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Abstract. We report on our initial results regarding the data complex-
ity of answering atomic queries mediated by ontologies given in a Horn
fragment of the metric temporal logic MTL. We adopt the pointwise se-
mantics for MTL over dense time. The complexity classes involved are
AC

0, NC1, L, NL, and P.

1 Introduction

Our general concern is detecting events in a complex asynchronous system based
on qualitative sensor measurements. More precisely, the system in question has a
number of sensors that from time to time and asynchronously send their readings
to a database. We may think of such readings as pairs of the form (A, t), where A
is a concept name and t a timestamp given as a non-negative �nite binary fraction
such as 101.011. As a formalism to de�ne events we use propositional Horn
clauses with operators of the metric temporal logic MTL [14,2]. For example,
according to Siemens, a gas turbine has a normal stop if the rotor speed coasts
down from 1500 to 200, which was preceded by another coast down from 6600
to 1500 some time in the previous 9 minutes, at most 2 minutes before which
the main �ame was o�, while the active power was o� earlier within another
2 minutes. The event `normal stop' can be encoded by the following hornMTL

rule, where (n,m]ϕ is assumed to hold true at a timestamp t if ϕ holds at some
previous timestamp t′ with n < t− t′ ≤ m:

NormalStop← CoastDown1500to200 ∧ (0,9m]

[
CoastDown6600to1500 ∧

(0,2m]

(
MainFlameOff ∧ (0,2m]ActivePowerOff

)]
(the concepts on the right-hand side can be de�ned by similar rules).

The use of hornMTL and datalogMTL ontologies (with both diamond and
box operators in rule bodies and only box operators in rule heads) for querying
temporal log data was advocated in [9], which also demonstrated experimentally
feasibility and e�ciency of ontology-based data access (OBDA) with nonrecur-
sive datalogMTL queries. An extension of the OBDA platform Ontop to support
such queries was suggested in [8]. For a recent survey of temporal OBDA we refer
the reader to [5]; surveys of early developments in temporal deductive databases



are given in [7,10]. Note also that the satis�ability problem for the description
logic ALC extended with MTL operators over (N,≤) was considered in [12,6].

In this paper, we start investigating the data complexity of answering onto-
logy-mediated queries (OMQs) with MTL operators. As the problem turns out
to be quite involved, we restrict ourselves to atomic queries and ontologies in
the fragment hornMTL− of hornMTL where only past diamond operators are
allowed in rule bodies and no temporal operators can be used in rule heads. We
distinguish between arbitrary, linear and core (or binary) rules and consider, in
particular, the following types of the range % in %: 〈r,∞), 〈0, r〉, and [r, r] where
〈 is one of [ or (, while 〉 is one of ] or ). The underlying timeline is (R,≤) as
we cannot assume that sensor readings come at regular time intervals. There
are two standard semantics for MTL over (R,≤): continuous and pointwise;
see, e.g., [16] and references therein. Here, we only consider the latter, under
which both model checking and satis�ability for full MTL are decidable but not
primitive recursive [15] (over (Z,≤), these problems are ExpSpace-complete).
As pointed out in [16], under the pointwise semantics, one thinks of atomic
propositions in MTL as referring to events (corresponding to state changes)
rather than to states themselves.

The complexity results we obtain in this paper are collected in the table
below, where `range-uniform' means that all the % operators before intensional
concept names in a given hornMTL− program have the same range %:

rules \ ranges any 〈r,∞) 〈0, r〉 [r, r]
Horn = P

in AC0
≤ L ≤ L

linear = NL ≥ NC1 ≥ NC1

core ≤ NL in AC0(range-uniform) ≤ L

2 The Horn Fragment of MTL

We denote the set of �nite binary fractions�aka dyadic rational numbers�by
Q2; the set of non-negative dyadic rationals is denoted by Q≥02 . As well-known,
Q2 is dense in R and, by Cantor's theorem, (Q2, <) is isomorphic to (Q, <).

By an interval, ι, we mean any nonempty subset of the real numbers R of
the form [t1, t2], [t1, t2), (t1, t2] or (t1, t2), where t1, t2 ∈ Q2 ∪ {−∞,∞} and
t1 ≤ t2, excluding t1 = t2 ∈ {−∞,∞}. We identify (t,∞] with (t,∞), [−∞, t]
with (−∞, t], etc. A range, %, is an interval with non-negative endpoints.

