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Abstract. We consider the problem of extracting modules of an ontol-
ogy that contains the knowledge as represented by a second ontology.
The knowledge to be preserved is specified using entailment of conjunc-
tive queries over a given vocabulary. We propose a novel module no-
tion called projection module that preserves the answers to conjunctive
queries as they follow from a reference ontology. We present an algo-
rithm for computing minimal projection modules for conjunctive queries.
As target and reference ontology we take ELHr-terminologies. The al-
gorithm is based on simulation notions developed for detecting logical
differences between ELHr-terminologies.

1 Introduction

Ontology comparison can help understanding the overlap and differences among
ontologies which is often desired while a user manipulates multiple knowledge
sources. In this paper, we propose the notion of projection module which allows to
compare the entailment capacities of two ontologies about a given vocabulary.
A projection module characterizes the relative knowledge of one ontology by
taking another one as a reference. This can thus lead to a fine-grained ontology
comparison measurement between two ontologies.

Various approaches to comparing ontologies have been suggested, including
ontology mapping or alignment [12], and logical difference [19–21, 23]. Ontol-
ogy matching is the process of determining correspondences, in particular, the
subsumption, equivalence, or disjointness relations between two concept or role
names from different ontologies. A good concept similarity [1,22] is often helpful
for ontology matching. In contrast, logical difference focuses on the compari-
son of entailed logical consequences from each ontology and returns difference
witnesses if differences are present.

When an ontology has no logical difference compared to another one, our
approach further extracts sub-ontologies of the first ontology that contain the
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knowledge as represented by the second ontology. For example, suppose T1 =
{A1 v A2, A2 v A3}, T2 = {A1 v A3 u B1, B1 v ∃r.A3}, and Σ = {A1, A3, r}.
Then T2 entails all queries about Σ that follow from T1. However, the projection
module of T2 with respect to T1 and Σ consists of A1 v A3 u B1. This means
that a strict sub-ontology of T2 is sufficient to capture all the information of T1
about Σ. Moreover, T2 entails the consequence A1 v ∃r.A3, which is not the
case for T1. Intuitively, T2 is richer in information about Σ than T1.

Ontology modularity [9, 16, 19, 21, 24, 25] is about the extraction of sub-
ontologies that preserve all logical consequences over a given signature. In con-
trast, the proposed projection module is different from modules of a single on-
tology. For the example above, the basic minimal module [9], ⊥>?-module, and
MEX-module [18] of T2 w.r.t. Σ are all T2 itself. The extra axiom in T2 com-
pared to its projection module with respect to T1 confirms that T1 conveys less
information about Σ than T2, which gives a way to compare these two ontolo-
gies. For latest results on logical inseparability (in particular, inseparability w.r.t.
conjunctive queries), see [7,8,13], and for a survey on query inseparability, see [6].

To compute projection modules, in this paper, we generalize the notion of
justification to the notion of subsumption justification as a minimal set of axioms
that maintains a consequence. Our algorithm employs the classical notion of
justification to compute subsumption justification. Currently, the approaches
for computing all the justifications of an ontology w.r.t. a consequence can be
classified into two categories: “glass-box” [2,5,14,15] and “black-box” [10,14,26].

We proceed as follows. Section 2 gives a brief review of Description Logic
EL and its extensions as well as logical difference. In Section 3, we introduce
the notion of project module. In Section 4, the notion and the computation of
role subsumption justifications are presented, which are employed in Section 5
to compute project modules. Finally, Section 6 concludes the paper.

2 Preliminaries

We start by briefly reviewing the description logic EL and several of its exten-
sion with range restrictions and conjunction of roles and the universal role as
well as concept subsumptions based on these extensions. For a more detailed
introduction to description logics, we refer to [3, 4].

Let NC and NR be sets of concept names and role names. We assume these sets
to be mutually disjoint and countably infinite. The sets of EL-concepts C, ELran-
concepts D, ELu-concepts E, and ELu,u-concepts F , and the sets of ELHr-
inclusions α and ELran,u,u-inclusions β are built according to the grammar rules:

C ::= A | C u C | ∃r.C | dom(r)
D ::= A | D uD | ∃r.D | dom(r) | ran(r)
E ::= A | E u E | ∃R.E
F ::= A | F u F | ∃R.F | ∃u.F
α ::= C v C | ran(r) v C | ran(r) u C v C | C ≡ C | r v s
β ::= D v F | r v s



where A ∈ NC, r, s ∈ NR, u is a fresh logical symbol (the universal role) and
R = r1 u . . . u rn with r1, ..., rn ∈ NR, for n ≥ 1. We refer to inclusions also as
axioms. A Γ -TBox is a finite set of Γ -inclusions, where Γ ranges over the sets
of ELHr- and ELran,u,u-inclusions.

