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Abstract. Description Logics (DLs) supporting uncertainty are not as
well studied and developed as their crisp counterparts, thereby limiting
their practical use in real world domains. The Bayesian DL BEL and its
extensions have been introduced to deal with uncertain knowledge with-
out assuming (probabilistic) independence between axioms. In this paper
we combine the classical DLALC with Bayesian Networks to define a new
DL known as BALC. BALC includes a solution to the consistency check-
ing problem and changes to the tableaux algorithm that are not a part of
BEL. Furthermore, BALC also supports probabilistic assertional infor-
mation which was not studied for BEL. We present algorithms for four
categories of reasoning problems for our logic; two versions of concept
satisfiability (referred to as total concept satisfiability and partial concept
satisfiability respectively), knowledge base consistency, subsumption, and
instance checking. We show that all reasoning problems in BALC are in
the same complexity class as their classical variants, provided that the
size of the Bayesian Network is included in the size of the knowledge
base.

1 Introduction

Description Logics (DLs) [1] supporting uncertainty are currently not as ma-
ture and developed as their crisp conterparts. Moreover, many of the existing
approaches for handling uncertainty do not consider the meta-logical relations
between pieces of knowledge that is observed in contextual knowledge. The lack
of mature probabilistic reasoning services limits the application of DLs in many
real world domains, which often require reasoning about uncertain information.
As a simple example, when planning free time activities, the weather is often a
very real consideration. The kind of activities that are pleasant in poor weather
are often very different from summer activities. As such, building an ontology
that models activities will be quite difficult. However, considering the weather
as a context in which different pieces of knowledge hold simplifies this task. For
instance, the axiom

(Swimming v Fun)Sunny (1)

intuitively states that Swimming is Fun when the weather is Sunny. Impor-
tantly this axiom states nothing about the relation between swimming and fun
when the context sunny does not hold. In other words, the axiom (1) expresses



that if it is Sunny then Swimming is Fun. However, that is not to say that
Swimming is always fun, nor that the lack of sun takes the fun out of swim-
ming. By attaching probabilities to the contexts we are able to reason about
how probable it is that an activity will be fun. Furthermore, if we make these
probabilities conditional then we can use our knowledge of the world in these
queries.

In a step towards reasoning with knowledge dependent on uncertain contexts,
we study the Bayesian Description Logic BALC. BALC is a contextual Bayesian
Description Logic based on the existing DL BEL and other Bayesian ontology
languages [5, 6]. Unlike other families of probabilistic DLs (see e.g. [10] for a
survey), Bayesian DLs do not directly encode the probabilities that concepts or
roles are related, nor do they require independence assumptions between the dif-
ferent axioms in a knowledge base. Instead axioms and assertions are annotated
with an optional context in which they are required to hold. The probability of
these contexts holding is then represented using a Bayesian Network (BN). This
gives Bayesian DLs the ability to perform conditional probabilistic reasoning.
In terms of the underlying logic, our approach is similar to [12]. However, con-
trary to [12], we do not assume independence between the different axioms, but
rather describe their joint probability distribution with the help of the contextual
knowledge.

2 BALC

Bayesian networks (BNs) are graphical models capable of representing the joint
probability distribution of several discrete random variables in a compact man-
ner. Given a random variable X, we denote as val(X) the set of values that X
can take. For x ∈ val(X), we denote as X = x the valuation of X taking the
value x. This notation is extended to sets of variables in the obvious way. Given
a set of random variables V , a world ω is a set of valuations containing exactly
one valuation for every random variable X ∈ V . A V -literal is an ordered pair of
the form (Xi, x), where Xi ∈ V and x ∈ val(Xi). The name literal refers to them
generalizing Boolean literals which are often denoted as x or ¬x for the random
variable X. For simplicity, in this paper we will often use the notation X for
(X,T ) and ¬X for (X,F ). A V -context is any set of V -literals. It is consistent
if it contains at most one literal for each random variable. We will often call
V -contexts primitive contexts.

Definition 1 (Bayesian Network). A Bayesian network is a pair B = (G,Θ)
where G = (V,E) is a directed acyclic graph and Θ is a set of conditional prob-
ability distributions for every variable X ∈ V given its parents π(X) on G:

Θ = {P (X = x|π(X) = x′) | X ∈ V }.

BALC is a probabilistic extension of the classical DL ALC. The concept language
for BALC is the same as for ALC, but axioms are considered to hold only in
a given context. This is expressed by annotations given to these axioms, as
formalized next.



