
Implementing Uncertainty in a Logic Programming
Framework

Trevor Martin

Artificial Intelligence Group,
Department of Engineering Mathematics

University of Bristol
Bristol BS8 1TR, UK

email: trevor.martin@bris.ac.uk

Abstract. We briefly outline the need to incorporate uncertainty and flexibility
into the semantic web knowledge representation, and argue that support logic
programming - a combination of soft computing and logic programming – is
one way to address this problem. To retain consistency with emerging
frameworks, we show how a support logic program modelling uncertainty in
relations and rules can be compiled into crisp Horn clauses suitable for
reasoning within a system which does not explicitly model uncertainty. In cases
where there is uncertainty in attribute values, an extension to the inference
mechanism is required.

Keywords: Soft semantic web, support logic, probabilistic rules, Fril, program
transformation.

1 Introduction

Recent development of the semantic web has included the adoption of logic
programming (in various guises) as a key element in processing semantic web rules.
In turn, this has led to a re-emergence of the question of whether it is necessary to
include an explicit mechanism for handling uncertainty in the representation, and how
best to process the uncertainty. During the “boom” years of logic programming, much
research effort (see e.g. [1-4]) went into combining logic programming with various
uncertainty calculi, both from the theoretical and implementation viewpoints. Fril is a
practical implementation of logic programming with uncertainty, which has been used
in a number of applications (see for example chapter 8 of [5]).

In this paper, we outline some of the design features of Fril in the belief that they
contain relevant lessons for the semantic web. We focus on implementation aspects,
not on properties such as expressibility or model-theoretic semantics which are
covered elsewhere [4, 6-8]. Perhaps the key issue in the implementation of an
uncertain logic programming language is whether to incorporate the processing of
uncertainty as a core part of the system or to build a meta-level on top of an existing
(crisp) implementation. The latter approach tends to be slower (as one is effectively
building an interpreter) but has the advantage of compatibility with existing systems;

the former approach gives the implementer more control and flexibility. Fril was
implemented as an extended Warren Abstract Machine, and took the first route above.
In section 3 we outline the use of transformations to run uncertain logic programs
within a standard system (without uncertainty in attribute values). This may be a more
productive route, given the increasing commercial interest in implementing semantic-
web related systems (e.g. Oracle 10 includes RDF management).

1.1 The Need for Uncertainty

The semantic web aims to bridge the human-machine communication gap “… the
theme is human beings doing the thinking and machines helping it work on a larger
scale …” [9], p 187-8). In order to achieve this, the semantic web provides
definitions for terms used in natural language, and a logic-style framework for
reasoning. Representations based on first order logic have many advantages - logic is
easily understood and provides a powerful computing formalism through logic
programming. However, human language is far more subtle and expressive than a
formal model, and deals with many concepts that are defined by common usage rather
than by necessary and sufficient conditions. Such vague concepts are widespread in
attribute values (Mary’s age is young), relations (80mph is a safe speed on an open
highway, Star Wars Episode II is a romantic movie) and rules (person X is likely to
have high blood pressure IF person X is overweight) where the italicised terms are
vague. The inherent vagueness used in many natural language terms means there is
often a mis-match between natural language and crisp logic-based representations.

In common with many knowledge representational formalisms, it is clear that the
semantic web requires a mechanism that is able to cope with this type of knowledge.

1.2 How should we deal with uncertainty ?

From a mathematical perspective, it is difficult to argue against the use of probability
as a tool for handling uncertainty. Indeed, it is relatively easy to show that if one is
prepared to bet as an indication of one’s level of certainty about an event then it is not
rational to base one’s behaviour on anything other than the laws of probability.
However, it is worth remembering the words of Einstein:

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality
 ("Geometry and Experience" 1921)

The assumptions underlying probability include
• the availability of precise definitions for events and
• procedures to determine whether or not a given event has occurred.

