that it is tightly coupled
with Pellet 2 [23] which is an outdated reasoner and it makes AAA less effective.

We describe a reimplementation of AAA, dubbed B, and report on our first
experimental results, providing the following contributions: (a) B exploits OWL
API [11] and thus it is able to modularly plugin different DL reasoners; (b) it
includes more extensive pruning and an additional optimization technique called
caching of inconsistent hitting-set candidates; (c) we report on first empirical
results comparing AAA and B combined with Pellet 2, JFact [17], and HermiT
[22,7] reasoners.



Table 1. Syntax and Semantics of ALCHO

Constructor Syntax Semantics

complement ¬C ∆I \ CI

intersection C uD CI ∩DI

existential restriction ∃R.C {x | ∃y (x, y) ∈ RI ∧ y ∈ CI}
nominal {a} {aI}
Axiom Syntax Semantics

concept incl. (GCI) C v D CI ⊆ DI

role incl. (RIA) R v S RI ⊆ SI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

neg. role assertion ¬R(a, b) (aI , bI) 6∈ RI

We plan to continue our experiments with B, especially testing it with ad-
ditional DL reasoners. In the future it will serve as a base for next versions of
AAA.

2 ABox Abduction in DL

We build on top of the ALCHO [1]. A vocabulary consists of countably infinite
mutually disjoint sets of individuals NI = {a, b, . . .}, roles NR = {P,R, . . .},
and atomic concepts NC = {A,B, . . .}. Concepts are recursively built using
constructors ¬, u, ∃, {a}, as shown in Table 1. Additional concepts union C t
D := ¬(¬Cu¬D) and value restriction ∀R.C := ¬∃R.¬C are defined as syntactic
sugar; and also ¬¬C := C by definition. A knowledge base K = (T ,A) consists
of a TBox T , a finite set of GCI and RIA axioms, and an ABox A, a finite set
of assertions as given in Table 1.

An interpretation is a pair I = (∆I , ·I), where ∆I 6= ∅ is a domain, and the
interpretation function ·I maps each individual a ∈ NI to aI ∈ ∆I , each atomic
concept A ∈ NC to AI ⊆ ∆I , each role R ∈ NR to RI ⊆ ∆I × ∆I in such a
way that the constraints on the right-hand side of Table 1 are satisfied.

An interpretation I satisfies an axiom ϕ (denoted I |= ϕ) if the respective
constraint in Table 1 is satisfied. It is a model of a knowledge base K = (T ,A)
(denoted I |= K) if I |= ϕ for all ϕ ∈ T ∪ A. A knowledge base is consistent, if
there is at least one interpretation I such that I |= K. A knowledge base entails
an axiom ϕ (denoted K |= ϕ) if I |= ϕ for each I |= K.

We define ¬ϕ := ¬C(a) for a concept assertion ϕ = C(a). Thanks to presence
of nominals in ALCHO [12,10] we are also able to define ¬ϕ := ¬R(a, b) :=
∀R.¬{b}(a) for a role assertion ϕ = R(a, b), and ¬ϕ := R(a, b) for ϕ = ¬R(a, b).
In addition, ¬A = {¬ϕ | ϕ ∈ A} for any set of ABox assertions A. The ABox
encoding of an interpretation I is MI = {C(a) | I |= C(a), C∈{A,¬A}, A∈NC,
a∈NI} ∪ {R(a, b) | I |= R(a, b), R∈NR, a, b∈NI} ∪ {¬R(a, b) | I |= ¬R(a, b),



R∈NR, a, b∈NI}. Note that ABox encodings obtained from models of finite
knowledge base which has a finite signature are assumed to be finite. The are in
no way homomorphic with the original models, as they ignore the anonymous
part of the model. A negation ¬MI of the ABox encoding of a model I of K is
called an antimodel K.

In ABox abduction, we are given a knowledge base K and an observation
O consisting of ABox assertions, that is, some evidence we have observed. The
task is to find an explanation E , again, consisting of ABox assertions, such that
K ∪ E |= O.

Definition 1 (ABox Abduction Problem [5]). An ABox abduction problem
is a pair P = (K,O) such that K is a knowledge base in DL and O is a set of
ABox assertions. A solution of P (also called explanation) is any finite set E of
ABox assertions such that K ∪ E |= O.

While Definition 1 establishes the basic reasoning mechanism of abduction,
some of the explanations it permits are clearly undesired. The explanations
should, at minimum, fulfil some basic sanity requirements.