The metric temporal logic MTL [14,2] is a propositional modal logic with box
operators indexed by ranges, say �(0,60], which is interpreted over (R, <) as `at
every time instant within the previous minute', its future counterpart �(0,60], and
their dual diamond operators (0,60] and (0,60]. In this paper, we only consider
a fragment of MTL that is called hornMTL−.

A hornMTL− program, Π, is a �nite set of rules of the form

A← B1 ∧ · · · ∧Bk, (1)

where k ≥ 1 and the Bi are de�ned by the grammar

B ::= A | > | %B,



with A being a concept name or ⊥. As usual, A is called the head of the rule, and
B1 ∧ . . . ∧Bk its body. A hornMTL− program Π is linear if, in each of its rules,
at most one of the concepts in the body occurs as a head in Π. A hornMTL−

program is core if all of its rules are of the form A ← B or ⊥ ← B1 ∧ B2. A
hornMTL− (ontology-mediated) query takes the form (Π,A(x)).

As mentioned in Section 1, we may think of a data instance as a �nite set
D = {(A1, t1), . . . , (An, tn)}, where the Ai are concept names from some �xed

alphabet Λ and the ti are (not necessarily ordered) timestamps from Q≥02 . When
proving some complexity results, we assume that D is given as the FO-structure

D = (∆,<,Ω, bitin , bitfr , A1, . . . , Ap), (2)

in which

� ∆ = {0, . . . , `} ⊆ N, where ` is the maximum of the number of distinct
timestamps in D and the number of bits in the longest binary fraction in D
(excluding the binary point), and < is the usual order on ∆;

� Ω ⊆ ∆ is a set of timestamps; for every n ∈ Ω, we set n̄ = b` · · · b0.c0 · · · c`
such that bitin(i, n, bi) and bitfr (i, n, ci) hold, for i = 0, . . . , `;

� thus, bitin and bitfr are ternary relations on ∆ such that, for any n ∈ Ω and
i ∈ ∆, there is a unique bi ∈ {0, 1} and a unique ci ∈ {0, 1} with bitin(i, n, bi)
and bitfr (i, n, ci);

� Ai ⊆ Ω, for i = 1, . . . , p; intuitively, Ai(n) holds i� Ai(n̄) ∈ D.

For any d ∈ Q≥02 , one can readily de�ne FO-formulas:

� dist<d(x, y) that holds in D i� x, y ∈ Ω and 0 ≤ x̄− ȳ < d;
� dist>d(x, y) that holds in D i� x, y ∈ Ω and x̄− ȳ > d;
� their modi�cations dist≤d(x, y) and dist≥d(x, y).

It will be convenient to assume that these predicates are also given by D for the
relevant d. In Theorem 5, we also make the following assumption:

(ord) Ω = {0, . . . , k}, for some k ≤ `, and n < m ≤ k implies n̄ < m̄.

There are two semantics for MTL known as pointwise and continuous [16].

Pointwise semantics. A pointwise interpretation is a structure of the form

I = (T, AI1 , AI2 , . . . ),

where T 6= ∅ is a �nite subset of Q≥02 (timestamps) and AIi ⊆ T. We set BI = AI

if B = A, BI = T if B = >, BI = ∅ if B = ⊥, and

( %B)I = {t ∈ T | ∃t′ ∈ BI (t− t′ ∈ %)}.

I is a model of a data instance D if t ∈ AI for any (A, t) ∈ D; I is a model of a
hornMTL− program Π if, for any rule (1) in Π and any t ∈ T, we have t ∈ AI
whenever t ∈ BIi for 1 ≤ i ≤ k. We say that D and Π are consistent if there
is a model of D and Π. We also say that a timestamp t from D is a certain



answer to a query (Π,A(x)) over D if t ∈ AI , for every model I of D and Π.
The query answering problem for (Π,A(x)) is to decide, given a data instance
D and a timestamp t in it, whether t is a certain answer to (Π,A(x)) over D.

Continuous semantics. The only di�erence from the pointwise case is that
a continuous interpretation is de�ned over the reals: I = (R, AI1 , AI2 , . . . ) with
AIi ⊆ R and ( %B)I = {t ∈ R | ∃t′ ∈ BI (t− t′ ∈ %)}. To illustrate, suppose that
Π = {A← (0,1] (0,1]B} and D = {(B, 0), (C, 2)}. Then (Π,A) has no answers
over D under the former semantics (because 1 is not a timestamp in D), but 2
is an answer under the latter one.