Much human knowledge and communication is based on natural language, and one
of the strengths of natural language is its capacity to efficiently convey a large amount
of information relatively compactly. This relies on a shared understanding of terms,
without necessarily sharing precisely the same definition of terms. For instance, an
Englishman announcing that he is “travelling to Europe” would be understood to
mean somewhere on the opposite side of the channel to England; an American saying

the same thing would probably include the UK as a possible destination. The word
“Europe” denotes a collection of countries, but its precise definition is elusive - is it a
set of countries marked as Europe on a particular map, members of the European
union (now? in 1970? in 1975? in 2010?), countries eligible to enter European
Championship football, countries eligible to enter the Eurovision song contest ?

Each “source” has its own definition of the term, but we are able to understand and
use the concept in communication without the inconsistency causing a problem. Thus
when considering the integration of different sources, we may need to consider
uncertainty in class memberships, in relations and in rules. To illustrate, let us
consider two ontologies which define the class youngPerson. Since young is not a
precisely defined concept, it is likely that the two will adopt different standards – let
us say ontology o1 defines all people aged 20 and under as belonging to the class
o1:youngPerson and ontology o2 defines all people aged 25 and under as belonging
to the class o2:youngPerson. How should we combine these definitions? Two
extremes would be to use the union or intersection of the extensions

c: youngPerson = o1:youngPerson∩ o2:youngPerson
or

c: youngPerson = o1:youngPerson ∪ o2:youngPerson
where c denotes the combined ontology. A more natural choice would be to

acknowledge that the source of the problem is vagueness in the (combined) class
definition and say that cases where the separate ontologies disagree should be
modelled by an intermediate class membership or probability, related to the
proportion of ontologies that would classify a particular instance as included or
excluded from the class. In the case above, there is no disagreement in the case of
instances with age 20 or less (i.e. o1’s definition), or in ages above 25. However for
instances with age in the interval (20, 25] there is intermediate support for their
membership in the combined class.

This combination is not based on similarities between the labels, but on the fact
that the ontologies may classify the same underlying instances into different classes.
In the same way, one movie database might class a particular movie as “horror”
whilst another labels it as “suspense”. The degree of overlap in the categories can give
support for rules integrating both sources [10].

2 Fril and Support Logic Programming

Fril [5] is a logic programming language incorporating uncertainty at a fundamental
level. Whilst not (yet) available as a web tool, the framework and implementation are
relevant to the handling of uncertainty within the semantic web. The calculus for
handling uncertainty is based on mass assignment theory [5, 11, 12], which gives a
coherent framework for dealing with both fuzzy and probabilistic uncertainty. Both
the language and underlying theory are dealt with in detail elsewhere [5, 13, 14] ; the
essential extension compared to a logic program is that clauses may be quantified by
support pairs. These are interpreted as intervals containing conditional probabilities,
so for the simple rule “p if q” we could write

p IF q : ([u1 v1] [u2 v2])
which is interpreted as stating that the conditional probabilities obey

u1 ≤ Pr (p|q) ≤ v1
u2 ≤ Pr (p|¬q) ≤ v2

The symbols p and q represent predicates with arguments, not simple propositions.
A more general form of rule is also allowed, in which more complex interactions in
the body of the rule can be taken into account. For example, given a rule
 p IF q AND r
the general rule takes account of different probability intervals for p|qr, p|q¬r, p|¬qr,
p|¬q¬r. This can be used to model Bayesian nets, although the inference is limited to
the direction imposed by the rule structure, i.e. conclude rule head from rule body.
For simplicity we only consider the basic Fril rule here, which in the above case
would only consider intervals for p|qr and p|¬(qr). Clearly this leads to considerable
efficiency savings as the number of goals in the rule body increases, and has been
found adequate in most practical problems. By convention [u2 v2] defaults to [0, 1]
in which case it may be omitted, and [u1 v1] defaults to [1, 1]

Unit clauses (facts) may also be quantified by support pairs, in the case that tuples
do not completely satisfy a predicate - for example, take the relation

Fluent-Speaker ⊆ Person × Language
and consider whether tuples (John, English), (John, French), (John, Spanish) satisfy
this relation. If John is a native English speaker, and knows no French, then the first
two tuples respectively belong and do not belong to the relation. However, if John
knows a little Spanish then the final tuple lies between these two extremes. In the
voting model [12], each voter must decide whether or not a tuple belongs to the
relation and the (point valued) support pair is then the proportion of voters who vote
yes. This can be extended to give general support pairs [u v] where u is the proportion
voting in favour, 1-v is the proportion voting against and v-u is the proportion of
abstentions. Clearly it is meaningless to include a second support pair for unit clauses.