Definition 2 ([5]). Given an ABox abduction problem P = (K,O) and its
solution E we say that:

1. E is consistent if E ∪ K 6|= ⊥, i.e. E is consistent w.r.t. K;

2. E is relevant if E 6|= Oi for each Oi ∈ O, i.e. E does not entail each Oi;

3. E is explanatory if K 6|= O, i.e. K does not entail O.

An explanation should be consistent, as anything follows from inconsistency;
and so, an explanation that makes K inconsistent does not really explain the
observation. It should be relevant – it should not imply the observation directly
without requiring the knowledge base K at all. And it should be explanatory,
that is, we should not be able to explain the observation without it.

Hereafter, when we say explanation we always mean a consistent, relevant,
and explanatory explanation, unless indicated otherwise. In addition, in order
to avoid excess hypothesizing, minimality is required.

Definition 3 (Syntactic Minimality). Assume an ABox abduction problem
P = (K, O). Given two solutions E and E ′ of P, we say that E is (syntactically)
smaller than E ′ if E ⊆ E ′.1 We further say that a solution E of P is syntactically
minimal if there is no other solution E ′ of P that is smaller than E.

1 Note that before we compare two solutions E and E ′ of P syntactically, we typi-
cally normalize the assertions w.r.t. (outermost) concept conjunction: as C u D(a)
is equivalent to the pair of assertions C(a) and D(a), we replace the former form by
the latter while possible.



3 Our Approach

We have implemented an ABox abduction solver based on the approach of
Pukancová and Homola [20] which implements the Reiter’s minimal hitting set
algorithm [21]. Likewise to the original AAA solver [20], the input observations
can be any (also complex) concept and role assertions. The explanations are
limited to sets of atomic and negated atomic concept and role assertions.

For a single observation O, a solution of an abduction problem P = (K, O)
according to Definition 1 can be obtained as any E s.t. K∪E∪{¬O} is inconsistent
As showed by Reiter [21], we can compute the minimal explanations of P by
finding all minimal hitting sets for all antimodels of K ∪ {¬O}.

We do this by searching through the candidate hitting sets breadth-first.
For details see the report of Pukancová and Homola [20], on which we base our
implementation. The algorithm SingleAbduction is listed below.

Algorithm 1 SingleAbduction(K, O , Dmax, O)

Require: knowledge base K, single observation O , maximum depth Dmax, minimal
inconsistent candidates S⊥, set of observations O

Ensure: set of all explanations S, set of all minimal inconsistent candidates S⊥
1: if K ∪ {O} is inconsistent then
2: return ∅ . no consistent explanations as K |= ¬O
3: else if K ∪ {¬O} is inconsistent then
4: return "nothing to explain"

5: end if
6: D ← 1; C ← {∅}; S ← ∅
7: while C 6= ∅ and D ≤ Dmax do
8: Cnext ← ∅ . hitting set candidates for the next iteration
9: for all c ∈ C do

10: if s 6⊆ c for all s ∈ S
and c 6|= O for all O ∈ O
and memCons(K ∪O, c, S⊥)
and K ∪ {¬O} ∪ c is inconsistent then

11: S ← S ∪ {c} . c is a hitting set (explanation)
12: else if D 6= Dmax then
13: for all φ ∈ redAntiModel(K, O , O, c) do
14: Cnext ← Cnext ∪ {c ∪ φ}
15: end for
16: end if
17: end for
18: C ← Cnext
19: D ← D + 1
20: end while
21: return S, S⊥

The first three parameters are the input knowledge base K, the observation
O, and the maximum depth Dmax which allows to limit the maximal length of



explanations to search for. The remaining two parameters are auxiliary and they
are important when SingleAbduction is called repeatedly to find explanations
for multiple observations. For the single observation case the algorithm is called
as SingleAbduction(K, O,Dmax, ∅, {O}).

The algorithm initializes the set of candidate explanations to {∅}. Then we
loop through the candidates c breadth-first, and process each candidate by either
removing (pruning [20]) the candidate if it is not minimal, relevant, or consistent
(first three if-conditions in line 10) or adding it to the set of explanations if
K ∪ {¬O} ∪ c is inconsistent, i.e. K ∪ c |= O (the last if-condition in line 10).
Finally, if K ∪ {¬O} ∪ c was consistent (and Dmax is not yet reached) then we
obtain the respective antimodel and populate the candidates for the next level
of search.

The algorithm features two additional optimizations. Firstly, we do not store
only explanations (i.e., minimal hitting sets) found so far, but we also store all
minimal candidates which are inconsistent (the set S⊥). This allows for addi-
tional pruning which is implemented in the memCons function.

