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Abstract. Fuzzy Description Logics are a family of logics which allow
the representation of (and the reasoning within) structured knowledge
affected by uncertainty and vagueness. They were born to overcome the
limitations of classical Description Logics when dealing with such kind
of knowledge, but they bring out some new challenges, requiring an ap-
propriate fuzzy language to be agreed and needing practical and highly
optimized implementations of the reasoning algorithms. In the current
paper we face these problems by presenting a reasoning preserving proce-
dure to obtain a crisp representation for a fuzzy extension of SHOIN ,
which makes possible to reuse a crisp representation language as well
as currently available reasoners, which have demonstrated a very good
performance in practice. As an additional contribution, we define the
syntax and semantics of a novel fuzzy version of the nominal construct
and allow to reason within fuzzy general concept inclusions.

1 Introduction

Ontologies [1] are a core element in the layered architecture of the Semantic
Web [2]. Description Logics (DLs for short) [3] are a family of logics for repre-
senting structured knowledge. The name of each logic is composed by some labels
which identify the constructs of the logic. DLs have been proved to be very useful
as ontology languages [4]. As it has been widely pointed out, classical ontolo-
gies and DLs are not appropriate to handle uncertain knowledge [5, 6] and since
uncertainty is inherent to a lot of real-world application domains, the Semantic
Web will not be fully operative as long as it does not provide means to manage
it. A well studied solution is to extend DLs with fuzzy sets theory [7], producing
fuzzy DLs (denoted with an f preceding the name of the corresponding DL and
a subscript denoting the family of fuzzy operators considered e.g. fKDSHOIN
uses maximum t-conorm, minimum t-norm, and Kleene-Dienes implication).
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Nowadays, the World Wide Web Consortium (W3C) standard for ontology
representation is OWL Web Ontology Language1, a language comprising three
sublanguages of increasing expressive power: OWL Lite, OWL DL and OWL Full
(being OWL DL the most used level and nearly equivalent to SHOIN (D) [8]
but without customised datatypes). In order to deal with uncertain knowledge,
OWL may be extended to a fuzzy DL-based language e.g. FuzzyOWL [6], with
the drawback that the large number of resources available (e.g. editors, reason-
ers or ontologies to be imported) should be adapted. Furthermore, reasoning
within expressive DLs has a very high worst-case complexity (e.g. NPspace in
SHOIN ) and, consequently, there exists a significant gap between the design
of a decision procedure and the achievement of a practical implementation [9]
(as a matter of fact, some of the OWL DL reasoners used in practice do not
support full SHOIN (D) e.g. Racer [10] and FaCT [11]). Regarding fuzzy DLs,
there does not exist any implemented reasoner for fSHOIN . A reasoner for
fSHIN (D) has been recently developed (fuzzyDL 2), but its efficiency is still
to be investigated. Moreover, the experience with crisp DLs ( [9]) induces us
to think that developing highly optimized implementations will be a hard task
where ad-hoc mechanisms should be used for every particular fuzzy DL.

An alternative way to obtain fuzzy ontologies facing these two problems is
i) to represent fuzzy DLs using crisp DLs and ii) to reduce reasoning within
fuzzy DLs to reasoning within crisp DLs. This way it would be possible to
translate them automatically into a crisp ontology language (e.g. OWL) and
to use currently available reasoners (e.g. Pellet [12]). Unfortunately, there does
not exist a lot of work following this line and the logics investigated are still far
from OWL DL: [13] shows a reasoning preserving procedure for fALCH, [14]
considers fALC with truth values taken from an uncertainty lattice and [15], a
restricted version of fALCQ (e.g. they do not allow to reason within a TBox).

On the other hand, current fuzzy DLs still present some limitations which
we think that should be overcome. Some works on fuzzy DLs deal with nominals
(named individuals) but they choose not to fuzzify the nominal construct arguing
that a fuzzy singleton set does not represent any real concept world [5, 6]. Hence,
only crisp concepts can be defined extensively, as nominals either have to fully
belong to them or not. Besides, although there have been proposed fuzzy general
concept inclusions (which allow to constrain the truth value of a general concept
inclusion or GCI) [5], current reasoning algorithms do not allow them.