Inference in Fril proceeds by constructing a proof tree, in the same depth-first
manner as Prolog. The supports of the clauses used in the proof tree are then
combined to give a support for the solution.

By default, the support for a conjunction of goals is the product of the individual
supports, i.e. given two facts

q1 : [x1 y1]
q2 : [x2 y2]

the support for the conjunction q1 AND q2 is [x1*x2 y1*y2]. In general, one can only
say that the support lies in the interval

[MAX(0, x1+x2-1), MIN(y1, y2)]
but by assuming maximum entropy we can use the product to calculate the support for
the conjunction (see [5] for discussion of this point).

Consider a single basic Fril rule of the form
p IF q1 AND q2 AND … AND qn : ([u1 v1] [u2 v2])

when the following facts are given or derivable
 qi : [ui vi] 1 ≤ i ≤ n
More generally the facts may not completely match the terms in the rule and the

support pairs [ai bi] will be determined using semantic unification. Let the combined

support for the body of the rule be [x y]. A generalised Jeffrey's rule for support pairs
is the basic inference rule of support logic, so that the inference is

 p : [z1 z2]
where

!

z1=
u1" y + u2 " (1# y) if u1$ u2

u1" x + u2 " (1# x) if u1> u2

%

&
'

(

)
* z2 =

v1" x + v2 " (1# x) if v1$ v2

v1" y + v2 " (1# y) if v1> v2

%

&
'

(

)
*

For example, the case discussed above can be modelled by the probabilistic rules

c:youngPerson(X) IF o1:youngPerson(X) : [1, 1]

c:youngPerson(X) IF o2:youngPerson(X) : [0.5, 1]
where [0.5, 1] is the support or interval probability that the rule head
c:youngPerson(X) is true, given that the rule body o2:youngPerson(X) is true. The
first rule has a support of [1,1] which is the default value for a rule and is normally
omitted for clarity. This approach can be extended to multiple rules, (although we
note that it is unable to deal with the case where two ontologies have no overlap in
classification since we are then effectively dealing with two different concepts.). If all
information is taken into account and negation can be properly handled within the
rules, then it is possible to work without intervals e.g. we could have a rule that x is in
c:youngPerson with a probability of 0.5 if x is in o2:youngPerson and not in
o1:youngPerson. The interval in the second rule arises because we ignore the
information given by o1, and only consider o2. This projection onto one ontology
simplifies computation considerably at the expense of working with intervals rather
than point values. Ding [15] takes a slightly different approach, allowing limited
interaction between rules and compiling the uncertainty into Bayes nets.

We note in passing that if we consider that each ontology corresponds to an
(equally likely) possible world, our approach has several links to probabilistic logic
programming described by [16]. We also note that this treatment assumes both
ontologies are concerned with the same set of instances.

To answer a query, a standard logic programming proof tree is created with
extended unification to deal with uncertain attribute values; a probabilistic calculation
is then carried out over the proof tree to determine the support for the conclusion. All
proof paths are examined to determine the overall support.

If multiple proof paths are available for a conclusion, the overall support is the
intersection of supports from the individual proof paths. This approach differs from
other fuzzifications of Prolog. Uncertainty is expressed as a conditional probability of
the rule head given the body. In contrast, most theoretical and practical treatments of
uncertainty in logic programming associate uncertainty with the implication. As is
well known from fuzzy control and multi-valued logics, there are very many plausible
implication operators and much time and effort has been devoted to arguing their
relative merits. The support logic programming approach avoids this controversy.

3 Implementing the Support Logic Calculus

Inference in a support logic program proceeds by constructing a proof tree. The
supports of the clauses used in the proof tree are combined to give a support for the
solution. Three different cases need to be considered:
 combination of multiple proof paths for an atom
 conjunction of different atoms in a rule body
 conditional support for the rule head from the rule support and support for the body

3.1 The comb operator

In normal logic programming, a single solution to a query is sufficient - it proves that
a solution exists, and finds instantiations of the query variables corresponding to this
solution. In support logic programming, the situation is different. Consider the rules
 p IF q
 p IF r
and let us suppose that q and r are true (with different supports). We have two proof
paths for the conclusion p, with supports :
 p : [x1 y1]
from the first proof path, and
 p : [x2 y2]
from the second. By default, Fril assumes that the overall support must be consistent
with both proof paths, and deduces
 p : [max (x1, x2), min(y1, y2)]
subject to the support being a non-empty interval.