The semantics is defined as usual in terms of interpretations, which interpret
concept and role names and are inductively extended to complex concepts. The
notions of satisfaction of a concept, axiom and TBox as well as the notions of
a model and the logical consequence relation are defined as usual. We skip a
detailed introduction here.

A signature is a finite set of symbols from NC and NR. We write sigNC(ξ)
and sig(ξ) for the set of concept names and the set of concept and role names
occurring in a syntactic object ξ. The symbol Σ is used as a subscript to a set
of concepts or inclusions to denote that the elements only use symbols from Σ.

An ELHr-terminology T is an ELHr-TBox consisting of axioms α of the form
A v C, A ≡ C, r v s, ran(r) v C or dom(r) v C, where A is a concept name,
C an EL-concept and no concept name occurs more than once on the left-hand
side of an axiom.1 To simplify the presentation we assume that terminologies
do not contain axioms of the form A ≡ B or A ≡ > (after removing multiple
>-conjuncts) for concept names A and B. For a terminology T , let ≺T be a
binary relation over NC such that A ≺T B iff there is an axiom of the form
A v C or A ≡ C in T such that B ∈ sig(C). A terminology T is acyclic if the
transitive closure ≺+

T of ≺T is irreflexive; otherwise T is cyclic. A concept name
A is said to be conjunctive in T iff there exist concept names B1, . . . , Bn, n > 0,
such that A ≡ B1u . . .uBn ∈ T ; otherwise A is said to be non-conjunctive in T .

An ELHr-terminology T is normalised iff it only contains axioms of the
forms ϕ v B1 u . . .uBn, A v ∃r.B, A v dom(r), r v s, and A ≡ B1 u . . .uBm,
A ≡ ∃r.B, where ϕ ∈ {A, dom(s), ran(s)}, n ≥ 1, m ≥ 2, A,B,Bi ∈ NC, r, s ∈
NR, and each conjunct Bi is non-conjunctive in T . Every ELHr-terminology T
can be normalised in polynomial time such that the resulting terminology is a
conservative extension of T [17]. A subset M ⊆ T is called a justification for an
ELH-concept inclusion α from T iff M |= α and M ′ 6|= α for every M ′ ( M .
We denote the set of all justifications for an ELH-concept inclusion α from an
ELH-terminology T with JustT (α). The latter may contain exponentially many
justifications in the number of axioms in T .

We now recall the notion of logical difference for concept subsumption queries,
instance queries and conjunctive queries from [17,20].

Definition 1 (Logical Difference). The ELran,u,u-subsumption query and con-
junctive query difference between T1 and T2 wrt. Σ are the sets cDiffΣ(T1, T2)
and qDiffΣ(T1, T2), where

– ϕ ∈ cDiffΣ(T1, T2) iff ϕ is an ELran,u,u
Σ -inclusion and T1 |= ϕ and T2 6|= ϕ;

– (A, q(a)) ∈ qDiffΣ(T1, T2) iff A is a Σ-ABox and q(a) a Σ-conjunctive query
such that (T1,A) |= q(a) and (T2,A) 6|= q(a).

1 A concept equation A ≡ C stands for the inclusions A v C and C v A.



The following theorem states that ELran,u,u-subsumption queries are suffi-
cient to detect the absence of conj. query differences (Lemmas 62 and 63 in [17]).

Theorem 1. cDiffΣ(T1, T2) = ∅ iff qDiffΣ(T1, T2) = ∅.

If the set cDiffΣ(T1, T2) is not empty, then it typically contains infinitely many
concept inclusion. We make use of the primitive witnesses theorems from [17],
which state that if there is a concept inclusion difference in cDiffΣ(T1, T2), then
there exists an inclusion in cDiffΣ(T1, T2) of one of the following three types
δ1, δ2, δ3, which are built according to the grammar rules below:

δ1 ::= r v s
δ2 ::= D v A
δ3 ::= A v E | dom(r) v E | ran(r) v E

where δ1 ranges over role inclusions, δ2 is an ELran-inclusion, and δ3 is an
ELran,u,u-inclusion. Note that each of these inclusions has either a simple left-
hand or a simple right-hand side.

The set of all ELran,u,u-subsumption difference witnesses is defined as

WtnΣ(T1, T2) := (roleWtnΣ(T1, T2), lhsWtnΣ(T1, T2), rhsWtnΣ(T1, T2)),

where the set roleWtnΣ(T1, T2) consists of all type-δ1 inclusions in cDiffΣ(T1, T2),
and the sets lhsWtnΣ(T1, T2) ⊆ (Σ ∩NC)∪{ dom(r) | r ∈ Σ }∪ { ran(r) | r ∈ Σ }
and rhsWtnΣ(T1, T2) ⊆ NC ∩ Σ of left-hand and right-hand subsumption query
difference witnesses consist of the left-hand sides of the type-δ3 inclusions in
cDiffΣ(T1, T2) and the right-hand sides of type-δ2 inclusions in cDiffΣ(T1, T2),
respectively. Consequently, the set WtnΣ(T1, T2) can be seen as a finite repre-
sentation of the set cDiffΣ(T1, T2) [17], which is typically infinite. As a corollary
of the primitive witness theorems in [17], we have that the representation is com-
plete in the following sense: cDiffΣ(T1, T2) = ∅ iff WtnΣ(T1, T2) = (∅, ∅, ∅). Thus,
deciding the existence of concept inclusion differences is equivalent to deciding
non-emptiness of the three witness sets.