Our work provides the following contributions. Firstly, we propose a differ-
ent definition of fSHOIN , including a fuzzy nominal construct and fuzzy GCIs.
Secondly, we reduce reasoning in fKDSHOIN to reasoning in SHOIN , extend-
ing [13]. To the very best of our knowledge, there does not exist any reasoning
algorithm dealing with such kind of fuzzy GCIs. The present paper is organized
as follows. In the next section, we describe our fuzzy extension of SHOIN .
Then, Sect. 3 shows how to reduce it into crisp SHOIN . Finally, in Sect. 4 we
set out some conclusions and ideas for future work.

1 http://www.w3.org/TR/owl-features
2 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html



2 Fuzzy SHOIN

In this section we define fSHOIN , which extends SHOIN to the fuzzy case
by letting (i) concepts denote fuzzy sets of individuals and (ii) roles denote fuzzy
binary relations between individuals. Our logic is similar to [5, 6], adding fuzzy
nominals and fuzzy GCIs. In fuzzy DLs most reasoning services are reducible to
fKB satisfiability [16], so here in after we will only consider this task.

Syntax. fSHOIN assumes three alphabets of symbols, for concepts, roles and
individuals. The concepts of the language (denoted C or D) can be built in-
ductively from atomic concepts (A), atomic roles (R), top concept >, bottom
concept ⊥, named individuals (oi) and simple roles (S)3 according to the follow-
ing syntax rule (where n, m are natural numbers, n ≥ 0,m > 0, αi ∈ [0, 1]):

C,D → A | (atomic concept)
> | (top concept)
⊥ | (bottom concept)

C uD | (concept conjunction)
C tD | (concept disjunction)
¬C | (concept negation)

∀R.C | (universal quantification)
∃R.C | (full existential quantification)

{(o1, α1), . . . , (om, αm)} | (nominals)
(≥ n S) | (at-least unqualified number restriction)
(≤ n S) (at-most unqualified number restriction)

If RA is an atomic role, complex roles are built using this syntax rule:

R → RA | R−

A fuzzy Knowledge Base (fKB) comprises two parts: the intensional knowl-
edge, i.e. general knowledge about the application domain (a fuzzy Terminolog-
ical Box or TBox KT and a fuzzy Role Box or RBox KR), and the extensional
knowledge, i.e. particular knowledge about some specific situation (a fuzzy As-
sertional Box or ABox KA with statements about individuals). A fuzzy ABox
fKA consists of a finite set of fuzzy assertions, which can be individual assertions
or constraints on the truth value of a concept or role assertion. An individual as-
sertion is either an inequality of individuals 〈a 6= b〉 or an equality of individuals
〈a = b〉 (they are necessary since we do not impose unique name assumption). A
constraint on the truth value of a concept or role assertion is an expression of the
form 〈Ψ ≥ α〉, 〈Ψ > β〉, 〈Φ ≤ β〉, 〈Φ < α〉, where Ψ is an assertion of the form
a : C or (a, b) : R, Φ is an assertion of the form a : C, α ∈ (0, 1] and β ∈ [0, 1)).

3 A simple role is a non transitive role not having transitive sub-roles i.e. R is a sub-role
of R′ if R v∗R′, where v∗ is the transitive-reflexive closure of v



Note that fuzzy assertions of the form 〈(a, b) : R ≤ β〉, 〈(a, b) : R < α〉 are not
allowed since they relate to negated roles, which are not part of SHOIN . A
fuzzy TBox fKT consists of a finite set of fuzzy terminological axioms. A fuzzy
terminological axiom is either a fuzzy GCI or a concept definition. A fuzzy GCI
constrains the truth value of a GCI i.e. it is an expression of the form 〈Ω ≥ α〉,
〈Ω > β〉, 〈Ω ≤ β〉 or 〈Ω < α〉, where Ω is a GCI of the form C v, α ∈ (0, 1] and
β ∈ [0, 1). We think that concept definitions should not be fuzzified, so C ≡ D
is an abbreviation of the pair of axioms 〈C v D ≥ 1〉 and 〈D v C ≥ 1〉. A fuzzy
RBox fKR consists of a finite set of fuzzy role axioms. A fuzzy role axiom is
either a fuzzy role inclusion R v R′, a fuzzy role definition R ≡ R′ (a short hand
for both R v R′ and R′ v R) or a transitive role axiom trans(R).

