
Preferential Default Reasoning on the Semantic Web

Rafael Kiesel, Erman Acar and Stefan Schlobach

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
rafael.kiesel@web.de, {erman.acar, k.s.schlobach}@vu.nl

Abstract. The world of the Semantic Web includes many inconsistent knowl-
edge bases, whose axioms are often unreliable and can therefore be naturally in-
terpreted as defaults. In this article we introduce an extension of Sengupta et. al.’s
semantics [12] with a preference order on the defaults with respect to satisfac-
tion. In particular, the semantics we propose is an improved version of Heymans
et. al.’s semantics [8] for a defeasible ontology language. One crucial difference
we adopt is that the preference relation between interpretations is not only de-
fined with respect to the same individuals, but any. We provide an algorithm to
translate the entailment problem with respect to ordered default knowledge bases
to the one for classical knowledge bases, and show its soundness and complete-
ness. As a practical application scenario, we test our algorithm on various subsets
of LOD Cloud, and report on our result.
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1 Introduction

Many real world ontologies in the Semantic Web contain inconsistent data. These in-
consistencies arise due to different reasons. One reason is their extreme size, a second is
that they model very general domain knowledge with diversifying information, e.g., en-
cyclopaedic knowledge [4]. Hence, it is challenging to maintain the consistency while
keeping the relevant information accurate and reliable.

In order to integrate the knowledge across different ontologies, one often confronts
the problem of alignment which is the process of determining correspondences between
matching entities [6]. The resulting ontology can also be highly inconsistent due to the
diverse domain knowledge that subontologies capture e.g., medical knowledge1 and
marine knowledge2. Since it is often considered expensive or impractical to have a
domain expert to debug the resulting ontology, automatic handling of inconsistencies is
an important task.

The automatic approaches usually involve a change in the classical semantics to be
able to cope with inconsistent knowledge. One particular class of approaches avoids
inconsistency by decreasing the number of derivable facts [12, 10, 8, 11]. Our approach
falls into the same category. To this end, one first identifies which axioms cause the
inconsistencies and weakens their strength e.g., by replacing them with so called normal
defaults. However, reasoning with normal defaults alone (as in [12]) is not sufficient

1 http://www.ihtsdo.org/our-standards/
2 http://www.ics.forth.gr/isl/MarineTLO/



when it comes to the large amount of information that can be entailed. This is because
checking entailment in such semantics in real-life scenarios is often infeasible due to
high complexity [12].

In this article we introduce an extension of Sengupta et. al.’s semantics [12] with a
preference order on the defaults with respect to satisfaction. We argue that, for a given
set of defaults, one may have a preference on which defaults should be satisfied. Indeed,
this preference may be due to the reliability of the defaults, or due to the importance of
the information entailed by the defaults, or any other particular reason. Our semantics
is an improved version of Heymans et. al.’s semantics [8] for a defeasible ontology
language. In our semantics, interpretations are not only preferred when they satisfy
a better default for the same, but also for any other individual. By introducing this
preference order on the defaults one can increase the amount of information entailed by
a default knowledge base while keeping it consistent. Moreover, it can greatly reduce
the number of models of a default knowledge base, resulting in a possibly faster way of
checking entailment.

Furthermore, we provide an algorithm to transform the entailment problem from
the ordered default knowledge bases to the one for classical knowledge bases. We also
show the soundness and completeness of our algorithm. We test it on different real-
world semantic datasets i.e., subsets of the Linked Open Data Cloud (LOD Cloud) [7],
and report our findings.

In the following we first go over some preliminaries for description logics with
defaults. In Section 3, the introduced semantics is extended to implement a preference
order on defaults. After presenting some theoretical results, we discuss advantages of
this approach and test it on real data, in Section 4. In Section 5 we discuss related work.
Conclusion and future work close the paper.

2 Preliminaries

Our semantics is a generalisation of the semantics presented in Sengupta et. al. [12] for
defaults in description logics. For convenience, we adopt their notation. We note that
the choice of a particular description logic is not relevant for our work, as long as it is
decidable. Moreover, we assume that the reader is familiar with the basics of description
logics, otherwise we refer the reader to [1] which is the standard text.