3 Projection Modules

A terminology T1 together with a signature Σ and a query language Q determine
a set Φ of queries from Q formulated using only symbols from Σ that follow
from T1. Intuitively, Φ captures the Q-knowledge of T1 about Σ. In this paper,
we consider conjunctive queries or, equivalently, ELran,u,u-subsumption queries
as a query language. A projection module for Φ of another terminology T2 is a
subset of T2 that entails the queries in Φ. The Q-knowledge in Φ of T1 about Σ
is captured by the projection module of T2 and it is represented using axioms
from T2. The projection can be seen as transforming the finite representation of
Φ with axioms from T1 into a finite representation of Φ with axioms from T2. As
an application, the projection of Φ onto T2 allows us to determine the axioms
that implement Φ in T2. For instance, projection modules enable the verification



of compliance to certain modelling guidelines and standards by the axioms of T2
that implement Φ. In particular, projection modules that are minimal w.r.t. set
inclusion are relevant for this task. Note that existing module notions suggest to
compute a module of T2 for the given signature, Σ, to obtain the Q-knowledge
of T2 about Σ, whereas we are only interested in Φ, i.e. the Q-knowledge of T1
about Σ. Consequently, extracting modules of T2 for Σ will yield modules that
generally contain irrelevant axioms and that are, therefore, likely too large for
manual inspection.

Definition 2 (Projection Module). Let ρ = 〈T1, Σ, T2〉 be a projection set-
ting. A set M ⊆ T2 is a conjunctive query projection module under ρ iff for
every Σ-ABox A and every Σ-conjunctive query q(a): (T1,A) |= q(a) implies
(M,A) |= q(a).

There may exist several (even exponentially many) minimal projection modules.

Example 1. Let T1 = {A1 v A4}, T2 = {A1 ≡ A2 u A3, A2 v A4, A3 v A4}
and Σ = {A1, A4}. Then the conjunctive query projection module under ρ =
〈T1, Σ, T2〉 is T2.

The notion of projection module is not symmetric, i.e., a projection mod-
ule under 〈T1, Σ, T2〉 is not necessarily the same as a projection module un-
der 〈T2, Σ, T1〉. When the reference terminology equals the terminology from
which axioms are to be extracted, a reflexive projection setting of the form
ρ	 = 〈T , Σ, T 〉 is used. We call a projection module under ρ	 also an automor-
phic projection module.

An interesting application of the projection module is to compare entailment
capacities of two terminologies, as shown in the following example.

Example 2. Let T1 = {Ai v Ai+1 | 1 ≤ i ≤ n}, T2 = {A1 v An, B1 v B2}, Σ =
{A1, An, B1, B2}. Intuitively, T1 contains less information about Σ than T2. The
minimal projection module under ρ = 〈T1, Σ, T2〉 is M = {A1 v An}. By using
|M|/|T2| = 1/2 as a measure, we see that only half of T2 is about the information
of T1 w.r.t. Σ.

4 Representing Projection Modules using Justifications

In this section, we introduce justification notions for sets of inclusions and we
show how they can be combined to obtain minimal projection modules. We start
with defining the notion of role subsumption justifications for a set of ELran,u,u-
inclusions of the form r v s, where r, s ∈ Σ (cf. Section 2).

Definition 3 (Role Subsumption Justification). Let ρ = 〈T1, Σ, T2〉. A set
M is called a role subsumption module under ρ iff M ⊆ T2 and for every
r, s ∈ NR ∩Σ, T1 |= r v s implies M |= r v s. A role subsumption justification
under ρ is the role subsumption module under ρ that is minimal w.r.t. (.



We denote the set of all role subsumption justifications under ρ as J Rρ .

Lemma 1. Let J ∈ J Rρ . Then roleWtnΣ(T1, J) = ∅.

We continue with defining the notion of subsumption justifications for in-
clusions of ELran,u,u that are of the form D v F , where D ranges over ELran-
concepts and F over ELu,u-concepts.

Definition 4 (Subsumption Justification). A subsumption setting is a tuple
χ = 〈T1, X1, Σ, T2, X2〉, where T1 and T2 are normalised ELHr-terminologies, Σ
is a signature, X1, X2 ∈ NC ∪ { dom(r), ran(r) | r ∈ NR }.