In this paper, we only consider the pointwise semantics and leave the contin-
uous one for future work.

Normal form. A program is in normal form if its rules have one of the forms:

P0 ← %′1
P ′1 ∧ · · · ∧ %′`

P ′m, (3)

P0 ← %1P1 ∧ · · · ∧ %kPk ∧ %′1
P ′1 ∧ · · · ∧ %′`

P ′m, (4)

where the P ′i are from the data alphabet Λ, the Pi do not belong to Λ (and so
cannot occur in data instances), and 0 /∈ %i for any i (although there may be,
say %′i = [0, 0]). Every hornMTL− program can be transformed to a program in
normal form with the same answers. We illustrate this claim by an example.

Example 1. Let Π = {P ′1 ← [0,d]P
′
0 ∧Q′0, P ′0 ← (0,e)P

′
1 ∧ [0,f ]Q

′
1}, where the

P ′i are in Λ. By introducing fresh concept names P0, P1, we convert Π to

P1 ← [0,d]P0 ∧Q′0, P0 ← (0,e)P1 ∧ [0,f ]Q
′
1, P0 ← P ′0, P1 ← P ′1.

To get rid of [0, d], we further transform the program to

P1 ← P0∧Q′0, P1 ← (0,d]P0∧Q′0, P0 ← (0,e)P1∧ [0,f ]Q
′
1, P0 ← P ′0, P1 ← P ′1.

Now, P0 in the �rst rule is not in the scope of % (Q′0 can be regarded as a
shorthand for [0,0]Q

′
0). So we transform the rule using obvious derivations to

obtain the following program in normal form:

P1 ← P ′0 ∧Q′0, P1 ← (0,e)P1 ∧ [0,f ]Q
′
1 ∧Q′0, P1 ← (0,d]P0 ∧Q′0,

P0 ← (0,e)P1 ∧ [0,f ]Q
′
1, P0 ← P ′0, P1 ← P ′1.

A hornMTL− query (Π,A(x)) is in normal form if Π is in normal form and
A /∈ Λ. Clearly, every query can be converted to a one in normal form and having
the same answers.

3 The Data Complexity of Answering hornMTL
− Queries

It is not hard to see that consistency checking and answering hornMTL− queries
can be reduced to consistency checking and answering monadic datalog queries



over D. For example, the rule A ← (r,s]B can be replaced with the monadic
datalog rule

A(x)← B(y) ∧ dist>r(x, y) ∧ dist≤s(x, y),

where dist>r and dist≤s are extensional predicates given by the data instance. It
follows that consistency checking and answering hornMTL− queries can be done
in polynomial time for data complexity; for linear hornMTL− queries, this can
be done in NL. The next theorem establishes a matching lower bound, which is
in sharp contrast to hornLTL queries that are in NC1 for data complexity [4].

Theorem 1. (i) Consistency checking and answering hornMTL− queries is P-

complete for data complexity.

(ii) Consistency checking and answering linear hornMTL− queries is NL-

complete for data complexity.

Proof. We only show the lower bound in (ii); the construction in (i) is similar.
The proof is by reduction of the reachability problem in acyclic digraphs. Let

G = (V,E) be such a digraph with a set V = {v0, . . . , vn−1} of vertices and a set
E ⊆ V × V of edges such that whenever (vi, vj) ∈ E then i < j (we can always
represent G in this way due to its acyclicity). Suppose that the task is to check
whether vt ∈ V is reachable from vs ∈ V in G.

We construct a data instance DG with concepts V , Er, El, I, O, which
encodes G on a linear order. Namely, DG contains the following pairs (i, j, k ∈ N):

� (V, 2k + i
2n ), for 0 ≤ k < n and 1 ≤ i ≤ n;

� (Er, 2i+ i+1
2n ), for (vi, vj) ∈ E;

� (El, 2i+ j+1
2n ), for (vi, vj) ∈ E;

� (I, 2k + i+1
2n ), for 0 ≤ k < n and vs = vi;

� (O, 2k + i+1
2n ), for 0 ≤ k < n and vt = vi.