Semantics. A fuzzy interpretation I is a pair (∆I , ·I) consisting of a non
empty set ∆I (the interpretation domain) and a fuzzy interpretation function ·I
mapping every individual onto an element of ∆I , every concept C onto a function
CI : ∆I → [0, 1] and every role R onto a function RI : ∆I × ∆I → [0, 1]. CI

(resp. RI) is interpreted as the membership degree function of the fuzzy concept
C (resp. fuzzy rol R) w.r.t. I. CI(a) (resp. RI(a, b)) gives us the degree of being
the individual a an element of the fuzzy concept C (resp. the degree of being
(a, b) an element of the fuzzy role R) under the fuzzy interpretation I. The fuzzy
interpretation function is extended to complex concepts and roles as:

>I(a) = 1
⊥I(a) = 0

(C uD)I(a) = CI(a) ∧DI(a)
(C tD)I(a) = CI(a) ∨DI(a)

(¬C)I(a) = ¬CI(a)
(∀R.C)I(a) = infb∈∆I{RI(a, b) → CI(b)}
(∃R.C)I(a) = supb∈∆I{RI(a, b) ∧ CI(b)}

{(o1, α1), . . . , (om, αm)}I(a) = supi | a∈{oIi } αi

(≥ 0)I(a) = >I(a) = 1
(≥ m)I(a) = supb1,...,bm∈∆I [∧m

i=1S
I(a, bi)

∧
∧i<j{bi 6= bj}]

(≤ n S)I(a) = ¬(≥ n+1 S)I(a)
(R−)I(a, b) = RI(b, a)

We will shortly justify our decision of fuzzifying the nominal construct by
showing an example. Suppose we want to represent the concept of country where
German is a widely spoken language as C ≡ {germany, austria, switzerland}.
The classical semantics for the nominal construct is: {oi}I(a) = 1 if a ∈ {oIi }
or 0 otherwise. This semantics forces switzerland to fully belong to the concept
or not, despite of German-speaking community of Switzerland represents only
about two thirds of the total population of the country. On the contrary, our
proposal allows to define {(germany, 1), (austria, 1), (switzerland, 0.67)}, which
does represent a real-life concept. It is easy to see that our definition generalizes
the previous definition for the nominal construct, as {o1, . . . , om} is equivalent
to {(o1, 1), . . . , (om, 1)}.



A fuzzy interpretation I satisfies (is a model of):

– A fuzzy assertion 〈a : C ≥ α〉 iff CI(aI) ≥ α. Similar definitions can be
given for > β, ≤ β and < α.

– A fuzzy assertion 〈(a, b) : R ≥ α〉 iff RI(aI , bI) ≥ α. Similar definitions can
be given for > β, ≤ β and < α.

– An assertion 〈a 6= b〉 iff aI 6= bI (resp. 〈a = b〉 iff aI = bI). Note that we
consider individuals assertions to be crisp.

– A fuzzy GCI 〈C v D ≥ α〉 iff infa∈∆I{CI(a) → DI(a)} ≥ α. Similar
definitions can be given for > β, ≤ β and < α.

– A concept definition C ≡ D iff CI = DI .
– A role inclusion axiom R v R′ iff RI ⊆ R′I .
– A role definition axiom R ≡ R′ iff RI = R′I .
– An axiom trans(R) iff ∀a, b ∈ ∆I , RI(a, b) ≥ supc∈∆I RI(a, c) ∧RI(c, b).
– A fKB 〈fKA, fKT , fKR〉 iff it satisfies each element in KA, KT and KR.

The definition of fuzzy GCIs allows concept subsumption to hold to a certain
degree in [0, 1]. This does not hold for role inclusion axioms, which leads to
a certain asymmetry in the expressivity. While this is not too elegant, it is
a restriction imposed by the choice of the implication function, which would
require the subjacent DL to have negated roles and role disjunction. However,
for a higher practical utility, we have preferred to restrict ourselves to SHOIN ,
closer to the DL underlying OWL DL.

The following lemma shows that our definition of fSHOIN is a sound ex-
tension of crisp SHOIN :

Lemma 1. Fuzzy interpretations coincide with crisp interpretations if we re-
strict to the membership degrees of 0 and 1 [6].