Definition 2 (KB). Let V be a finite set of discrete random variables. A
V -restricted general concept inclusion (V -GCI) is an expression of the form
(C v D)κ where C and D are ALC concepts and κ is a V -context. A V -TBox is
a finite set of V -GCIs. A V -restricted assertion (V -assertion) is an expression
of the form C(x)κ or r(x, y)κ where C is an ALC concept, r is an ALC role
name, x, y are individual names, and κ is a V -context. A V -ABox is a finite set
of V -assertions. A BALC knowledge base (KB) over V is a triple K = (T ,A,B)
where B is a BN over V , T is a V -TBox, and A is a V -ABox.

Note that this definition does not prevent the encoding of classical statements.
Axioms or assertions annotated with the empty set will hold in all contexts. We
abbreviate (C v D)∅ as (C v D) and C(x)∅ as C(x). This means that every
ALC KB is also a BALC KB. This fact will be useful in the following sections to
provide lower bounds for the complexity of reasoning in BALC. When it is clear
from the context, we will omit the V prefix and refer only to literals, contexts,
GCIs, assertions, ABoxes, and TBoxes.
BALC uses a model-theoretic semantics. To formally define the notion of a

model of a BALC KB, we first introduce two different types of interpretations;
V -interpretations and probabilistic interpretations. V -interpretations should be
thought of as an interpretation linked to a specific Bayesian world, while prob-
abilistic interpretations take into account all worlds and their likelihood simul-
taneously.

Definition 3 (V -interpretation). A V -interpretation is a tuple of the form
V = (∆V , ·V , vV) where ∆V is a non-empty set called the domain, vV is a val-
uation function vV : V → ∪X∈V val(X) such that vV(X) ∈ val(X), and ·V is
an interpretation function that maps every concept name C to a set CV ⊆ ∆V

and every role name r to a binary relation rV ⊆ ∆V ×∆V . The interpretation
function vV is extended to complex ALC concepts as usual.

Given a valuation function vV , a Bayesian world ω, and a context κ we
denote vV = ω when vV assigns to each random variable the same value as it
has in ω; vV |= κ when for all (X,x) ∈ κ we have that vV(X) = x; and ω |= κ
there is ω = vV such that vV |= κ.

The V -interpretation V is a model of the GCI (C v D)κ, (V |= (C v D)κ),
iff (i) vV 6|= κ, or (ii) CV ⊆ DV . V is a model of the assertion C(x)κ (respectively
r(x, y)κ), denoted as V |= C(x)κ (respectively V |= r(x, y)κ), iff (i) vV 6|= κ, or
(ii) xV ∈ CV (respectively (xV , yV) ∈ rV). It is a model of the TBox T (ABox
A) iff it is a model of all the GCIs in T (assertions in A). It is a model of the
knowledge base K iff it is a model of both T and A.

V -interpretations focus on only a single world, but a KB has information
about the uncertainty of being in one world or another. Probabilistic interpreta-
tions combine multiple V -interpretations and the probability distribution from
the BN to give information about the uncertainty of some events.

Definition 4 (Probabilistic interpretation). A probabilistic interpretation
is a pair of the form P = (J ,PJ ), where J is a finite set of V -interpretations



and PJ is a probability distribution over J such that PJ (V) > 0 for all V ∈ J .
The probabilistic interpretation P is a model of the GCI (C v D)κ, denoted as
P |= (C v D)κ, iff every V ∈ J is a model of (C v D)κ. P is a model of the
TBox T iff every V ∈ J is a model of T . P is a model of the assertion C(x)κ

(respectively r(x, y)κ), denoted as P |= C(x)κ (resp. P |= r(x, y)κ), iff every
V ∈ J is a model of C(x)κ (resp. r(x, y)κ). P is a model of the ABox A iff
every V ∈ J is a model of A.

The distribution PJ is consistent with the BN B if for every possible world
ω of the variables in V it holds that∑

V∈J ,vV=ω

PJ(V) = P (ω).

The probabilistic interpretation P is a model of the KB K = (T ,A,B) iff it is a
(probabilistic) model of both T and A, and is consistent with B.

BALC allows for the notion of a complex context and a context language. Due
to space limitations, we provide only the basic definitions required for the pre-
sentation of the reasoning problems in BALC. For a thorough explanation, the
interested reader can consult [4].