An example of a graph and the corresponding data instance are shown below:

•
vs = v0

•
v1

•
v2

•
v3 = vt
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Let Π be a linear hornMTL− program with the following rules:

R← I, R← El ∧ [0,1](Er ∧R), R← V ∧ [2,2]R, P ← R ∧O, ⊥ ← P.

Note that all numbers occurring in DG and Π belong to Q2. For the atoms im-
plied by Π, see the previous picture. One can show that Π and DG are consistent
i� vt is not reachable from vs.

4 hornMTL
− Queries with 〈r,∞)

In this section, we show that if all temporal operators in a hornMTL− program
Π are of the form 〈r,∞), then answering (Π,A(x)) can be done in AC0; in other
words, (Π,A(x)) is FO-rewritable. To this end, we require the canonical models
for hornMTL− programs, which can be de�ned as follows.

Suppose we are given a hornMTL− program Π and a data instance D. De�ne
a set CΠ,D of pairs of the form (B, t) that contains all answers to queries with
Π over D. We start by setting C = D and denote by cl(C) the result of applying
exhaustively and non-recursively the following rules to C:

(horn) if A ← B1 ∧ . . . ∧ Bk is in Π and (Bi, t) ∈ C, for i = 1, . . . , k, then we
add (A, t) to C;

( %) if %B occurs in Π, (B, t′) ∈ C, and t− t′ ∈ %, for a timestamp t in D, then
we add ( %B, t) to C.

It should be clear that there is some N < ω (polynomially depending on Π and
D) such that clN (C) = clN+1(C). We then set CΠ,D = clN (D).

Theorem 2. A timestamp t from D is a certain answer to (Π,A(x)) over D i�

(A, t) ∈ CΠ,D.

As known from [3], if we use LTL diamonds in place of the MTL ones in
hornMTL− programs, then all such queries are FO-rewritable and in AC0 for
data complexity. In fact, almost the same argument shows the following:

Theorem 3. Consistency checking and answering hornMTL− queries with tem-

poral operators of the form 〈r,∞) are in AC0 for data complexity.

Proof. Let (Π,A(x)) be a hornMTL− query with temporal operators of the form

〈r,∞). It is easy to see that constructing CpΠ,D needs at most |Π|2 applications
of the cl operator to D (because each rule ( 〈r,∞)) needs to be applied at most
once). Thus, we can construct an FO-rewriting of (Π,A(x)) using iteratively the
standard FO-translation of, say, [r,∞)B into ∃t′ (dist≥r(t, t

′) ∧B(t′)).

Example 2. An FO-rewriting for the query (Π,A(x)) with the program Π com-
prising two rules A← [2,∞)C, C ← [1,∞)A looks as follows:

∃y
[
A(x) ∨

(
C(y) ∧ dist≥2(x, y)

)
∨
(
A(y) ∧ dist≥3(x, y)

)]
.

When the ranges % in % are di�erent from 〈r,∞), the technique above does
not work any more and the complexity landscape changes signi�cantly.



5 Metric Automata for Linear hornMTL
−

Our technical tool for studying the data complexity of linear hornMTL− queries
is automata with metric constraints that are de�ned for programs in normal
form. These automata can be viewed as a primitive version of standard timed
automata forMTL [1] as we only have one clock c, the clock reset c := 0 happens
at every transition, and the clock constraints are of the simple form c ∈ %.

A (nondeterministic) metric automaton is a quadruple A = (S, S0, Σ, δ),
where S 6= ∅ is a set of states, Σ a tape alphabet, δ a transition relation, and S0

is a nonempty set of pairs of the form (q, e), where e ∈ Σ, q ∈ S. The transition
relation δ is a set of instructions of the form q

%−→e q
′ with q, q′ ∈ S, e ∈ Σ and a

range %. The automaton A takes as input timed words σ = (e0, t0), . . . , (en, tn),
where the ti are timestamps with ti−1 < ti. A run over σ is a sequence q0, . . . , qm
such that (q0, e0) ∈ S0, qi−1

%i−→ei qi is in δ and ti − ti−1 ∈ %i, for 0 < i ≤ n.
Let Π be a linear hornMTL− program in normal form. We denote the con-

junctions %′1
P ′1 ∧ . . . ∧ %′`

P ′m (with data concept names P ′i ) that occur in Π
by ε, possibly with subscripts. Thus, since Π is linear, rules (4) in Π are of the
form P ← ε ∧ %Q. Let EΠ = {ε1, . . . , εq} be the set of all such ε occurring in
Π. We de�ne a metric automaton AΠ for Π as follows. The set S of its states
comprises the head concept names in Π, and Σ = 2EΠ . The transition relation

δ comprises Q
%−→E P such that P ← ε ∧ %Q is in Π and ε ∈ E. Finally, S0 is

the set of all pairs (P, ε) such that a rule P ← ε of the form (3) is in Π.