Some properties. Here in after we will concentrate on fKDSHOIN , restrict-
ing ourselves to the minimum t-norm a ∧ b = min{a, b}, maximum t-conorm
a ∨ b = max{a, b},  Lukasiewicz negation ¬a = 1− a and the Kleene-Dienes im-
plication a → b = max{1 − a, b}. For instance, in the semantics of the at-least
unqualified number restriction, ∧i<j{bi 6= bj} means that there must exist n
distinct elements of the domain. The choice of the t-norm and the t-conorm will
be justified in Sect. 3. On the other hand, in fuzzy DLs it is very common to use
the Kleene-Dienes implication in the semantics of universal quantification, so for
the sake of coherence we have chosen to use it in the semantics of fuzzy GCIs as
well. Similarly as in [17], fKDSHOIN allows some sort of modus ponens over
concepts and roles, even with the new semantics of fuzzy GCIs:

Lemma 2. For α, β, γ ∈ [0, 1], α > 1 − β and ./= {≥, >}, the following prop-
erties are verified:

(i) 〈a : C ./ α〉 and 〈C v D ./ β〉 imply 〈a : D ≥ β〉.
(ii) 〈(a, b) : R ./ γ〉 and 〈R v R′〉 imply 〈(a, b) : R′ ./ γ〉.
(iii) 〈(a, b) : R ./ α〉 and 〈a : ∀R.C ./ β〉 imply 〈b : C ./ β〉.



Unfortunately, the use of Kleene-Dienes implication in the semantics of fuzzy
GCIs brings about two counter-intuitive effects. Firstly, a concept does not fully
subsume itself i.e. C v C ⇒ infa∈∆I max{1 − CI(a), CI(a)} = 0.5. Secondly,
crisp concept subsumption forces fuzzy concepts to be crisp i.e. 〈C v D ≥ 1〉 ⇒
infa∈∆I max{1 − CI(a), DI(a)} ≥ 1 which is true iff for each element of the
domain DI(a) = 1 or 1 − CI(a) ≥ 1 ⇒ CI(a) = 0. These problems point
out the need of further investigation involving alternative fuzzy operators. For
example, using a residuum based implications (see [18] for a refresh on fuzzy
operators) it is always true that a → b = 1 if a ≤ b, which would fix the first
problem; while using  Lukasiewicz implication (a → b = min{1, 1−a + b}) would
fix the second one.

3 A Crisp Representation for Fuzzy SHOIN

In this section we show how to reduce a fKDSHOIN fKB into a crisp
Knowledge Base (KB). The procedure preserves reasoning, so existing SHOIN
reasoners could be applied to the resulting KB. [13] presents a reasoning pre-
serving transformation for fKDALCH into crisp ALCH: firstly, some new atomic
concepts and roles are defined, then some new axioms are added to preserve the
semantics of the fKB and finally the ABox, the TBox and the RBox are mapped
separately. Our reduction extends this work to fKDSHOIN . A slight difference
is that our mapping of the TBox can introduce some new assertions about new
individuals (not appearing in the initial fKB).

New Elements. Let AfK and RfK be the set of atomic concepts and atomic
roles occurring in a fKB fK = 〈fKA, fKT , fKR〉. In [13] it is shown that the
set of the degrees which must be considered for any reasoning task is defined as
NfK = XfK ∪ {1− α|α ∈ XfK}, where XfK is defined as follows:

XfK = {0, 0.5, 1} ∪ {α|〈Ψ ≥ α〉 ∈ fKA} ∪ {β|〈Ψ > β〉 ∈ fKA}
∪{1− β|〈Φ ≤ β〉 ∈ fKA} ∪ {1− α|〈Φ < α〉 ∈ fKA}
∪{α|〈Ω ≥ α〉 ∈ fKT } ∪ {β|〈Ω > β〉 ∈ fKT }
∪{1− β|〈Ω ≤ β〉 ∈ fKT } ∪ {1− α|〈Ω < α〉 ∈ fKT }

This also holds in fKDSHOIN , but note that it is no longer true when other
fuzzy operators are considered. In that case, the process may calculate all possi-
ble degrees in [0, 1] with a given precision, but further investigation is required.
Without loss of generality, it can be assumed that NfK = {γ1, . . . , γ|NfK |} and
γi < γi+1, 1 ≤ i ≤ |NfK | − 1.

Now, for each α, β ∈ NfK , α ∈ (0, 1], β ∈ [0, 1), for each relation in {≥, >
,≤, <}, for each A ∈ AfK and for each R ∈ RfK , four new atomic concepts
A≥α, A>β , A≤β , A<α and two new atomic roles R≥α, R>β are introduced. A≥α

represents the crisp set of individuals which are instance of A with degree higher
or equal than α i.e the α-cut of A. The other new elements are defined in a



similar way. Neither A<0, A>1, R>1 are considered (they are always empty sets)
nor A≤1, A≥0, R≥0 (they are always equivalent to the top concept).