A set M is called a subsumer module under χ iff M ⊆ T2 and for every
C ∈ ELran,u,u

Σ , T1 |= X1 v C implies M |= X2 v C. M is called a subsumee
module under χ iff M⊆ T2 and for every C ∈ ELran,u,u

Σ , T1 |= C v X1 implies
M |= C v X2.
M is called a subsumption module under χ iff M is a subsumer module,

a subsumee module under χ and role subsumption module under 〈T1, Σ, T2〉. A
subsumee (resp. subsumer, subsumption) justification under χ is a subsumee
(resp. subsumer, subsumption) module under χ that is minimal w.r.t. (.

We denote the set of all subsumee (resp. subsumer, subsumption) justifica-
tions under χ as J←χ (resp. J→χ , Jχ), where χ = 〈T1, X1, Σ, T2, X2〉.

Using Definition 1 and 4, we obtain the following proposition stating the ab-
sence of certain concept names, and domain and range restrictions of role names
as left-hand and right-hand difference witnesses between a reference terminol-
ogy T1 and a subsumer and subsumee justification of a second terminology T2.

For a signature Σ, let Σdom = { dom(t) | t ∈ NR ∩ Σ } and Σran = { ran(t) |
t ∈ NR ∩Σ } be the sets consisting of concepts of the form dom(t) and ran(t) for
every role name t in Σ, respectively. Furthermore, let Σζ = Σ ∪Σdom ∪Σran for
ζ ∈ CΣ .

Lemma 2. Let ϕ ∈ (Σ ∩ NC) ∪Σdom ∪Σran and let A ∈ Σ ∩ NC. Additionally,
let χ = 〈T1, ϕ,Σ, T2, ϕ〉 and χ′ = 〈T1, A,Σ, T2, A〉. Then:

– ϕ 6∈ lhsWtnΣ(T1, Jχ) for every Jχ ∈ J→χ ;
– A 6∈ rhsWtnΣ(T1, Jχ′) for every Jχ′ ∈ J←χ′ .

To obtain subsumption modules we can use an operator ⊗ to combine sets of
role, subsumer and subsumee justifications, one justification for each potential
difference witness that needs to be prevented; cf. Lemmas 1 and 2. Given a set
S and S1,S2 ⊆ 2S , S1⊗S2 := {S1∪S2 | S1 ∈ S1, S2 ∈ S2 }. For instance, if S1 =
{{α1, α2}, {α3}} and S2 = {{α1, α3}, {α4, α5}}, then S1 ⊗ S2 = {{α1, α2, α3},
{α1, α2, α4, α5}, {α3, α4, α5}, {α1, α3}}. For a set M of sets, we define a function
Minimise⊆(M) as follows: M ∈ Minimise⊆(M) iff M ∈ M and there does not
exist a set M′ ∈ M such that M′ ( M. Continuing the previous example,
Minimise⊆(S1 ⊗ S2) = {{α2, α3}, {α1, α2, α4, α5}, {α3, α4, α5}}.

We now use ⊗ and Minimise⊆(·) to combine sets of role, subsumer and sub-
sumee justifications to obtain the set of all minimal projection modules.



Theorem 2. Let Mρ be the set of all projection modules under ρ = 〈T1, Σ, T2〉
that are minimal w.r.t. (. Then the following holds, where χ(ψ)=〈T1, ψ,Σ, T2, ψ〉:

Mρ = Minimize⊆
(
J Rρ ⊗

⊗
ϕ∈(Σ∩NC)∪Σdom∪Σran

J→χ(ϕ) ⊗
⊗

A∈Σ∩NC

J←χ(A)

)

5 Computing Projection Modules

In this section, we present algorithms for computing role, subsumer and sub-
sumee justifications. The algorithms use the following notion of a cover of a set
of sets. For a finite set S and a set T ⊆ 2S , we say that a set M ⊆ 2S is a cover of
T iff M ⊆ T and for every M ∈ T, there exists M′ ∈ M such that M′ ⊆M. In
other words, a cover is a subset of T containing all sets from T that are minimal
w.r.t. (. Therefore, a cover of the set of all subsumption modules also contains
all subsumption justifications. We will use covers to characterise the output of
our algorithms to ensure that all justifications have been computed.

Algorithm 7 shows how to collect relevant Σ-role inclusions for role subsump-
tion justifications (cf. Def. 3). The following proposition states its correctness.

Proposition 1. J Rρ = CoverR(T1, Σ, T2), where ρ = 〈T1, Σ, T2〉.

5.1 Computing Subsumer Justifications

We now present our algorithm for computing subsumer justifications. The al-
gorithm relies on the notion of a subsumer simulation between terminologies
from [11, 23]. For defining the simulation notion, we need a specific notion of
reachability. For ϕ ∈ NC ∪ { dom(r), ran(r) | r ∈ NR } and a normalised ELHr-
terminology T , let FT (ϕ) be the smallest set closed under the following three con-
ditions: ϕ ∈ FT (ϕ); Y ∈ FT (ϕ) if X ∈ FT (ϕ), T |= X v X ′ and X ′ ./ ∃r.Y ∈ T ;
and dom(r) ∈ FT (ϕ) if ran(r) ∈ FT (ϕ).