Example 3. For Π = {P0 ← [0,1]P
′
0, P1 ← (1,2)P0 ∧ P ′1, P0 ← (1,3)P1},

the metric automaton AΠ is depicted below, where P ′0, P
′
1 ∈ Λ, E0 = {P ′1},

E1 = { [0,1]P
′
0}, E2 = {P ′1, [0,1]P

′
0}, and S0 = {(P0, [0,1]P

′
0)}.

P0 P1

E0 (1, 2)

E2 (1, 2)

∅ (1, 3)

E0 (1, 3)

E1 (1, 3)

E2 (1, 3)

We represent any data instance D as a timed word σD. For ti occurring
in D, let E(ti) be the maximal set of ε from Π that hold at ti in D, and
let σD =

(
(E(t1), t1), . . . , (E(tn), tn)

)
. The corresponding FO-structure from

Section 2 can take the form

σD = (∆,<,Ω, bitin , bitfr , E1, . . . , Ek), (5)

where {E1, . . . , Ek} = 2EΠ . It is not hard to see that there is an FO-translation
of (2) to (5).



Example 4. A data instance D and its representation as σD are shown below:

P ′
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0

Q′

1

P ′
1

1.5

P ′
0

4

P ′
1

4.5

P ′
1

5

Q′

6.5

D :

∅ E1 E0 ∅ E2 E2 ∅σD :

Theorem 4. For any linear hornMTL− query (Π,A(x)), a timestamp ti is a

certain answer over a data instance D i� there exist a subword σ′D of σD with

the last timestamp ti and a run of AΠ over σ′D that ends with A.

Example 5. Let (Π,P1(x)) be the query with Π from Example 3. Then, for σD
from Example 4, we have the run P0, P1, P0, P1 on

(E1, 1), (E0,
3

2
), (∅, 4), (E2, 5),

and so 5 is a certain answer to the query over D from Example 4.

One could de�ne metric automata as classical timed automata; however,
Theorem 4 does not use them in the standard way as it requires runs on subwords.
Whether and how such runs can be captured by timed automata remains to
be clari�ed. We now use the obtained automaton characterisation of certain
answers to linear queries to give better complexity bounds for two classes of linear
programs with restricted temporal ranges than the NL bound of Theorem 1 (ii).

6 hornMTL
− Queries with 〈0,r〉

We say that a hornMTL− program Π in normal form is range-uniform if every
(intensional) concept name P /∈ Λ occurs in Π in the scope of %, for some �xed
range %. By a coreMTL− program we mean a core hornMTL− program in normal
form. Rules (4) in such a program take the form P ← %Q.

6.1 Range-uniform coreMTL
− queries with 〈0,r〉

Let Π be a range-uniform coreMTL− program and AΠ = (S, S0, Σ, δ) the cor-
responding metric automaton. For each (q0, e0) in S0, we de�ne a classical �nite
automaton AAq0,e0 = (S,Σ, {q0}, δ, {A}), where S,Σ, and δ are as in AΠ (note

that all transitions take the form q
〈0,r〉−−−→∅ q′), and q0 and A are unique initial and

�nal states, respectively. Thus, AAq0,e0 is a unary (i.e., over singleton alphabet)
automaton. It is known that each such automaton has an equivalent automaton
in normal form [11,17], where cycles can be only disjoint. More precisely, there
is a number of arithmetic progressions ai+ biN = {ai+ bi ·m | m ∈ N} such that
a word ∅n is accepted by AAq0,e0 i� n ∈

⋃
i ai + biN. This characterisation allows

us to obtain the following:

Theorem 5. Consistency checking and answering range-uniform coreMTL− que-

ries with temporal operators of the form 〈0,r〉 are in AC0 for data complexity

provided that the input data instances satisfy (ord).