The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 ≤ i ≤ |NfK | − 1, for
each 2 ≤ j ≤ |NfK |, for each A ∈ AfK and for each R ∈ RfK , T (NfK) is the
smallest terminology containing the following axioms:

A≥γi+1 v A>γi
A>γi

v A≥γi

A<γj
v A≤γj

A≤γi
v A<γi+1

A≥γj
uA<γj

v ⊥ A>γi
uA≤γi

v ⊥
> v A≥γj tA<γj > v A>γi tA≤γi

Similarly, R(NfK) is the smallest terminology containing these two axioms:

R≥γi+1 v R>γi

R>γi v R≥γi

It is easy to see that allowing expressions of the type 〈(a, b) : R ≤ β〉, 〈(a, b) :
R < α〉 would need additional role constructs (role conjunction, role disjunction,
bottom role and top role).

Mapping the ABox. Fuzzy assertions are mapped into SHOIN assertions
using a mapping σ. Let γ ∈ NfK , ./∈ {≥, <,≤, >}, σ(fKA) = {σ(Φ)|Φ ∈ fKA},
where σ(Φ) is defined as in the following table (where ρ is inductively defined
on the structure of concepts and roles as in Table 1):

σ(〈a : C ./ γ〉) = a : ρ(C, ./ γ)
σ(〈(a, b) : R ./ γ〉) = (a, b) : ρ(R, ./ γ)

σ(〈a 6= b〉) = a 6= b
σ(〈a = b〉) = a = b

Mapping the TBox. fSHOIN fuzzy terminological axioms to either termi-
nological axioms (for ≥ or >) or assertions (for ≤ and <). In the former case, we
redefine k(fK, fKT ) as k(fK, fKT ) =

⋃
Ω∈fKT

k(Ω), where Ω = 〈C v D{≥, >
}γ〉 and k(Ω) is defined as:

k(〈C v D ≥ γ〉) = ρ(C,> 1− γ) v ρ(D,≥ γ)
k(〈C v D > γ〉) = ρ(C,≥ 1− γ) v ρ(D,> γ)

In the latter case, new assertions are necessary since negated terminological
axioms are nor part of crisp SHOIN . A new function A(fKT ) adds these new
assertions to the ABox. A(fKT ) =

⋃
Ξ∈fKT

A(Ξ), where Ξ = 〈C v D{≤, <}γ〉
and A(Ξ) is defined as:

A(〈C v D ≤ γ〉) = x : ρ(C,≥ 1− γ) u ρ(D,≤ γ)
A(〈C v D < γ〉) = x : ρ(C,> 1− γ) u ρ(D,< γ)

Note that how to modify the reduction process when alternative implication
functions are used remains an open question.



Mapping the RBox. Role axioms are reduced using a function k(fK, fKR) =⋃
Ω∈fKR

k(Ω), where k(Ω) is defined as:

k(R v R′) =
⋃

γ∈NfK ,./∈{≥,>} ρ(R, ./ γ) v ρ(R′, ./ γ)
k(trans(R)) =

⋃
γ∈NfK ,./∈{≥,>} trans(ρ(R, ./ γ))

Table 1. Mapping ρ

x y ρ(x, y)

A ≥ γ A≥γ if γ 6= 0,> otherwise
A > γ A>γ , if γ 6= 1,⊥ otherwise
A ≤ γ A≤γ if γ 6= 0,> otherwise
A < γ A<γ , if γ 6= 1,⊥ otherwise

R ≥ γ R≥γ if γ 6= 0,> otherwise
R > γ R>γ , if γ 6= 1,⊥ otherwise

> ≥ γ >
> > γ > if γ 6= 1,⊥ otherwise
> ≤ γ > if γ = 1,⊥ otherwise
> < γ ⊥
⊥ ≥ γ > if γ = 0,⊥ otherwise
⊥ > γ ⊥
⊥ ≤ γ >
⊥ < γ > if γ 6= 0,⊥ otherwise

C uD {≥, >} γ ρ(C, {≥, >} γ) u ρ(D, {≥, >} γ)
C uD {≤, <} γ ρ(C, {≤, <} γ) t ρ(D, {≤, <} γ)