Definition 5 (Subsumer Simulation). A relation S ⊆ N(T1, Σ)×N(T2, Σ),
where N(T , Σ) = {X, dom(r), ran(r) | X, r ∈ (sig(T ) ∪Σ), X ∈ NC, r ∈ NR }, is
a Σ-subsumer simulation from T1 to T2 iff the following conditions are satisfied:

(S→NC
) if (X1, X2) ∈ S, then for every ϕ ∈ Σ ∪ Σdom with T1 |= X1 v ϕ, it holds

that T2 |= X2 v ϕ;
(S→∃ ) if (X1, X2) ∈ S and X ′1 ./1 ∃r.Y1 ∈ T1 with ./1 ∈ {v,≡} such that T1 |=

X1 v X ′1 and T1 |= r v s for some s ∈ Σ, there exists X ′2 ./2 ∃r′.Y2 ∈ T2
with ./2 ∈ {v,≡} such that T2 |= X2 v X ′2 and for every s ∈ Σ with
T1 |= r v s, it holds that T2 |= r′ v s and (Y1, Y2) ∈ S.

We write T1 ∼→Σ T2 iff there exists a Σ-subsumer simulation S from T1 to T2
such that for every ϕ ∈ (Σ ∩ NC) ∪ Σdom ∪ Σran: (ϕ,ϕ) ∈ S, and for every
ψ1 ∈ FT1(ϕ), there exists a ψ2 ∈ FT2(ϕ) such that (ψ1, ψ2) ∈ S.

For X1, X2 ∈ NC, we write 〈T1, X1〉 ∼→Σ 〈T2, X2〉 iff there exists a Σ-
subsumer simulation S from T1 to T2 with (X1, X2) ∈ S for which T1 ∼→Σ T2.



A subsumer simulation conveniently captures the set of subsumers in the
following sense: If a Σ-subsumer simulation from T1 to T2 contains the pair
(X1, X2), then X2 entails w.r.t. T2 all subsumers of X1 w.r.t. T1 that are formu-
lated in the signature Σ. Formally, we obtain the following theorems from [23].

Theorem 3. It holds that T1 ∼→Σ T2 iff lhsWtnΣ(T1, T2) = ∅.

Theorem 4. Let 〈T1, X1〉 ∼→Σ 〈T2, X2〉. Then for every D ∈ ELran,u,u
Σ : T1 |=

X1 v D implies T2 |= X2 v D.

Algorithm 2 collects all the axioms necessary to satisfy the conditions of Def-
inition 5. Observe that Cover→(T1, X1, Σ, T2, X2) may be called several times
during the execution of the algorithm. A possible optimisation is to store return
values in memory in order to retrieve them more quickly for subsequent calls.

The following theorem shows that Algorithm 2 indeed computes the set of
subsumer modules, thus producing a cover of subsumer justifications.

Theorem 5. Let χ = 〈T1, X1, Σ, T2, X2〉 and M := Covercq
→(T1, X1, Σ, T2, X2).

If T1 ∼→Σ T2, then M is a cover of the set of subsumer justifications under χ.

5.2 Computing Subsumee Justifications

Next we present the algorithm for computing subsumee justifications based on
a notion of a subsumee simulation. The basic idea of the algorithm is to collect
as few axioms from T2 as possible to maintain the subsumee simulation between
Σ-concept names.

First we present some auxiliary notions for handling conjunctions on the
left-hand side of subsumptions. We define for each concept name X a so-called
definitorial forest consisting of sets of axioms of the form Y ≡ Y1 u . . . u Yn
which can be thought of as forming trees. Any subsumee justification under
〈T1, X1, Σ, T2, X2〉 contains the axioms of a selection of these trees, i.e., one tree
for every conjunction formulated over Σ that entails X1 w.r.t. T1. Formally, we
define a set of a DefForestuT (X) ⊆ 2T to be the smallest set closed under the
following conditions: ∅ ∈ DefForestuT (X); {α} ∈ DefForestuT (X) for α = X ≡
X1 u . . . uXn ∈ T ; and Γ ∪ {α} ∈ DefForestuT (X) for Γ ∈ DefForestuT (X) with
Z ≡ Z1u. . .uZk ∈ Γ and α = Zi ≡ Z1

i u. . .uZni ∈ T . Given Γ ∈ DefForestuT (X),
we set leaves(Γ ) := sig(Γ ) \ {X ∈ sig(C) | X ≡ C ∈ Γ } if Γ 6= ∅; and
{X} otherwise. We denote the maximal element of DefForestuT (X) w.r.t. ⊆ with
max-tree uT (X). Finally, we set non-conjT (X) := leaves(max-tree uT (X)).