If there is more than one proof path for an atom, we look for a support pair which
is compatible with all of them, i.e. the intersection of the intervals. Thus if atom b has
support [li ui] from proof tree i, the overall support for b is

!

l
i
,u

i[] =
i

I max
i

l
i(),min

i

u
i()[]

If this interval is empty, there is an inconsistency in the program. We define the
(binary) support combination operator, comb, as

!

comb l
1
,u
1[], l2,u2[]() = max l

1
,l
2(),min u1,u2()[]

This is monotonic, commutative and associative.
 comb(S1, S2) ⊆ comb(S3, S2) if S1 ⊆ S3
 comb(S1, S2) = comb(S2, S1)
 comb(S1,comb(S2,S3))=comb(comb(S1,S2),S3)
for arbitrary support pairs S1, S2, S3 where S=[l,u].

3.2 The conj operator

By default, the support for a conjunction of goals is the product of the individual
supports, i.e. given two facts

b1 : [lb1, ub1]
b2 : [lb2 , ub2]

the support for the conjunction b1 AND b2 is given by the conjunction operator
 conj([lb1, ub1], [lb2, ub2]) = [lb1× lb2 ub1× ub2]

which again is monotonic, commutative and associative. In addition, we note that
comb distributes over conj i.e.

!

conj comb S1,S2(),S3() = comb conj S1,S3(),conj S2,S3()()

for arbitrary support pairs S1, S2, S3. Thus if we have two atoms b1 and b2 with k1
proof paths for b1 (with supports

!

S
1

i , i=1…k1) and k2 proof paths for b2 with supports

!

S
2

j , j=1…k2, we can calculate the overall body support from the supports for the
k1*k2 proof paths for the conjunction (b1 AND b2). Because of the associativity of
comb and conj, this can be extended to any finite number of proof paths for a finite
number of atoms in a rule body.

In general, one can only say that the support for a conjunction lies in the interval
[MAX(0, lb1,+lb2-1), MIN(ub1 , ub2)]

but by assuming maximum entropy we can use the product to calculate the support for
the conjunction (see [5] for discussion of this point).

3.3 The cond operator

Consider a single basic Fril rule of the form
h IF b1 AND b2 AND … AND bn : Sr

where h, bi (i=1…n) are atoms forming the head and body of the rule respectively.
Support logic allows a rule support to be of the form [Shb, Shnb] where Shb is the
support for the head given that the body is true and Shnb is the support for the head
given that the body is not true. If

Sr = (Shb, Shnb) = ([lhb, uhb], [lhnb, uhnb])
when the following facts are given or derivable by single proof trees

!

bi
j
: Si

j 1 ≤ i ≤ n, 1 ≤ j ≤ ki
(where the body atom bi has ki proof paths). Let the combined support for the body

of the rule be Sb, calculated by repeated application of the conj and comb operators
defined above. If Sr is the rule support, the support for h is calculated using a
generalised Jeffrey's rule for support pairs

cond(Sr, Sb) = [lh, uh]
where

!

lh =
lhb " ub + lhnb " (1# ub) if lhb $ lhnb
lhb " lb + lhnb " (1# lb) if lhb > lhnb

%

&
'

(

)
* uh =

uhb " lb + uhnb " (1# lb) if uhb $ uhnb
uhb " ub + uhnb " (1# ub) if uhb > uhnb

%

&
'

(

)
*

(see [5] for discussion of the use of Jeffrey’s rule as a special case of updating
mass assignments). By case analysis of this expression, it is easy to see that the cond
operator is monotonic in the body support, i.e.