C tD {≥, >} γ ρ(C, {≥, >} γ) t ρ(D, {≥, >} γ)
C tD {≤, <} γ ρ(C, {≤, <} γ u ρ(D, {≤, <} γ)

¬C {≥, >} γ ρ(C, {≤, <} 1− γ)
¬C {≤, <} γ ρ(C, {≥, >} 1− γ)

∃R.C {≥, >} γ ∃ρ(R, {≥, >} γ).ρ(C, {≥, >} γ)
∃R.C {≤, <} γ ∀ρ(R, {>,≥} γ).ρ(C, {≤, <} γ)

∀R.C {≥, >} γ ∀ρ(R, {>,≥} 1− γ).ρ(C, {≥, >} γ)
∀R.C {≤, <} γ ∃ρ(R, {≥, >} 1− γ).ρ(C, {≤, <} γ)

{(o1, α1), . . . , (om, αm)} ./ γ {oi | αi ./ γ, 1 ≤ i ≤ n}./γ

≥ 0 S ./ γ ρ(>, ./ γ)
≥ m S {≥, >} γ ≥ m ρ(S, {≥, >} γ)
≥ m S {≤, <} γ ≤ m−1 ρ(S, {>,≥} γ)

≤ n S {≥, >} γ ≤ n ρ(S, {>,≥} 1− γ)
≤ n S {≤, <} γ ≥ n+1 ρ(S, {≥, >} 1− γ)

R− ./ γ ρ(R, ./ γ)−

Discussion. A fKB fK = 〈fKA, fKT , fKR〉 is reduced into a KB K(fK) =
〈σ(fKA)∪A(fKT ), T (NfK)∪ k(fK, fKT ), R(NfK)∪ k(fK, fKR)〉. The com-



plexity of our procedure is quadratic: the ABox is linear while the TBox and
the RBox are quadratic. It is interesting to note that, while [13] reduces a fuzzy
terminological axiom into a set of crisp terminological axioms, our semantics for
fuzzy GCIs allows to reduce each axiom into either an axiom or an assertion.
This reduction in the size of the TBox (although it is still quadratic) is very in-
teresting since reasoning with GCIs is a source of computational complexity [19].
Finally, an important theorem can be shown:

Theorem 1. A fKDSHOIN fKB fK is satisfiable iff K(fK) is satisfiable.

Unfortunately, we cannot show the proof due to space limitations. Firstly, it
has to be proved that the translation preserves the satisfiability of every single
statement of the fKB. It can be shown that, if there exists a fuzzy interpreta-
tion satisfying a statement, then a crisp interpretation satisfying the result of
its translation can be built. Secondly, it has to be proved that the translation
preserves the satisfiability of the whole fKB. Then, it has be shown that the
translation preserves the clashes. For example, the clash produced by the pair
of conjugated axioms 〈a : A ≥ γ〉 and 〈a : A < γ〉 is preserved, since the axiom
A≥γ u A<γ v ⊥ prevents any individual from belonging to A with degree ≥ γ
and degree < γ.

4 Conclusions and Future Work

This paper has presented an alternative approach to achieve fuzzy ontologies,
reusing currently existing crisp ontology languages and reasoners. In particu-
lar, after having presented a sound fuzzy extension of SHOIN including fuzzy
nominals (enabling to define fuzzy sets extensively) and fuzzy GCIs (allowing
to constrain the truth value of a GCI), we have presented a reasoning preserv-
ing procedure (quadratic in complexity) to reduce a fKDSHOIN fKB into a
crisp one. The semantics of fuzzy GCIs reduces the size of the resulting TBox
w.r.t. [13], but imposes some counter-intuitive effects.

The main direction for future work is to perform an empirical evaluation
in order to validate the theoretical results. From a theoretical point view, we
are considering different fuzzy operators to avoid the counter-intuitive effects of
the Kleene-Dienes implication. We also plan to include a crisp representation
for fuzzy datatypes. Since OWL does not currently allow to define customised
datatypes, it seems interesting to consider OWL Eu [20], a promising extension
of OWL supporting them. Another interesting direction for future research is
to consider the more expressive DL SROIQ [21] (providing some additional
role constructs such as disjoint roles and negated role assertions) and which is
the subjacent DL of OWL 1.14, an extension of OWL which has been recently
proposed. We think that the additional expressivity may help to overcome the
asymmetry in the definitions of fuzzy concept and role inclusion axioms.

4 http://www-db.research.bell-labs.com/user/pfps/owl/overview.html
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