For example, let T = {α1, α2, α3}, where α1 := X ≡ Y uZ, α2 := Y ≡ Y1uY2,
and α3 := Z ≡ Z1 u Z2. Then DefForestuT (X) = {∅, {α1}, {α1, α2}, {α1, α3},
{α1, α2, α3}}. We have that leaves({α1, α3}) = {Y,Z1, Z2}, max-tree uT (X) =
{α1, α2, α3}, and non-conjT (X) = {Y1, Y2, Z1, Z2}.

We say that a concept name A is Σ-entailed w.r.t. T iff there is an ELran
Σ -

concept C such that T |= C v A; and we say that a role name s is Σ-entailed
in T iff there exists s′ ∈ NR ∩Σ such that T |= s′ v s.



We now define the notion of a subsumee simulation from T1 to T2 as a subset
of sigNC(T1)× sigNC(T2)×CΣT1 , where CΣT1 := {ε}∪ (NR∩ (Σ∪ sig(T1))) is the range
of role contexts.

Definition 6 (Subsumee Simulation). A relation S ⊆ sigNC(T1)×sigNC(T2)×
CΣT1 is a Σ-subsumee simulation from T1 to T2 iff the following conditions hold:

(S←NC
) if (X1, X2, ζ) ∈ S, then for every ϕ ∈ Σζ and for every X ′2 ∈ non-conjT2(X2)

with T2 6|= ran(ζ) v X ′2, T1 |= ϕ v X1 implies T2 |= ϕ v X ′2;
(S←∃ ) if (X1, X2, ζ) ∈ S and X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s v r for s ∈ Σ

and Y1 is Σ-entailed w.r.t. T1, then for every X ′2 ∈ non-conjT2(X2) not
entailed by dom(s) or ran(ζ) w.r.t. T2, there exists X ′2 ≡ ∃r′.Y2 ∈ T2 such
that T2 |= s v r′ and (Y1, Y2, s) ∈ S;

(S←u ) if (X1, X2, ζ) ∈ S and X1 ≡ Y1 u . . . u Yn ∈ T1, then for every Y2 ∈
non-conjT2(X2) not entailed by ran(ζ) in T2, there exists Y1 ∈ non-conjT1(X1)
not entailed by ran(ζ) w.r.t. T2 such that (Y1, Y2, ε) ∈ S.

We write T1 ∼←Σ T2 iff there is a Σ-subsumer simulation S from T1 to T2
such that for every A ∈ Σ ∩ NC: (A,A, ε) ∈ S.

For ζ ∈ Σ ∩ NR, we write 〈T1, X1〉 ∼←Σ,ζ 〈T2, X2〉 iff there is a Σ-subsumer
simulation S from T1 to T2 with (X1, X2, ζ) ∈ S for which T1 ∼←Σ T2.

Analogously to subsumer simulations, a subsumee simulation captures the
set of subsumees as it is made precise in the following theorems.

Theorem 6. T1 ∼←Σ T2 iff rhsWtnΣ(T1, T2) = ∅.

Theorem 7. Let 〈T1, X1〉 ∼←Σ,ζ 〈T2, X2〉. Then for every C ∈ ELran
Σ : T1 |= C v

X1 implies that T2 |= C v X2.

Before introducing the algorithms, we first extend the notion ofΣ-entailment.
We say that a concept name X is complex Σ-entailed w.r.t. T iff for every
Y ∈ non-conjT (X) one of the following conditions holds:

– there exists B ∈ Σ such that T |= B v Y and T 6|= B v X; or
– there exists Y ≡ ∃r.Z ∈ T and r, Z are Σ-entailed in T .

Otherwise, X is said to be simply Σ-entailed. For example, let T = {X ≡
X1 uX2, B1 v X1, X2 ≡ ∃r.Z, B2 v Z, s v r}. We have that non-conjT (X) =
{X1, X2}, then r is Σ-entailed w.r.t. T ; X is complex Σ-entailed w.r.t. T for
Σ = {B1, B2, s}; but X is not complex Σ′-entailed w.r.t. T , where Σ′ ranges over
{B1, B2}, {B1, s}, {B2, s}. Additionally, X is not complex Σ-entailed w.r.t. T ∪
{B1 v X}.

Algorithm 3 is responsible for computing a cover of all subsumee justifica-
tions. It orchestrates three further algorithms in order to collect the axioms nec-
essary to satisfy the three conditions of Definition 6: Algorithm 4 for Case (S←NC

),
Algorithm 5 for Case (S←∃ ) and Algorithm 6 for Case (S←u ). While Algorithm 4
can readily be understood, we provide some additional explanation for the re-
maining algorithms.