The semantics presented in [12] is defined for a knowledge base in combination
with a set of free defaults. Given two concepts A and B of a knowledge base Σ, a free
default A vd B represents the rule that every named individual, which is a member
of A is also a member of B, unless we derive ¬B. Then, a default (description logic)
knowledge base is 〈Σ,D〉, where Σ is a knowledge base and D is a finite set of free
defaults.

Given a default knowledge base, the notion of an interpretation I is extended to the
set of free defaults as DI = (X I1 , . . . ,X In ), where X Ii contains the interpreted set of
named individuals that satisfy the ith default. That is, for Ci vd Di, the definition of
X Ii is ((¬Ci)I∪DIi )∩∆Iind).3 Here,∆Iind is the set of interpreted named individuals of

3 This definition is syntactically different from the original definition, but semantically equiva-
lent.



the knowledge base Σ. In the following we always assume |D| = n and D = {(C1 vd
D1), . . . , (Cn vd Dn)}. Models of a default knowledge base 〈Σ,D〉 are defined using
a preferred model semantics; that is, the preference relation>Σ,D on the interpretations
is defined as follows: Given two interpretations I and J of the knowledge base Σ, we
say that I is preferred to J , denoted by I >Σ,D J , iff

• for all named individuals a appearing in Σ, it holds that aI = aJ ,
• XJi ⊆ X Ii for all 1 ≤ i ≤ n, and
• XJi ⊂ X Ii for some 1 ≤ i ≤ n.

Moreover, an interpretation I is a d-model of 〈Σ,D〉 iff

i. I (classically) satisfies Σ,
ii. CIi \∆Iind ⊆ DIi for each (Ci vd Di) ∈ D,
iii. there is no J >Σ,D I, such that J also satisfies conditions i and ii.

If a default knowledge base has a d-model, we say it is d-satisfiable. An axiom α is
then d-entailed by a default knowledge base 〈Σ,D〉, written 〈Σ,D〉 |= α, if it holds for
every d-model I of the default knowledge base that I satisfies α.

3 Generalisation of the Semantics of Free Defaults to Ordered
Defaults

Before introducing our approach we motivate it by discussing an example. Thereafter,
we show that d-satisfiability and d-entailment is decidable. In particular, to prove the
decidability of d-entailment, we present an algorithm and show its sound- and com-
pleteness.

3.1 Motivation

Consider the following scenario: We are given two ontologies O1 and O2 shown in Ta-
ble 1, and we want to align them with regard to the ≡ statements in the third column of
Table 1. Without further debugging, the resulting ontology does not carry any relevant

Table 1. Example of two consistent ontologies resulting in an inconsistent ontology when
merged, by adding the ≡ statements to the union of the ontologies.

Knowledge Base O1 Knowledge Base O2 Equivalences

Republican(mike) Republican(robert) RepublicanO1 ≡ RepublicanO2

Republican(clara) Democrat(sarah) DemocratO1 ≡ DemocratO2

likes(mike, clara) likes(robert, sarah) likesO1 ≡ likesO2

likes(clara,mike) likes(sarah, robert)
Republican uDemocrat v ⊥

Republican v ∀likes.Republican
Democrat v ∀likes.Democrat



information any more, since everything follows from inconsistency. One solution is to
use the semantics of free defaults [12]; thereby replacing some classical subsumptions
(e.g., C v D) with the corresponding default subsumptions (e.g., C vd D). By apply-
ing this strategy to our example, we obtain a default knowledge base 〈Σ,D〉, where the
TBox of Σ is empty and the set D of defaults consists of

Republican uDemocrat vd ⊥
Republican vd ∀likes.Republican
Democrat vd ∀likes.Democrat.