Example 6. To illustrate the theorem, consider the query (Π,S1(x)) with

Π = {S0 ← B, S1 ← (0,d)S0, S2 ← (0,d)S1, S3 ← (0,d)S2, S1 ← (0,d)S3}.

The automaton AS0,B (which is in normal form) is shown in the picture below on
the right. Using it, we construct the following FO-rewriting ϕ(x) of (Π,S1(x)):

ϕ(x) = ∃x′
[
B(x′) ∧ ∀y

(
(x′ < y ≤ x)→ ∃y′ dist<d(y, y

′) ∧
(ϕ1(x′, x) ∨ ϕ2(x′, x) ∨ ϕ3(x′, x))

)]
,

where

� ϕ1(x′, x) = (x− x′) ∈ 1 + 3N;
� ϕ2(x′, x) = (x− x′) ∈ 2 + 3N ∧ ∃x1 ((x′ < x1 ≤ x) ∧ ϕ+1(x1, x

′));
� ϕ3(x′, x) = (x− x′) ∈ 3 + 3N ∧ ϕ1+1+1(x′, x) ∨ ϕ1+2(x′, x);
� ϕ1+2(x′, x) = ∃x1 ((x′ < x1 ≤ x) ∧ ϕ+2(x1, x

′));
� ϕ1+1+1(x′, x) = ∃x1, x2 ((x′ < x1 < x2 ≤ x) ∧ ϕ+1(x1, x

′) ∧ ϕ+1(x2, x
′) ∧

((x2 − x1) > 1));
� ϕ+k(z, x′) = dist<d(z, z − k − 1) ∧ ((z − k − 1) ≥ x′), for k = 1, 2.

Intuitively, to derive S1 at x, we need a point x′ with B(x′) in the data and a
sequence of points y between x′ and x without gaps of length ≥ d. An example
of such a data instance is given below.

S0 S1 S2 S3 S1 S2 S3

S3 S1 S2

S0 S1

S2

S3

Note how we maintain the `stack of states' with the elements at its bottom
alternating in a cycle between S1, S2, and S3. Note also that the states go in
decreasing order when we scan the stack from bottom to top. So we use the
formulas ϕk(x′, x) to express that S1 is inferred at x on level k of the stack.
The formula ϕ+k(z, x′) says that the height of the stack increases by k because
of a cluster of k + 2 points within the segment of size < d ending with z. The
formulas ϕ1+2(x′, x) and ϕ1+1+1(x′, x) express two ways of increasing the height
of the stack from 1 to 3. It is to be emphasised that properties of x and x′

such as (x− x′) ∈ 1 + 3N can be expressed by FO-formulas using the predicate
PLUS(num1,num2, sum) or BIT(num, bit), which gives a binary representation
of every object num in the domain of an FO-structure [13], whereas FO with <
only is not enough. For example, (x− x′) ∈ 1 + 3N is expressed by the formula

ϕ1(x′, x) = ∃z, z′, z′′, y
(
(x = y + 1) ∧ PLUS(z, z, z′) ∧

PLUS(z′, z, z′′) ∧ PLUS(x′, z′′, y)
)
.

Also, ϕ(x) above is a correct rewriting only if evaluated over D satisfying (ord).



6.2 hornMTL
− queries with 〈0,r〉

We next turn to hornMTL− programs Π with ranges % of the form 〈0, r〉.

Theorem 6. Consistency checking and answering hornMTL− queries with tem-

poral operators of the form 〈0,r〉 are in L for data complexity.

Example 7. We illustrate the log-space algorithm used in the proof of Theorem 6
by means of a program Π with the following rules:

P2 ← (0,2]P2 ∧ (0,1]P1, P1 ← (0,3]P2, P2 ← P ′2.