Algorithm 1: Computing a Cover of all Sub-

sumer Justifications for Conjunctive Queries

1 function Covercq
→ (T1, X1, Σ, T2, X2)

2 M→(X1,X2)
:= {∅}

3 for every ψ1 ∈ FT1(X1) do

4 M→ψ1
:= {∅}

5 for every ψ2 ∈ FT2(X2) such that

〈T1, ψ1〉 ∼→Σ 〈T2, ψ2〉 do
6 M→ψ1,ψ2

:= Cover→(T1, ψ1, Σ, T2, ψ2)

7 M→ψ1
:= M→ψ1

∪M→ψ1,ψ2

8 M→(X1,X2)
= M→(X1,X2)

⊗M→ψ1

9 return Minimise⊆(M→(X1,X2)
)

Algorithm 2: Computing a Cover of all Sub-

sumer Justifications (Recursive)

1 function Cover→ (T1, X1, Σ, T2, X2)

2 M→(X1,X2)
:= {∅}

3 for every B ∈ (Σ ∩ NC) ∪ { dom(r) | r ∈ Σ }
such that T1 |= X1 v B do

4 M→(X1,X2)
:= M→(X1,X2)

⊗ JustT2(X2 v B)

5 for every Y ./1 ∃r.Z ∈ T1 (./1∈ {v,≡})
with T1 |= X1 v Y , T1 |= r v s for some

s ∈ Σ ∩ NR do

6 M→∃r.Z := {∅}
7 for every Y ′ ./2 ∃r′.Z′ ∈ T2 (./2∈{v,≡})

with T2 |= X2 v Y ′ and T2 |= r′ v s for

every s ∈ { s′ ∈ Σ ∩ NR | T1 |= r v s′ }
and 〈T1, Z〉 ∼→Σ 〈T2, Z′〉 do

8 M→r′ := {∅}
9 for every s ∈ Σ ∩ NR with T1 |= r v s

do

10 M→r′ := M→r′ ⊗ JustT2(r′ v s)
11 M→Z′ := Cover→(T1, Z,Σ, T2, Z′)
12 M→∃r.Z := M→∃r.Z ∪

(
JustT2(X2 v Y ′)

⊗ {{Y ′ ./2 ∃r′.Z′}} ⊗M→r′ ⊗M→Z′
)

13 M→(X1,X2)
:= M→(X1,X2)

⊗M→∃r.Z
14 return M→(X1,X2)

Algorithm 3: Computing a Cover of all Sub-

sumee Justifications

1 function Covercq
← (T1, X1, Σ, T2, X2, ζ)

2 if X1 is not Σ-entailed w.r.t. T1 then

3 return {∅}
4 M←(X1,X2)

:= CoverNC← (T1, X1, Σ, T2, X2, ζ)

5 if X1 is not complex Σ-entailed in T1 then

6 return M←(X1,X2)

7 if X1 ≡ ∃r.Y ∈ T1, and r, Y are Σ-entailed

w.r.t. T1 then

8 M←(X1,X2)
:=

M←(X1,X2)
⊗Cover∃←(T1, X1, Σ, T2, X2, ζ)

9 else if X1 ≡ Y1 u . . . u Ym ∈ T1 then

10 M←(X1,X2)
:=

M←(X1,X2)
⊗Coveru←(T1, X1, Σ, T2, X2, ζ)

11 return Minimise⊆(M←(X1,X2)
)

Algorithm 4: Computing a Cover of all Sub-

sumee Projection Justifications (S←NC
)

1 function CoverNC← (T1, X1, Σ, T2, X2, ζ)
2 M←(X1,X2)

:= {∅}
3 for every B ∈ Σζ such that T1 |= B v X1 do
4 for every X2 ∈ non-conjT2(X1) such that

ζ = ε or T2 |= ran(ζ) v X2 do
5 M←(X1,X2)

:= M←(X1,X2)
⊗ JustT2(B v X2)

6 return M←(X1,X2)

Algorithm 5: Computing a Cover of all Sub-

sumee Projection Justifications (S←∃ )

1 function Cover∃← (T1, X1, Σ, T2, X2, ζ)
2 let αX1 := X1 ≡ ∃r.Y1 ∈ T1
3 M←(X1,X2)

:= {max-tree uT2(X2)}
4 for every s ∈ Σ ∩ NR such that T1 |= s v r

do
5 for every X ′2 ∈ non-conjT2(X2) such that

ζ 6= ε implies T2 6|= ran(ζ) v X ′2 and
T2 6|= dom(s) v X ′2 do

6 let αX′
2

:= X ′2 ≡ ∃r′.Y ′2 ∈ T2
M←Y ′

2
:= Covercq

←(T1, Y1, Σ, T2, Y ′2 , s)
M←(X1,X2)

:= M←(X1,X2)

⊗
(
{{αX′

2
}} ⊗ JustT2(s v r)⊗M←Y ′

2

)
7 return M←(X1,X2)

Algorithm 6: Computing a Cover of all Sub-

sumee Justifications (S←u )

1 function Coveru← (T1, X1, Σ, T2, X2, ζ)