While this results in a d-satisfiable default knowledge base, it still has some undesir-
able features. Following our example, in Table 2, we highlight three sets of axioms
which are satisfied by one of the three types of d-models. Since there exist d-models

Table 2. Possible satisfied axiom combinations

d-model type 1 d-model type 2 d-model type 3
Republican(sarah) Republican(sarah) ¬Republican(sarah)
Democrat(robert) ¬Democrat(robert) ¬Democrat(robert)

for each of the axiom sets in Table 2, it follows that neither Republican(sarah) nor
¬Republican(sarah) is d-entailed by the default knowledge base. However, under the
assumption that the satisfaction ofRepublicanuDemocrat vd ⊥ is preferred over the
satisfaction of the other two defaults, it is more desirable to consider only the third type
of interpretations as d-models. Therefore, we extend the preferred models semantics in
such a way that it takes an order on the defaults into account.

3.2 Approach

We adopt the following definition which avoids the problem posed in the previous sec-
tion.

Definition 1 (Preference relation over models). Given a ordered default knowledge
base 〈Σ,D,�〉 where Σ is a knowledge base, D is a finite set of free defaults and � is
a strict partial order on D. And given I and J are interpretations of Σ, I is preferred
over J (w.r.t. �), denoted as I >〈Σ,D,�〉 J , iff

1. for all named individuals a appearing in Σ, aI = aJ ,
2. for all i such that XJi 6⊆ X Ii there exists j, such that X Ij 6⊆ XJj and (Cj vd
Dj) � (Ci vd Di)

3. X I 6= XJ

For simplicity purposes we will from now on abuse the notation and adopt the short-
hand > for >〈Σ,D,�〉 as long as it is clear from the context. Observe that if I > J ,
then there always exists i s.t. X Ii ) XJi , since � is a strict order. The definitions of
d-models, d-satisfiability and d-entailment are changed accordingly by replacing the or-
der on interpretations >Σ,D with the new order >Σ,D,�. This is a generalisation since
for >D= ∅ the semantics are equivalent i.e. >Σ,D=>Σ,D,�.



Going back to the previous example, we assume that D is ordered by �, and

Republican uDemocrat vd ⊥ � Republican vd ∀likes.Republican
Republican uDemocrat vd ⊥ � Democrat vd ∀likes.Democrat.

For the ordered default knowledge base 〈Σ,D,�〉, there exist strictly less d-models
than for the unordered default knowledge base we previously considered. Namely, the
d-models for the ordered knowledge base are exactly those of type 3 in Table 2. There-
fore, in contrast to the unordered default knowledge base, the ordered default knowledge
base entails both ¬Republican(sarah) and ¬Democrat(robert).

3.3 Decidability

We show that decidability of d-satisfiability and d-entailment are maintained with this
generalisation. Let 〈Σ,D,�〉 be an ordered default knowledge base in a decidable de-
scription logics L, which can be extended with nominal concept expressions, while
maintaining decidability. Let IndΣ be the set of named individuals occurring in Σ and
profile P = (P1, . . . , Pn), where n = |D| and for 1 ≤ i ≤ n, Pi ⊆ IndΣ . We de-
fine ΣP as the knowledge base obtained by adding the following axioms to Σ for each
Ci vd Di ∈ D, as similarly defined in [12]:

1. P̄i v (Di u {a1, . . . , ak}) t (¬Ci u {a1, . . . , ak}), where P̄i is the nominal con-
cept expression containing all the named individuals in Pi and {a1, . . . , ak} is the
named concept expression containing all the named individuals in IndΣ .

2. Ci u ¬{a1, . . . , ak} v Di, where {a1, . . . , ak} is the named concept expression
containing all the named individuals in IndΣ .

With this definition in mind, we can show the decidability of d-satisfiability.

Theorem 1 (Decidability of d-satisfiability). Let 〈Σ,D,�〉 be an ordered default
knowledge base, and P = (∅, . . . , ∅). Then, 〈Σ,D,�〉 is d-satisfiable iff ΣP is classi-
cally satisfiable.

Next, we show decidability of the generalized d-entailment. For that, we first introduce
some notation to move on with an auxiliary lemma.

Let 〈Σ,D,�〉 be an ordered default knowledge base, and I an interpretation. We
define profile P (I) by setting its every component Pi(I) = {a ∈ IndΣ | aI ∈ X Ii }.