1: function memCons( Knowledge base K, hitting set candidate c, minimum incon-
sistent candidates S⊥)

2: if s ⊆ c for some s ∈ S⊥ then
3: return false

4: else if K ∪ c is consistent then
5: return true

6: else
7: S⊥ ← S⊥ ∪ {c}
8: return false

9: end if
10: end function

Consecutively, we further extend pruning by reducing all antimodels by re-
moving assertions φ if φ or ¬φ is present in K∪{¬O}∪ c. It’s straightforward to
observe that all such candidates would be inconsistent, irrelevant, or not mini-
mal. This is implemented in the redAntiModel function but also in the check
in line 1 of SingleAbduction.

To find solutions for multiple-observation abduction problem, we rely on the
approach based on solving separate single-observation problems and combining
the results [20]. The only minor improvement is in passing the set S⊥ between
the SingleAbduction calls. The algorithm is called MultipleAbduction.

The main advantage of our approach compared to previous works [20,9] is
that DL reasoner is not tightly integrated, but instead called using OWL API.
This allows modular pairing with different reasoners. The reasoner is called
from SingleAbduction and memCons whenever consistency or inconsistency
checks are made. The function redAntiModel does not run reasoning again
but merely extracts the model from last successful consistency check calling
getTypes and getObjectPropertyValues from OWL API.



1: function redAntiModel( Knowledge base K, observation O , observations O,
hitting set candidate c )

2: AM← ∅
3: M← ABox encoding of model of K ∪ {¬O} ∪ c
4: for all axiom φ ∈M do
5: if φ /∈ K ∪O ∪ c and ¬φ /∈ K ∪O ∪ c then
6: AM← AM∪ {¬φ}
7: end if
8: end for
9: return AM

10: end function

Algorithm 2 MultipleAbduction(K, O, Dmax)

Require: knowledge base K, observations O, maximum depth Dmax

Ensure: set of all explanations S, set of all minimal inconsistent candidates S⊥
1: Σ ← ∅; S⊥ ← ∅
2: for all observations Oi ∈ O do
3: Si,S⊥ ←SingleAbduction(K, Oi, Dmax, S⊥, O)
4: if Si = ∅ then
5: return ∅ . O has no explanation, hence also O has no explanations
6: else if Si 6= "nothing to explain" then
7: Σ ← Σ ∪ {Si}
8: end if
9: end for

10: if Σ = {} then
11: return "nothing to explain"

12: end if
13: S ← {E1 ∪ · · · ∪ Em | Ei ∈ Si,Si ∈ Σ,m = |Σ|}
14: S ← {E ∈ S | E is minimal, relevant, and memCons(K ∪O, E , S⊥) is true}
15: return S

4 Evaluation

Experimental evaluation was conducted with implementations of AAA and B,
B paired with three different DL reasoners – Pellet, HermiT, and JFact. Two
different experiments were conducted, one with a single observation and one with
a multiple observation. The main goal was to compare the execution times. It
is also interesting to trace the differences between the computation of the two
implementations AAA and B, especially how is the search space pruned.

The source code of both implementations is available at http://dai.fmph.
uniba.sk/~pukancova/aaa/.

http://dai.fmph.uniba.sk/~pukancova/aaa/
http://dai.fmph.uniba.sk/~pukancova/aaa/


4.1 Dataset and Methodology

We have chosen three ontologies for the evaluation: Family ontology (Our own
small ontology of family relations)2, Coffee ontology by Carlos Mendes3, and
LUBM (Lehigh University Benchmark [8]). The parameters of the ontologies are
stated in Table 2.

Table 2. Parameters of the ontologies

Ontology Concepts Roles Individuals Axioms
Family ontology 8 1 2 24
Coffee ontology 41 6 2 291
LUBM 43 25 1 46

In all experiments, explanations for an observation are computed through
both AAA and B, whilst B is run three times – once with Pellet, once with
HermiT, and once with JFact. All experiments were done on a 6-core 3.2 GHz
AMD PhenomTM II X6 1090T Processor, 8 GB RAM, running Ubuntu 17.10,
Linux 4.13.0, while the maximum Java heap size was set to 4GB. We have used
the GNU time utility to measure the CPU time consumed by AAA while running
in user mode, summed over all threads.

In the single observation experiment, the experiments are conducted iter-
atively for the maximal length of explanations from 1 to 5. In the multiple
observation experiment, the iterations are only up to the maximal length of 3.
For each experimental setting, the run is repeated for 10 times. From now on,
all execution times are computed as the average values from 10 runs with the
same experimental setting.