2 let αX1 := X1 ≡ Y1 u . . . u Ym ∈ T1
3 M←(X1,X2)

:= ∅
4 for every Γ ∈ DefForestuT2(X2) do

5 let δΓ := { def uT2(X ′) | X ′ ∈
leaves(Γ ) ∩ def uT2 }

6 M←Γ := {Γ}
7 for every X ′2 ∈ leaves(Γ ) such that ζ = ε

or T2 6|= ran(ζ) v X ′2 do

8 M←X′
2

:= ∅
9 for every X ′1 ∈ non-conjT1(X1) such

that ζ = ε or T2 6|= ran(ζ) v X ′1 do

10 if 〈T1, X ′1〉 ∼←Σ,ζ 〈T2 \ δΓ , X ′2〉 then
11 M←X′

2
:= M←X′

2
∪

Covercq
←(T1, X ′1, Σ, T2 \ δΓ , X ′2, ε)

12 M←Γ := M←Γ ⊗M←X′
2

13 M←(X1,X2)
:= M←(X1,X2)

∪M←Γ
14 return M←(X1,X2)

Algorithm 7: Computing a Cover of all Sub-

sumption Justifications for Role Inclusions

1 function CoverR (T1, Σ, T2)

2 M = {∅}
3 for every r, s ∈ Σ ∩ NR such that

T1 |= r v s do

4 M := M⊗ JustT2(r v s)
5 return Minimise⊆(M)

Fig. 1. Algorithms of computing all subsumer and subsumee justifications



The existence of axiom αX1
:= X1 ≡ ∃r.Y1 ∈ T1 in Line 2 of Algorithm 5 is

guaranteed by Line 7 of Algorithm 3. The axiom αX′
2

:= X ′2 ≡ ∃r′.Y ′2 ∈ T2 in
Line 6 of Algorithm 5 exists as we assume thatX2 in T2 “subsumee-simulates”X1

in T1. Moreover, there is at most one axiom αX1 ∈ T1 and at most one αX′
2
∈ T2

as T1 and T2 are terminologies. The concept name X2 may be defined as a
conjunction in T2 whose conjuncts in turn may also be defined as a conjunction
in T2 and so forth. In Line 3 all axioms forming the maximal resulting definitorial
conjunctive tree are collected.

For the next algorithm, we define def uT := {X ∈ sigNC(T ) | X ≡ Y1u. . .uYn ∈
T } to be the set of concept names that are conjunctively defined in T . For every
X ∈ def uT , we set def uT (X) := α, where α = X ≡ Y1 u . . . u Yn ∈ T .

The axiom αX1
:= X1 ≡ Y1 u . . . u Ym ∈ T1 in Line 2 of Algorithm 6

is guaranteed by Line 9 of Algorithm 3. In case X2 is defined as a conjunc-
tion in T2, the pair consisting of T2 containing only a partial conjunctive tree
rooted at X2 and X2 needs to be considered to be sufficient to “subsumee simu-
late” X1 in T1. Therefore Algorithm 3 considers every partial conjunctive tree Γ
from DefForestuT2(X2) in Line 4 and removes the axioms in δΓ connecting the
leaves of Γ with the remaining conjunctive tree from T2 in lines 10 and 11.

The following theorem shows that Algorithm 3 indeed computes a cover of
the set of subsumee modules. Thus every subsumee justification is guaranteed
to be among the computed sets of axioms.

Theorem 8. Let χ = 〈T1, ϕ1, Σ, T2, ϕ2〉 and ϕ1, ϕ2 ∈ (Σ ∩ NC) ∪ Σdom ∪ Σran.
Additionally, let M := Covercq

←(T1, ϕ1, Σ, T2, ϕ2, ε). If T1 ∼←Σ T2, then M is the
set of all subsumee justifications under χ.

The number of (minimal) projection justifications depends on T1, T2 and Σ.
In general, this number is bounded by an exponential in the size of the termi-
nologies. The simulation checks can be performed in polynomial time [11, 23].
Our algorithm for computing projection justifications, therefore, runs in time
exponential in the size of the input.

6 Conclusion

We introduce the notion of projection module for conjunctive queries as a subset
of an ontology capturing the knowledge about a given signature as specified in a
reference ontology. Here knowledge about a signature means the set of entailed
conjunctive queries about the signature. This allows comparing ontologies in a
more fine-grained fashion compared to merely extracting modules. Projection
modules enable us to check how knowledge is implemented in terms of axioms
in different ontologies. In particular, we can verify that and how specifications
as defined in reference ontologies have been realised. We have presented algo-
rithms for computing projection modules of acyclic ELHr-terminologies w.r.t.
conjunctive queries. Similar algorithms can be used to deal with projection mod-
ules for concept subsumption queries and instance queries. We expect that the
algorithms can be extended to deal with cyclic terminologies and even general
ELHr-TBoxes.
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