Lemma 1. Let 〈Σ,D,�〉 be an ordered default knowledge base. Then,

{I | I d-model of 〈Σ,D,�〉} = {I | I |= ΣP (J ),J d-model of 〈Σ,D,�〉}.

Here, we are interested in ΣP (J ) in which J is a d-model. Intuitively, the knowledge
base ΣP (J ) represents all d-model J ′ such that P (J ) = P (J ′). Therefore, we call it
d-model representing knowledge base (i.e., d-KB in short). The above lemma implies
that one can check d-entailment by checking classical entailment in all d-KBs, ΣP (J ).
This is useful, since in general there can be more than one d-model J for one profile
P (J ).



In the following we give a non-deterministic algorithm, which generates d-KBs and
show its soundness and completeness.

Algorithm 1 d-model representing knowledge base generation
INPUT: An ordered default knowledge base 〈Σ,D,�〉.
OUTPUT: A d-KB taking the order of the defaults into account.
1: P ← (∅, . . . , ∅)
2: N ← (∅, . . . , ∅)
3: Defaults← Array(C1 vd D1, . . . , Cn vd Dn)
4: while ∃i : Pi ∪Ni 6= IndΣ do
5: CurrentDefault← Ci vd Di, such that ∀j : Cj vd Dj � Ci vd Di ⇒ Pj∪Nj =

IndΣ and Pi ∪Ni 6= IndΣ
6: CurrentIndividual← ak , such that a ∈ IndΣ and a /∈ Pi ∪Ni
7: PNew ← P
8: PNewi ← PNewi ∪ {a}
9: if ΣPNew is satisfiable then

10: P ← PNew
11: else
12: Ni ← Ni ∪ {a}

return ΣP

The algorithm generates a knowledge base by non-deterministically adding one
named individual to the individuals which satisfy one of the default subsumption, and
checks whether there is a d-model with the new profile. For the default that is non-
deterministically chosen, it must hold that all defaults which are preferable to it have
been applied exhaustively. This algorithm uses |IndΣ | · |D| satisfiability checks for
knowledge bases of the form ΣP before the termination. With the two following theo-
rems below, we show that our algorithm is sound and complete.

Theorem 2 (Soundness). Let 〈Σ,D,�〉 be a d-satisfiable ordered defaults knowledge
base. Then, for every knowledge baseΣP generated by Algorithm 1 there exists d-model
I such that P = P (I).

Theorem 3 (Completeness). Let 〈Σ,D,�〉 be a d-satisfiable ordered defaults knowl-
edge base. Then, for any d-model I, there exist non-deterministic choices in Algorithm
1, such that the generated knowledge base is equal to ΣP (I).

While the non-deterministic algorithm suffices for a decidability result, a naive im-
plementation which tries all possibilities via breadth-first or depth-first search is highly
inefficient. Therefore, we give an idea for a smarter algorithm which is (almost) deter-
ministic, restricted to total orders. Its complete description is included in the appendix.
In short, the algorithm iteratively tries to satisfy the currently most preferred default, for
which there are named individuals that are not yet asserted to satisfy it, but can satisfy
it. When adding the assertion that a named individual satisfies a default in the d-KB that
is currently constructed, we check whether there exist named individuals, which cannot



satisfy the current default any more, due to the addition of the assertion. In this case we
know that there is another, different d-KB we have to consider. This approach leads to
less non-deterministic choices being considered.

4 Discussion

4.1 Theoretical aspect

We consider the complexity of different tasks for both default knowledge bases with
and without an order; namely for d-satisfiability and d-entailment.

d-satisfiability The complexity of checking d-satisfiability does not depend on whether
the default knowledge base is ordered or unordered, since there is a d-model for the
ordered default knowledge base if and only if there is a d-model of the unordered de-
fault knowledge base, and one can be reduced to the other (and vice versa) in constant
time. This follows from the proof of Theorem 1. This also means that we can check
d-satisfiability by verifying the classic satisfiability of a knowledge base.

d-entailment We consider the algorithm of generating all d-KBs for an ordered default
knowledge base and checking d-entailment by checking classical entailment in all of
them iteratively. It is easy to see that the time needed, after the knowledge bases have
been generated, is linear in the number of generated knowledge bases. As an example,
consider 〈Σm,Dn〉, where

Σm = {C(a1), . . . , C(am)},

Dn = {C vd D1, . . . , C vd Dn,> vd
n⊔
i=1

¬Di}.