A complex context φ is a finite non-empty set of primitive contexts. Note that
every primitive context can also be seen as a complex one by simply enclosing
primitive context in an additional set; e.g., the primitive context κ corresponds
to the complex context {κ}. Given a valuation function vV and a complex context
φ = {α1, . . . , αn} we say that vV |= φ iff vV satisfies at least one αi ∈ φ. An
immediate consequence of this definition is that if vV |= κ then vV |= {κ}. Thus,
in the following we assume that all contexts are in complex form unless explicitly
stated otherwise. Finally we say that φ |= ψ iff for all vV |= φ then vV |= ψ, or
alternatively φ |= ψ iff for all Bayesian worlds ω such that ω |= φ then ω |= ψ.

Given complex contexts φ = {α1, . . . , αn} and ψ = {β1, . . . , βm} we define
the operations

φ ∨ ψ := φ ∪ ψ, and

φ ∧ ψ :=
⋃

α∈φ,β∈ψ

{α ∪ β} = {α ∪ β|α ∈ φ, β ∈ ψ}.

That is we define operations that fulfill the roles of propositional disjunction
(∨) and propositional conjunction (∧), where disjunction has the property that
either one of the two contexts holds and conjunction requires that both hold.

Lemma 5. Given complex contexts φ and ψ, we have

1. ω |= φ ∨ ψ iff ω |= φ or ω |= ψ, and
2. ω |= φ ∧ ψ iff ω |= φ and ω |= ψ.

Two important special complex contexts are top (>) and bottom (⊥), which are
defined such that for all valuation functions vV , vV |= > and vV 6|=⊥. If there



are n consistent primitive contexts these can be defined as > := {α1, . . . , αn}
and ⊥:= κ, where κ is any inconsistent context.

In the next section introduce and study the relevant decision and computa-
tion problems for our logic.

3 Total Concept Satisfiability and Consistency

As a first decision problem, we consider concept satisfiability. Generalizing from
the classical case, we say that a concept C is totally satisfiable if it is satisfiable
in all the contexts of a knowledge base that have positive probability.

Definition 6 (Total concept satisfiability). A concept C is totally satisfiable
with respect to a BALC KB K iff there exists a probabilistic model P = (J ,PJ )
of K s.t. CV 6= ∅ for all V ∈ J .

Notice that in the case that K is a classical ALC KB, then total concept satisfi-
ability corresponds precisely to concept satisfiability.

When reasoning about BALC KBs it is useful to refer to the specific TBox
(or ABox) associated with a specific Bayesian world ω; i.e., the TBox (or ABox)
containing only the axioms that hold in ω. We call this reduced TBox (or ABox)
a restriction to the world ω, denoted as Tω (or respectively Aω). Formally, if
K = (T ,A,B) is a BALC KB, and ω a world, the restriction of T and A to a
world ω are defined as

Tω := {(C v D) | (C v D)κ ∈ T , ω |= κ}
Aω := {α | ακ ∈ A, α ∈ {C(x), r(x, y)}, ω |= κ}.

One can think of total concept satisfiability as requiring that a concept be clas-
sically satisfiable in each restricted knowledge base (Tω, Aω) where ω is a prob-
abilistic world with positive probability.

Theorem 7. Given a BALC KB K, the concept C is not totally satisfiable in
K iff there exists a world ω such that P (ω) > 0 and C is unsatisfiable in the
ALC KB (Tω,Aω).

This theorem suggests a process for verifying total satisfiability. In fact, it leads
to a tight complexity bound for this problem.

Corollary 8. Total satisfiability is ExpTime-complete.

Proof. The lower bound is a direct consequence from the fact that classical
concept satisfiability on a classical ALC KB is a special case of this problem,
and is ExpTime-hard [13]. For the upper bound, an exponential time algorithm
that solves total satisfiability enumerates all (exponentially many) worlds, and
for each such world ω it verifies that (i) P (ω) > 0 (in polynomial space [9]) and
that C is satisfiable in (Tω,Aω) (in exponential time [7]). ut



u-rule if 1. (C1 u C2)(x)φ ∈ A, and 2. either C1(x)φ or C2(x)φ is A-insertable

then A′ := (A⊕ C1(x)φ)⊕ C2(x)φ.

t-rule if 1. (C1 t C2)(x)φ ∈ A, and 2. both C1(x)φ and C2(x)φ are A-insertable

then A′ := A⊕ C1(x)φ, A′′ := A⊕ C2(x)φ.