All experiments were executed while disallowing explanations with loops (i.e.,
reflexive role assertions), an optional feature of both solvers.

4.2 Single Observation Experiment

As mentioned above, the single observation experiment was conducted for all
the three ontologies: Family, Coffee and LUBM. For each ontology, one single
observation was chosen: for Family ontology Mother(jane), for Coffee ontology
Macchiato(a), and for LUBM Person(jack).

The experiment was conducted iteratively for the maximal length of expla-
nations from 1 to 5 with AAA and B paired with each reasoner.

The average execution times are plotted in Figure 1. The deviations computed
for each set of 10 runs with the same experimental setting were quite low 2.504 %
on average. The times for the four experiments – LUBM ontology for the maximal
lengths 4 and 5 through implementation B with Pellet and JFact – actually do

2 http://dai.fmph.uniba.sk/~pukancova/aaa/ont/
3 https://gist.githubcom/cmendesce/56e1e16aee5a556a186f512eda8dabf3

http://dai.fmph.uniba.sk/~pukancova/aaa/ont/
https://gist.github com/cmendesce/56e1e16aee5a556a186f512eda8dabf3


1 2 3 4 5
100

101

102

103

104

105

Family ontology

AAA

B-Pellet

B-Hermit

B-JFact

1 2 3 4 5

101

102

103

104

105

Coffee ontology

AAA

B-Pellet

B-Hermit

B-JFact

1 2 3 4 5

101

102

103

104

105

LUBM

AAA

B-Pellet

B-Hermit

B-JFact

Fig. 1. Depth vs. time in seconds for single observation
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Fig. 2. Proportion of pruned nodes, reused models and TA calls for multiple observa-
tions



not correspond to the times when explanations were computed but the times
when Java memory was exceeded.

The search space is pruned according to the implementation used. The pro-
portion of non-pruned nodes (nodes for which tableau algorithm TA for consis-
tency check is called) and pruned nodes is showed in Figure 2. Note that, AAA
implements also model reuse, whilst B does not. The results for B are the same
in cases when Java did not run out of memory for all three reasoners. For this
reason there is always just one plot in case of B.

In this experiment, the implementation B using HermiT achieves the lowest
times except in two cases – Family ontology with the maximal lengths 1 and 2.
On the other hand, in 8 cases (from the overall 15 cases) AAA has the highest
times. Let us remind, that B with Pellet and JFact reasoners ran out of memory
in case of the LUBM ontology with the maximal lengths 4 and 5, so these times
are not relevant.

4.3 Multiple Observation Experiment

The multiple observation experiment was conducted analogously. The only differ-
ence is that the observations are in the form of a set of ABox assertions, namely:
for Family ontology {Father(jack),Mother(eva), Person(fred)}, for Coffee ontol-
ogy {Milk(a),Coffee(b), Pure(c)}, and for LUBM {Person(jack),Employee(jack),
Publication(a)}.

For each ontology with the respective observation, explanations were com-
puted iteratively with the maximal length from 1 to 3 through AAA, and trough
B using Pellet, HermiT, and JFact. The average times are plotted in Figure 3.
The average deviation was 7.06 %. The following experiments ran out of mem-
ory: Family ontology through B using Pellet and JFact with the maximal length
3, Coffee ontology through B using Pellet with the maximal length 3 and using
JFact with the maximal lengths 2 and 3, LUBM through AAA with the maximal
length 3, and through B using Pellet and JFact with the maximal lengths 1, 2,
and 3. Note that, the only reasoner that did not run out of memory is HermiT.

Also in this experiment, the numbers of pruned nodes and non-pruned nodes
were computed. The respective proportions are captured in Figure 4. In case of B,
the proportions are the same with the three different reasoners (out-of-memory
cases are ignored).

In this experiment, the times with HermiT were always the lowest. Also,
while a number of experiments ran out of memory this was never the case with
B combined with HermiT.

5 Conclusions

We have reimplemented the AAA ABox abduction solver [20]. The new imple-
mentation, called B, used OWL API [11] and thus can be run with different
reasoner. In the evaluation we have compared AAA and B combined with Pel-
let 2 [23], JFact [17], and HermiT [22,7].
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Not only that in the most cases HermiT achieved the best time, but it is
also the only reasoner that did not exceed the memory. The combination of B
and HermiT seems to be currently the best option for our abduction solver.
Moreover, the evaluation has also showed that B, applying additional pruning
techniques, processes the search space in a more optimal way.

On the other hand, B has exceeded the memory a couple more times than
AAA, a problem that we would like to tune in the future. We would also like
extend this evaluation with additional reasoners.
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