One has to decide for each individual ai, which default of the n+ 1 defaults is not sat-
isfied. This is independent for each individual. Therefore, without an order, this default
knowledge base has (n + 1)m d-KBs. However, with any total strict order � on these
defaults the ordered default knowledge base 〈Σm,Dn,�〉 will only have one d-KB.
We name this type of inconsistency that occurs when one has to decide which defaults
are satisfied for some individual, horizontal inconsistency. Observe that in case of hor-
izontal inconsistencies, the addition of an order can be very useful, as it can reduce the
amount of d-KBs by a factor which is exponential in the number of individuals. While
this seems promising, we do not have such guarantee in general. Consider 〈Σ′m,D′n〉,
where

Σ′m = {C(a1), . . . , C(a2m), R(a1, a2), R(a3, a4), . . . , R(a2m−1, a2m)},
D′n = {C vd D1 u ∀R.¬D1, . . . , C vd Dn u ∀R.¬Dn}.

Checking the above for two individuals a2i−1, a2i and one defaultC vd Dju∀R.¬Dj ,
we have the choice whether the default should be satisfied either for a2i−1, or a2i. Since
we have m pairs of individuals and n defaults, and each of the choices are independent,



we have 2mn d-KBs. We name this type of inconsistency that occurs when one has
to decide for which individuals some default is satisfied, vertical inconsistency. In this
example, the addition of any order on defaults does not change the number of d-KBs,
since there are no horizontal inconsistencies.

Summarising, we see that in the worst case, checking d-entailment is exponential
in the number of individuals times the number of rules. Further, it is independent of the
presence of an order on the defaults. This, however, does not necessarily mean that the
order is useless when it comes to real-world data.

4.2 Practical aspect

In order to test the performance of the algorithm on real-world data, we acquired incon-
sistent subsets of the LOD Cloud [7]. The subsets were acquired by choosing a random
OWL subClassOf axiom C rdfs:subClassOf D contained in the LOD dataset, and by
gathering all triples which relate C or D to other concepts, roles and lists. This was
achieved by following relations from the rdf, rdfs and owl namespaces, which have C
or D as object or subject. This process was repeated recursively for the related con-
cepts, roles and lists until a maximum amount of axioms was found, or a recursion
depth of three was reached. In order to avoid obtaining the same knowledge base mul-
tiple times, we employed two safety measures. First, the search for entities in the rdf,
rdfs and owl namespace was disabled; that is, it was still possible to add an axiom of
the form A rdfs:subClassOf owl:Thing. However, in this case, the LOD cloud was not
queried for axioms which related owl:Thing to other entities. Also, an axiom of the form
C rdfs:subClassOf D was only considered as a starting point for the recursive search, if
neither C nor D had been initially considered. In addition to the structural information
(i.e., TBox information), also a limited amount of class and property assertions was
obtained during the search.

The ontologies obtained using this procedure were transformed to ordered default
knowledge bases by, first, rewriting all disjointness and equivalence axioms for concepts
to concept subsumptions. Afterwards, we removed all subsumption axioms, and used
them as defaults. The choice of order was an arbitrary total order.

Using this approach we focused on three empirical questions:

1. How likely is it to find an inconsistent knowledge base, which has exactly one d-
KB, when transformed into a default knowledge base with a total order?

2. How does the running time of our algorithm change with respect to the number of
named individuals in the knowledge base?

3. How does the running time of our algorithm change with respect to the number of
defaults in the knowledge base?

On the first question, we considered 100 inconsistent knowledge bases, each with ap-
proximately 100 named individuals, at most 100 axioms relating concepts, at most 100
property assertions and up to 50 properties. For each corresponding ordered default
knowledge base, we checked d-satisfiability and whether the ordered default knowl-
edge base had one d-KB or more.