∃1-rule if (∃R.C)(x)φ ∈ A, and there exists α ∈ φ such that (∃R.C)(x)α is A-insertable
then A′ := A⊕ (∃R.C)(x)α

∃2-rule if (∃R.C)(x)α ∈ A, there is no z such that both R(x, z)α and C(z)α are not
A-insertable, and x is not blocked

then A′ := (A ⊕ R(x, y)α) ⊕ C(y)α, where y is a new individual name and y > y′

for all individual names y′ ∈ A.

∀-rule if 1. {(∀R.C)(x)φ, R(x, y)ψ} ⊆ A, and 2. C(y)φ∧ψ is A-insertable

then A′ := A⊕ C(y)φ∧ψ

v-rule if 1. (C v D)φ ∈ T , E(x)ψ ∈ A, and 2. (¬C tD)(x)φ∧ψ is A-insertable

then A′ := A⊕ (¬C tD)(x)φ∧ψ

Fig. 1. Expansion rules for constructing φCK

In the following, we provide a different algorithm that is also based on the idea
of Theorem 7, but is more goal-directed. Before providing this algorithm, we
must introduce some additional terminology.

We use φCK to denote the context that describes all worlds that lead to re-
stricted BALC KB where C is not satisfiable. That is ω |= φCK iff C is unsatisfiable
in (Tω,Aω). Moreover, φB is context that describes all worlds with probability
greater than 0 in the BN; i.e., if ω |= φB then P (ω) > 0. Theorem 7 suggests
that C is not totally satisfiable if there is a world that models both φCK and φB.
This is formalized in the following theorem.

Theorem 9. The concept C is not totally satisfiable w.r.t. the KB K iff φCK∧φB
is satisfiable.

We need to provide a method for computing the formulas φCK and φB. For the
former, we present a variant of the glass-box approach for so-called axiom pin-
pointing [3, 8, 11], originally based on the ideas from [2]. The idea for this ap-
proach is to modify the standard tableaux algorithm for ALC, to keep track of
the contexts in which the derived elements in the tableau hold. The modified
tableaux rules are presented in Figure 1. Understanding these rules requires some
additional notions that we present next.

An assertion C(x)φ is A-insertable in an ABox A iff whenever there is a ψ
such that C(x)ψ ∈ A, then φ 6|= ψ. In the expansion rules ⊕ is used as shorthand
for A ⊕ C(x)φ := (A \ {C(x)ψ}) ∪ {C(x)φ∨ψ} if C(x)ψ ∈ A and A ∪ {C(x)φ}
otherwise; and A⊕r(x, y)φ := (A\{r(x, y)ψ})∪{r(x, y)φ∨ψ} if r(x, y)ψ ∈ A and
A∪ {r(x, y)φ} otherwise. The individual x is an ancestor of y if there is a chain
of role assertions connecting x to y. The individual x blocks y iff x is an ancestor
of y and for every C(y)ψ ∈ A, it is the case that C(x)φ ∈ A for some φ such that
ψ |= φ. An ABox contains a clash if it contains contradictory assertions. A rule
application refers to applying one of the expansions rules to an ABox in order to



generate a new ABox, and an ABox is fully expanded if none of the expansions
rules can be applied to it.

Algorithm for finding φC
K: Given a BALC knowledge base K = (T ,A,B) and

a concept C we start by asserting that there exists an instance of C by adding
C(x)>, where x is a fresh individual name to A. We then apply the expansion
rules in Figure 1 until all ABoxes are fully expanded. If at least one clash-free
ABox is found, then return φT =⊥.

If at least one clash is found in each completely expanded ABox then we
know that there exists some valuation ω s.t. (Tω,Aω) is inconsistent. We now
construct and return a context encoding these valuations. We do this by selecting
a context representing a clash from each final ABox and then combining these
contexts. Suppose A1 . . .An are the completely expanded ABoxes then

φCAi = ∨C(x)φ,¬C(x)ψ∈Ai(φ ∧ ψ)

is the context encoding all clashes for the i-th final ABox. After constructing
such a context for each final ABox we combine them into the context

φCK = ∧ni=1φ
C
Ai .

This construction algorithm is correct.

Theorem 10. The algorithm for finding φCK terminates and is sound and com-
plete.

Finally, we have the following corollary that puts together all previously pre-
sented work to determine total concept satisfiability. Once φCK has been con-
structed we can determine whether K is totally concept unsatisfiable for C by
iterating over all worlds ω and calculating P (ω).

Corollary 11. C is not totally satisfiable in K iff there is a world ω |= φCK such
that P (ω) > 0.