Sb1 ⊆ Sb2 iff cond(Sr, Sb1) ⊆ cond(Sr, Sb2)
for a fixed rule support Sr and body supports Sb1, Sb2. Additionally,

cond(Sr, comb(Sb1, Sb2)) = comb(cond(Sr, Sb1), cond(Sr, Sb2))
hence we can calculate the support for a solution by finding a proof path, computing
its support, then looking for another proof path and intersecting its support with that
already found. This is equivalent to a depth-search of the SLD tree [17], recording
each solution and its support. In contrast, a straightforward formulation of support
logic requires a breadth-search of the tree, where the support at an or-node can only
be calculated when all sub-trees rooted at that node have been evaluated.
Instead of calculating

!

lh,uh[] = cond Sr, conj
i=1…n

comb
j=1…ki

Si
j()"

$ %

&
'

"

$

%

&
'

we find

!

lh,uh[] = comb cond Sr, conj
i=1…n
j=1…ki

Si
j()

"

$
$

%

&

'
'

"

$
$

%

&

'
'

where the n-ary operators are obvious extensions from the binary case.
In Prolog terms, this corresponds to an “all-solutions” query at the root node only, as
compared to all-solutions queries for each goal appearing in the search tree. The
efficiency gain is significant. We can transform a support logic program to a crisp
logic program by adding a single argument to the head and to each body goal, to
represent the support computation. Thus a rule
h(X,Y) IF b1(X,Z) AND b2(Z,Y) : Sr

becomes
h(cond(Sr, conj(S1,S2)), X, Y)
 IF b1(S1, X,Z) AND b2(S2, Z,Y)

and a fact
b1(a, b) : Sf

becomes
b1(Sf, a, b)

Placing the support as the first argument is an arbitrary but useful convention. A
query then changes from

? h (X, Y)
to

? h(S, X, Y)
followed by evaluation of the support expression S for all proof paths.

The compilation of supported clauses to crisp clauses with embedded support
arguments is straightforward, as is the mechanism to find all solutions. Compilation
(or run-time translation) of uncertain logic programs into standard logic programs has
been implemented before (e.g. [13, 18] by adding extra goals to the rule body. The
disadvantage of this approach is that it creates an execution overhead and may disrupt
compiler optimisations. In contrast, the method outlined above uses an extra argument
and only marginally affects execution speed by adding a single unification step. It fits
into the crisp logic programming approach proposed for the semantic web. Hence we

can write (or learn) support logic rules and facts, and evaluate uncertain conclusions
without having to extend the whole framework.

3.4 Uncertainty in Attribute Values

We have so far ignored the question of uncertain attribute values - for example,
suppose we know that (i) Mary’s age is 28 or 29, or (ii) Mary is in her late twenties.
The first case is representable (but awkward) in logic, the second is essentially fuzzy
as different values satisfy “late twenties” to a greater or lesser degree. This can be
represented by a fuzzy set, interpreted as a fuzzy constraint on values of the attribute -
i.e. there should be a single value, but it is not precisely known.

Fuzzy sets can also be used to represent uncertain values in rule bodies e.g.
company X performed well in year Y IF
 turnover-of X in Y is high-turnover AND
 profit-of X in Y is about10%
where the italicised terms are fuzzy sets.
This requires us to generalise the unification process since the presence of fuzzy

attributes allows partial matching. For example, assume that the height of Bob is
above_average and we have a query to identify tall people. Fril uses semantic
unification, to determine a conditional probability for the matching of two terms and
hence calculates a support pair for the goal. Essentially, a virtual rule is assumed
ht of Bob is tall IF ht of Bob is above_average : S

where S is calculated from the probability of matching the fuzzy sets. Note that this
process is asymmetric - the probability of tall given above_average is not necessarily
the same as the probability of above_average given tall. This is obvious if one
considers a crisp case - for example, define a small dice value as {1, 2} and even as
{2, 4, 6}. Clearly Pr(small | even) ≠ Pr(even | small)

This process of matching fuzzy sets is known as semantic unification to distinguish
it from the normal logic unification method, which is purely syntactic. Semantic
unification is a fundamental part of Fril. A support pair is automatically calculated for
the match, and incorporated into the overall calculation of support for the query, using
probabilistic semantic unification. Further details are given in [5] and details of fast
algorithms suitable for implementing semantic unification in a Warren Abstract
Machine architecture are given in [19, 20]

4 Summary

The aim of the semantic web is to make content both human and machine
understandable. We claim that this means avoiding artificially precise definitions and
modelling human-understandable terms by adopting a representation that handles
uncertainty naturally and efficiently. Considerable existing work has been devoted to
incorporating uncertainty into logic programming - uncertain facts and rules can be
executed efficiently within a standard framework but uncertain attribute values
require more fundamental modification.