As a result, we found that all of the inconsistent knowledge bases were d-satisfiable
and 98 out of the 100 had only one d-KB. For the remaining two we tried to calculate the



exact amount of d-KBs. This was, however, possible only for one of them which had two
d-KBs. For the other one, the calculation was interrupted due to time constraints, and
it had at least 20 d-KBs. This 98% is not necessarily representative for any real-world
scenarios in a strict sense. However, it is still plausible that inconsistent ontologies,
where the corresponding ordered default knowledge base has more than one d-KB, is
the exception rather than the rule. This could change for larger datasets with more
intricate relationships between the concepts; however, considering a reasonable amount
of big datasets was infeasible for us.

This brings us to the next two questions about the scalability of the approach to
larger datasets. We considered an inconsistent knowledge base, which referred to a total
of 253 named individuals and 22 concept subsumptions.
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Fig. 1. The running time of the algorithm on the same
ontology with different amounts of defaults or named
individuals.

We ran the algorithm multiple
times on this dataset with a dif-
ferent number of axioms referring
to named individuals. This regulated
the amount of named individuals ap-
pearing in the knowledge base. The
orange line in Figure 1 shows the
resulting runtime of the algorithm
along with the percentage of named
individuals occurring in the knowl-
edge base. The number of consis-
tency checks of a classic knowledge
base increases linearly in the number
of individuals, given that the knowl-
edge base has exactly one d-KB.
However, in Figure 1, we observe a
convex behaviour in runtime in the
number of named individuals. This is
due to the fact that by adding more
named individuals, the consistency

checks also take longer. Yet, the runtime performance of our algorithm behaves almost
linear in the number of individuals as it is illustrated in Figure 1. Here, the amount of
named individuals remains unchanged, while the percentage of defaults included is in-
creased. The reason that the graphs end in different points is due to different scheduling
by the operating system.

5 Related Work

Many frameworks [12, 11, 2, 1] using defaults in the context of description logics have
been considered since the introduction of defaults by Reiter [10]. Accordingly, there
are various types of semantics that implement default reasoning, among them fixed-
point [10, 3] as well as preferred model semantics [12, 8], which are closest to the classi-
cal semantics of description logics. Further, the idea of introducing a preference relation
on defaults, or more generally, on axioms is not new, and has been at least considered



for the fixed-point semantics [3] as well as the preferred model semantics [8]. We focus
on the defeasible ontology language [8], since it is closest to our approach, and since
it stands as a representative pointing out the differences of other approaches to ours.
In their work Heymans et. al. introduced a preferred model semantics for description
logics, based on a preference relation on the axioms of an ontology. Starting with the
base language SHOQ(D), an ordered SHOQ(D)-knowledge base is defined as a pair
〈T ,�〉, where T is a SHOQ(D) TBox and � is a strict partial order on T . We use
O − SHOQ(D) as a shorthand for ordered SHOQ(D)4.

Intuitively, the order � should implement a way of solving conflicts by deciding
which axiom should be applied, taking the preference relation into consideration. For
the semantics of O − SHOQ(D), classic SHOQ(D)-interpretations I = (∆I , ·I)
satisfying the Unique Naming and Common Domain Assumption are used. Such an
interpretation is a model of 〈T ,�〉, if for each A v B ∈ T and x ∈ ∆I it holds that,
whenever x ∈ AI then x ∈ BI , or there exists another more preferred subsumption
C v D, s. t. x ∈ CI ∩ DI . Based on this definition of a model a preferred model
semantics is introduced as follows: For a model I of a O − SHOQ(D)-knowledge
base 〈T ,�〉, its support is defined as

SI = {(x,A v B) | x ∈ ∆I , A v B ∈ T , and x ∈ ¬A tB}.

A model I is then preferred over a model J for 〈T ,�〉 if, for all pairs (x,A v B) ∈
SJ \ SI there exists a pair (x,C v D) ∈ SI \ SJ , s.t. C v D � A v B. This
is denoted by I ≥ J . If SI 6= SJ , this preference holds strictly and is denoted by
I > J . By considering only the most preferred models, i.e. the ones that are maximal
w.r.t. >, one obtains a semantics which makes sure that for each individual, if there is
a choice between making two rules classically satisfied for that individual, one always
chooses the more preferred one.