As is usual for DLs we say that a BALC knowledge base is consistent if,
and only if, it has a (probabilistic) model. We will often write P |= K when a
probabilistic interpretation P is a model of K.

Recall that in our definition of a V -interpretation we require that the do-
main ∆V be non-empty. This leads us to the obvious consequence that a BALC
knowledge base is only consistent if > is totally satisfiable.

Theorem 12. A BALC knowledge base K is consistent if, and only if, > is
totally satisfiable in K.

This theorem shows that the BALC consistency problem can be reduced to an
instance of the total concept satisfiability problem. Leading to the following
lemma.

Lemma 13 (Complexity of Consistency). Checking the consistency of a
BALC KB is decidable in time O(2||K||). In fact, it is ExpTime-complete.



4 Subsumption

We now adapt the classical definition of subsumption for BALC in order to take
contexts into account. We do this by requiring that a concept subsumption hold
only in the class of worlds that are relevant for a given context.

Definition 14 (Contextual Subsumption). Let K = (T ,A,B) be a BALC
KB, C,D concepts, and κ a context. C is contextually subsumed by D in κ w.r.t.
K, denoted as K |= (C v D)κ, if every probabilistic model of K is a probabilistic
model of (C v D)κ.

In our setting, however, contexts are used as aids for expressing the uncertainty
of different consequences (e.g., subsumptions) to hold. Hence, we introduce the
notion of the probability of a subsumption.

Definition 15 (Probability of a Subsumption). Given the probabilistic model
P = (J , PJ ) of the KB K, and the concepts C,D, the probability of C v D is

PP((C v D)κ) =
∑

V∈J ,V|=(CvD)κ

PJ (V).

The probability of (C v D)κ w.r.t. K is

PK((C v D)κ) = infP|=KPP((C v D)κ).

That is, the probability of a subsumption in a specific model is the sum of the
probabilities of the worlds in which C is subsumed by D in context κ; notice
that this trivially includes all worlds where κ does not hold. In the case where K
is inconsistent we define the probability of all subsumptions as 1 to ensure our
definition is consistent with general probability theory (recall that inf(∅) = ∞
in general).

Note that the relationship between the contextual subsumption problem and
the probability of a subsumption is as one would expect. Namely we have that
a KB entails a contextual subsumption iff the probability of the subsumption in
the KB is 1.

Theorem 16. Given a KB K, concepts C and D, and a context κ, it holds that:

K |= (C v D)φ iff PK((C v D)φ) = 1.

This is convenient as it provides a method of reducing the contextual subsump-
tion problem to calculating the probability of a subsumption. The following
theorem provides a means of calculating this probability.

Theorem 17. For a consistent KB K = (T ,A,B), a contextual subsumption
(C v D)φ, and the extended KB K′ = (T ,A ∪ {C(x)φ,¬D(x)φ},B) we have

PK((C v D)φ) =
∑

ω|=φK′

P (ω) + 1− P (φ).



Furthermore, this approach runs in exponential time in the size of the input KB
(assuming that the size of the BN; that is, the number of contexts, is included
in the input).

Theorem 18. Given a knowledge base K we can calculate the probability of a
contextual subsumption in time O(exp(||K||+ |V |)).

5 Partial Concept Satisfiability

Partial concept satisfiability is a weaker form of satisfiability in BALC that only
requires the input concept to have a non-empty interpretation in some possible
world. We formally define this notion next.

Definition 19 (Partial Concept Satisfiability). The concept C is partially
satisfiable with respect to the BALC KB K iff there exists a probabilistic model
P = (J , PJ ) of K and a V -interpretation V ∈ J , with PJ (V) > 0, and CV 6= ∅.
Clearly a concept cannot be even partially satisfiable if it is necessarily empty
in all worlds. This yields the following theorem.

Theorem 20. A concept C is partially satisfiable with respect to a BALC KB
K iff K 6|= C v⊥.

We complete this analysis by using the fact that if a KB is s.t. PK((C v⊥)>) = 1
then there exist no model which has a V -interpretation where C is not empty.

Theorem 21. C is not partially satisfiable in K iff P ((C v⊥)>) = 1.

Next, we define the probability of partial satisfiability in a similar way to the
probability of a subsumption. That is, we first define the probability of partial
satisfiability for a concept C in a probabilistic interpretation and then use this
to define it in the context of a knowledge base.