For this Π, we can scan an input word D with the help of three pointers π, π1
and π2. Intuitively, π will point to the last processed timestamp and π1 (π2)
to the last timestamp where P1 (respectively, P2) holds. Consider the word D
shown in the picture below. Before the algorithm starts, we assume that π, π1,
and π2 do not point anywhere. First, we set π to the �rst point t0 (with the
timestamp 0) and read P ′2. Because P2 holds there by the last rule in Π, we set
π2 to t0. Next, we move π to t1 where we read Q′ (not present in Π). Here, we
check whether t0 pointed to by π2 and t1 pointed to by π are such that t1−t0 ≤ 3
(which can be done in L using any subtraction algorithm). Since it is the case,
we set π1 to t1 to re�ect the meaning of the second rule in Π, and we do not
need to update π2. Next, we move π to t2. We check that the di�erence between
the timestamps pointed to by π and π1 does not exceed 3 to verify whether the
second rule in Π applies. Similarly, we check that the di�erence between π and
π1 does not exceed 1 and the di�erence between π and π2 does not exceed 2 to
verify whether the �rst rule in Π applies. As a result, we set both π1 and π2 to
t2. A complete run of our algorithm on D is shown below.

P ′
2

0

Q′

1

Q′

2

Q′

5

P ′
2

5.5

Q′

6

D :

π2 π1 π1, π2 π1 π2 π1, π2run:

P2 P1 P1, P2 P1 P2 P1, P2derived:

To decide whether, say, t5 is a certain answer to (Π,P1(x)), we only need to
check whether we move π2 to t5 when we move π there.

Note that the algorithm above works correctly only if the ranges are of the
form 〈0, r〉. Intuitively, resetting πi to π every time a rule with Pi in the head
applies does not provide correct answers for other forms of ranges.

The exact complexity for the queries in Theorem 6 remains open. At the
moment, we only have the following result, which is proved by reduction of
hornLTL queries with rules of the form Q← ©

PP ∧P ′, where ©P is the `previous
moment of time' operator, that were shown to be NC1-complete in [4]. In this
reduction, we use the axioms Q← (0,1]P ∧P ′ to encode the axioms above. Then
every hornLTL data instance of the form P ′0(0), P ′1(1), . . . , P ′k(k) is translated to
a hornMTL data instance by means of an FO-reduction using the standard
predicate BIT(num, bit).



Theorem 7. Consistency checking and answering hornMTL− queries with tem-

poral operators of the form 〈0,r〉 are NC1-hard for data complexity.

7 hornMTL
− Queries with [r,r]

Theorem 8. Consistency checking and answering hornMTL− queries with tem-

poral operators of the form [r,r] are in L for data complexity.

We illustrate the idea of the proof by a concrete example.

Example 8. Suppose Π = {P1 ← [1,1]P1, A← P1 ∧ [1.5,1.5]P2} and

D = {(P1, 1), (P1, 1.25), (P1, 1.5), (P2, 2), (P1, 2.375), (P2, 2.5),

(P2, 3), (P1, 3.5), (P2, 3.625), (P2, 4)}.

Let num(Π) be the set of numbers in Π. To check whether 4 is a certain answer

to (Π,A(x)), we compute d = gcd(num(Π)) = 0.5 and k = max(num(Π))
d = 3.

Observe �rst that the algorithm can ignore those facts in D with a timestamp t
for which 4− t is not divisible by d, that is, we can omit (P1, 1.25), (P1, 2.375),
and (P2, 3.625) as they have no in�uence on the facts derived at 4. Next, notice
that to derive a fact at some t, it su�ces to check what facts hold at the instants
t, t−d, . . . , t−kd. Hence, for each concept name in Π, it su�ces to use k+1 = 4
pointers storing the last 4 timestamps where this concept holds. The consecutive
steps of our algorithm are shown below, where symbols in boxes represent facts
derived by the rules in Π:

1 1.5 2 2.5 3 3.5 4

D : P1 ��ZZP1 P1 P2 ��ZZP1 P2 P2 P1 ��ZZP2 P2

step 1: P1

step 2: P1 P1

step 3: P1 P1 P1 , P2

step 4: P1 P1 P1 , P2 P1 , P2

step 5: P1 P1 , P2 P1 , P2 P1 , P2

step 6: P1 , P2 P1 , P2 P1 , P2 P1, P2, A
step 7: P1 , P2 P1 , P2 P1, P2, A P1 , P2, A

The algorithm uses k + 1-many log-space pointers for each concept name in
Π, where k only depends on Π, and a single pointer indicating the currently
processed timestamp. As a result, the algorithm is in L for data complexity.

We note that the best known lower bound for this language is NC1, which
can be shown using a reduction similar to that in the proof of Theorem 7. The
algorithm illustrated above cannot be used to show an NC1 upper bound because
it must ignore some facts in D.
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