While this semantics is very similar to ours, it is not ideal. Because it does not take
care of cases where one has to decide between classically satisfying a less preferred
rule for one individual or a more preferred one for another individual. This can be fixed
simply by relaxing the constraint that defines the order on the models and replacing
it as follows; I > J iff for all pairs (x,A v B) ∈ SJ \ SI there exists a pair
(y, C v D) ∈ SI \ SJ , s.t. C v D � A v B.

Note that the replacement of x with y in the existential quantification is the only
difference. With this semantics, when one has to decide between satisfying different
concept subsumptions for different individuals, one shall choose the one where the more
preferred concept subsumption is fulfilled.

This preference relation is very similar to ours. The main difference is that in our
proposal only named individuals can be exceptions. Indeed, if we restrict the definition
of the support to the named individuals, then the preference relations are equivalent.

Heymans et. al. showed that under the Common Domain and Unique Name As-
sumption [1] entailment in the original semantics is decidable, using a tableau algo-
rithm. We suspect this result carries over to the new semantics. While this would be a

4 The original shorthand isOSHOQ(D), however we chose not to use it since in the description
logics naming convention every letter is assigned for one feature.



positive theoretical result, we expect that the worst case complexity of checking entail-
ment is exponential in the number of unblockable individuals [8], assuming linearity
in the amount of possible tableau’s. This is shown in Example 4.1, which can be ex-
tended to also work for unnamed individuals. With a possibly exponential amount of
unblockable individuals, this leaves us with a worst case complexity, which scales dou-
ble exponentially. Adding the restriction to have exceptions of defaults only for named
individuals, as Sengupta et. al. [12] and we did, reduces the worst case complexity, so
that it only scales exponentially in the size of named individuals.

Another framework introduced by Baader and Hollunder also gives the possibility
to specify a preference order on defaults. Their approach uses fixed points semantics
and gives similar results to those of Heyman et. al., in the sense that a default can only
be defeated for a certain individual by asserting a more preferred default for the same
individual [3]. Further, defaults are only applied to named individuals in their work.

Two other semantics, which also concern themselves with orders on defaults are
those of Bonatti et. al.’s DLN semantics [5] and Lehmann’s lexicographical closure
[9]. In the former, the closed world assumption is somewhat weaker than ours. This
results in the inability to derive concept membership for individuals, when it depends
on the application of defaults. This stronger closed world assumption however also
has its problems: Concepts are reasoned to be unsatisfiable, with the usage of defaults,
even though the addition of more axioms can render them satisfiable. The major differ-
ence about the latter work [9] is that it obtains a lexicographic preference from a given
knowledge base that respects the specificity of the antecedents in case of conflict.

6 Conclusion and Future Work

We have shown that it is possible to extend the semantics of free defaults with a pref-
erence order on the axioms, without losing decidability of both satisfiability and en-
tailment. Our semantics improves both the semantics of Sengupta et. al.[12] as well
as Heymans et. al.[8] by reducing the amount of d-KBs in the presence of horizontal
inconsistencies. For a given knowledge base, this can both lead to a higher efficiency
of entailment checks, and an increase in the amount of derivable knowledge. It turns
out that, while the worst case runtime of generating all d-KBs (as well as their worst
case amount), is exponential in the number of named individuals, working with the se-
mantics we proposed in practice seems to be feasible. This is at least suggested by the
empirical evidence, where we tested our approach on inconsistent real-world data i.e.,
subsets of the LOD-Laundromat [7].

It remains questionable whether these results generalise to larger and possibly more
complex real-world examples. Another open problem on the foundational frontier is to
find ways of handling ordered default knowledge bases that are not d-satisfiable, or that
have more than one d-KB.

As a part of future work, it could be interesting to investigate which existing de-
sirable properties our approach satisfies. Moreover, we need to carry out a fine-grained
complexity theoretic analysis, supplemented with an empirical evaluation. This research
agenda could make preferential default reasoning practically feasible on sizeable on-
tologies.
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