Definition 22 (Probability of Partial Satisfiability). Given a concept C
and a KB K, the probability of C being partially satisfiable in a probabilistic
model P of K is

PP(C) :=
∑

V∈J ,V6|=(Cv⊥)>

PJ (V).

The probability of C being partially satisfiable in K is

PK(C) := sup
P|=K

(PP(C)).

We can reduce this problem to subsumption, in particular the probability of a
subsumption.

Theorem 23. C is partially satisfiable in K with probability 1−PK((C v⊥)>).

Overall, this means that we can deal with this problem, within the same com-
plexity bounds as in classical reasoning in ALC, as long as we are able to handle
total concept satisfiability, and the probability that it holds. Thus, we have al-
ready developed a method for solving it. We now turn our attention to instance
checking, and the influence of the ABox in reasoning.



6 Instance Checking

We consider a probabilistic extension to the classical instance checking problem.
In BALC we call this problem probabilistic instance checking and we define both
a decision problem problem and probability calculation for it next.

Definition 24 (Instance). Given an individual name a, a concept C, a prim-
itive context φ, and a KB K, we say that a is an instance of C in φ for K,
written as K |= C(x)φ, iff for all probabilistic models P = (J , PJ ) of K it holds
that aV ∈ CV for all V ∈ J with vV |= φ.

Note that if the context associated with the instance check is > this definition
recalls the classical case. In this case it would be required that the named in-
dividual be a member of the concept in all cases (in all worlds with positive
probability) which is exactly what would be verified in a classical KB which has
only one context with probability 1. We next show how we go about providing
a procedure that solves this problem.

Theorem 25. Given an individual name a, a concept C, a context φ, and a KB
K = (T ,A,B), a is an instance of C in φ iff PK′((D v C)φ) = 1 where D is a
new concept name not in T and K′ = (T ,A ∪ {D(a)φ},B).

Since we have reduced instance checking to probabilistic subsumption we have
the result that instance checking is in the same complexity class as probabilistic
subsumption. This gives us the following lemma.

Lemma 26. Probabilistic instance checking in a knowledge base K is in the
complexity class O(2||K||+|V |).

We next formalize the probability calculation for the instance checking problem.
This is done in a very similar way to the probability of a subsumption.

Definition 27 (probability of an instance). The probability of an instance
in a probabilistic model P = (J , PJ ) of a KB K is

PP(C(x)φ) =
∑

V∈J ,V|=C(x)φ

PJ (V).

The probability instance w.r.t. a KB K is

PK(C(x)φ) = inf
K|=P

PP(C(x)φ).

The probability of all instance checks for an inconsistent KB is always 1 to keep
our definitions consistent with probability theory.

Similar to the algorithm for solving the decision problem we now show that the
probability calculation can be reduced to subsumption.



Theorem 28. Given the individual name a, concept C, primitive context φ, and
KB K = (T ,A,B), a is an instance of C in φ with probability PK′((D v C)φ)
where D is a new concept name not in T and K′ = (T ,A ∪ {D(a)φ},B).

From this result we again see that calculating the probability of an instance can
be reduced in constant time to probabilistic subsumption. Since we only add
a single statement to the ABox of the knowledge base the input size does not
change meaningfully post reduction.

Lemma 29. The probability of an instance in a KB K can be computed in time
O(2||K||+|V |).

7 Conclusions

We have presented a new probabilistic extension of ALC based on the ideas of
Bayesian ontology languages. In contrast to previous work that focused mainly
on light-weight DLs, in our logic it is possible to express inconsistent knowledge,
which requires the study of new reasoning problems. We developed a glass-box
tableaux-based algorithm for finding out the context in which a given conse-
quence holds. Using this information, we could also compute the probability of
the consequence itself.

We showed, using the properties of the semantics of BALC that all the rea-
soning problems studied remain ExpTime-complete, just as the complexity of
reasoning in classical ALC. Our results also hint at possible optimizations that
can be exploited in an attempt to develop an efficient reasoner for our logic. In
particular, we have shown that variations of the well-known tableau algorithm
for ALC can be used. As future work, we plan to study these optimizations in
detail, and analyse their applicability in practice.

Another interesting line of work would be to implement our ideas, and com-
pare the resulting tool against other probabilistic DL reasoners. In particular, it
would be interesting to compare against the tools from [14], which are also based
on an extension of the tableaux algorithm, and use probabilistic semantics that
are very similar to ours. Although a direct comparison would be unfair, given
that the semantics from [14] are based on very strong independence assumptions,
it should be possible to at least obtain a general idea of the behaviour of the
two methods.
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