References

1. Martin, T.P. and F. Arcelli Fontana, Logic Programming and Soft

Computing - an Introduction, in Logic Programming and Soft Computing,
T.P. Martin and F. Arcelli Fontana, Editors. 1998, RSP/Wiley: UK. p. 1-18.

2. Martin, T.P., J.F. Baldwin, and B.W. Pilsworth, Implementation of Fprolog -
a Fuzzy Prolog Interpreter. Fuzzy Sets & Systems, 1987. 23 p. 119-129.

3. van Emden, M., Quantitative Deduction and its Fixpoint Theory. J.Logic
Prog, 1986. 3: p. 37-53.

4. Kifer, M. and V.S. Subrahmanian, Theory of generalized annotated logic
programming and its applications. J Logic Prog, 1992. 12: 335 - 367.

5. Baldwin, J.F., T.P. Martin, and B.W. Pilsworth, FRIL - Fuzzy and Evidential
Reasoning in AI. 1995, U.K.: Research Studies Press (John Wiley). 391.

6. Krajci, S., R. Lencses, and P. Vojtas, A comparison of fuzzy and annotated
logic programming. Fuzzy Sets and Systems, 2004. 144(1): p. 173-192.

7. Vojtas, P., Fuzzy logic programming. Fuzzy Sets and Systems, 2001. 124(3):
p. 361-370.

8. Damasio, C.V. and L.M. Pereira. Sorted Monotonic Logic Programs and
their Embeddings. in IPMU-04. 2004. Perugia, Italy.

9. Berners-Lee, T., Weaving the Web. 1999, London: Texere. 272.
10. Martin, T.P. and Y. Shen, Improving access to multimedia using multi-

source hierarchical meta-data, in Adaptive Multimedia Retrieval: User,
Context, and Feedback. 2006, Springer. p. 266 - 278.

11. Baldwin, J.F., A Calculus For Mass Assignments In Evidential Reasoning, in
Advances in the Dempster-Shafer Theory of Evidence, M. Fedrizzi, J.
Kacprzyk, and R.R. Yager, Editors. 1992, John Wiley: N.Y.

12. Baldwin, J.F., The Management of Fuzzy and Probabilistic Uncertainties for
Knowledge Based Systems, in Encyclopedia of AI, S.A. Shapiro, Editor.
1992, John Wiley. p. 528-537.

13. Baldwin, J.F., Support Logic Programming, in Fuzzy Sets - Theory and
Applications, A. Jones, Editor. 1986, D. Reidel. p. 133-170.

14. Baldwin, J.F. and T.P. Martin, An Abstract Mechanism for Handling
Uncertainty, in Uncertainty in Knowledge Bases, B. Bouchon-Meunier, R.R.
Yager, and L.A. Zadeh, Editors. 1991, Springer Verlag. p. 126-135.

15. Ding, Z. and Y. Peng. A Probabilistic Extension to Ontology Language
OWL. in 37th Hawaii Int Conf on System Sciences (HICSS'04). 2004: IEEE.

16. Dekhtyar, A. and V.S. Subrahmanian, Hybrid probabilistic programs.
Journal of Logic Programming, 2000. 43(3): p. 187-250.

17. Lloyd, J.W., Foundations of Logic Programming. 2nd ed. 1987: Springer.
18. Baldwin, J.F., Evidential Support Logic Programming. Fuzzy Sets and

Systems, 1987. 24: p. 1-26.
19. Baldwin, J.F. and T.P. Martin. Fast Operations on Fuzzy Sets in the Abstract

Fril Machine. in First IEEE Int Conf on Fuzzy Systems. 1992. IEEE Press.
20. Baldwin, J.F., J. Lawry, and T.P. Martin. Efficient Algorithms for Semantic

Unification. in Inf. Processing and Management of Uncertainty. 1996. Spain.

