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Abstract

In [5] it is shown how a model for the logic of con-
structible duality is a symmetric monoidal closed category
with products, that is, a model of linear logic. Remarkably,
Nelson’s strong negation∼ behaves as linear duality ⊥. We
compare it with some previous results from [4] regarding
stable models in a linear logic setting, and suggest some
further lines to explore.

1. From Ncd to linear logic

We began by reviewing the steps taken by Patterson et
al [5] for the construction of an algebraic model for the
logic of constructible duality (named here Ncd), which is
a conservative extension of the paraconsistent version of
Nelson’s logic constructible falsity, N−

c (also named N4
in [1, 2]).

Starting with the logic of constructible falsity N3, (that
is, positive intuitionistic logic with the involutory strong
negation ∼), one obtains N4 by dropping the axiom
Γ, φ,∼φ ` ∆ and keeping the constants for falsity 0 and
truth 1. The formal system of N4 is obtained from that of
intuitionistic logic plus the rules for ∼, as depicted in Fig-
ure 1.

The first step consists in extending N4 by defining the
implication ( as

φ( ψ = (φ→ ψ) ∧ (∼ψ → ∼φ)

(where→ is the intuitionistic implication). In contrast to→,
the new implication forms a congruence on the equivalence
class of interderivable formula. This implication provides
an ordering on the corresponding algebra. A definable oper-
ator, which plays the rôle of a conjunction for ( and hence
providing a deduction theorem in the algebraic setting, is
given by

φ⊗ ψ = ∼(φ(∼ψ).

Γ, φ ` ∆

Γ,∼∼φ ` ∆

Γ ` ∆, φ

Γ ` ∆,∼∼φ

Γ,∼φ ` ∆ Γ,∼ψ ` ∆

Γ,∼(φ ∧ ψ) ` ∆

Γ ` ∆,∼φ,∼ψ

Γ ` ∆,∼(φ ∧ ψ)

Γ, φ,∼ψ ` ∆

Γ,∼(φ→ ψ) ` ∆

Γ ` ∆, φ Γ ` ∆,∼ψ

Γ ` ∆,∼(φ→ ψ)

Γ,∼1 ` ∆ Γ ` ∆,∼0

Figure 1. Fragment of the sequent system for
N4.

This tensor operator satisfies

(φ⊗ ψ) ( γ = φ( (ψ ( γ)

(that is, ⊗ is the right adjoint to (). Since ∼ is involutory,
⊗ has a DeMorgan dual φ.................................................

............
.................................. ψ = ∼(∼φ⊗∼ψ).

The second step consists in adding a new constant I to
N4, which provides the unit for⊗. Such constant is axiom-
atized as φ→ I (for all formula φ), and ∼I = I. Since this
unit is equal to its own negation, it is interpreted as maxi-
mally overdefined (both true and false), and every formula
implies it. Its opposite, ⊥ undefined, captures the notion of
a proposition that is neither true nor false. Like I, ⊥ is its
own negation, but implies every formula. The added con-
stants I and ⊥ are different from 0 and 1. The rules for the
constants are shown in Figure 2. The logic N4 with these
constants is called constructible duality, we use the short-
hand Ncd.

There is a representation theorem forNcd with respect to
H ×Hop, for H a Heyting algebra. That is, every point in
H × Hop is representable as an equivalence class of inter-
derivable formulae in Ncd. The remarkable insight of Pat-
terson et al [5], is that the algebra H × Hop captures truth



Γ, I ` ∆

Γ,∼I ` ∆

Γ,⊥ ` ∆

Γ,∼⊥ ` ∆

Γ ` ∆, I

Γ ` ∆,∼I

Γ ` ∆,⊥

Γ ` ∆,∼⊥

Γ ` ∆, I Γ,⊥ ` ∆

Figure 2. Rules for the constants of Ncd.

propagating on one direction whereas falsity propagates in
the opposite direction.

Units Formulae

h(1) = (1, 0) ĥ(φ ∧ ψ) = ĥ(φ) ∧ ĥ(ψ)
h(0) = (0, 1) ĥ(φ ∨ ψ) = ĥ(φ) ∨ ĥ(ψ)
h(I) = (1, 1) ∼ĥ(φ) = ∼ĥ(φ)
h(⊥) = (0, 0) ĥ(φ→ ψ) = ĥ(φ) → ĥ(ψ)

Atoms
(x, x′) ∧ (y, y′) = (x ∧ y, x′ ∨ y′)
(x, x′) ∨ (y, y′) = (x ∨ y, x′ ∧ y′)
∼(x, x′) = (x′, x)
(x, x′) → (y, y′) = (x→ y, x′ ∧ y′)

For P the set of propositional symbols, h : P −→ H×Hop

is the valuation function, ĥ is the unique homomorphic ex-
tension of h on formulae, and x, x′, y, y′ ∈ H.

Figure 3. Interpretation of Ncd in H×Hop.

The interpretation of Ncd in terms of H × Hop is de-
scribed in Figure 3. We use the same symbols for the logi-
cal connectives and the operators in the algebra. Remember
that → is modelled as the pseudo complement in the alge-
bra, that is ĥ(φ→ ψ) = ĥ(φ) → ĥ(ψ) which is the element∨
{y

∣∣ x ∧ y ≤ z}, for x = ĥ(φ) and z = ĥ(ψ) in the al-
gebra H. Note how the interpretation of strong negation is
given by switching the coordinates of the point in the alge-
bra H × Hop. This interpretation of the strong negation is
simpler than eg. [7, 2].

A formula φ of Ncd is algebraically valid (|= φ) if and
only if for all Heyting algebrasH and for all valuation func-
tion h : P −→ H×Hop we have ĥ(φ) = (1, ∗) (where ∗
stands for any valuation inH). A formula φ ofNcd is deriv-
able in Ncd (` φ) if and only if it is algebraically valid.

The algebra H × Hop can be seen as having a copy of
intuitionistic logic and a copy of Browerian logic. Ncd can
be decomposed by means of the exponentials ! (schriek)
and ? (why) which satisfy all the rules of an exponential in
linear logic. The first operator, !, is defined as !φ = φ ∧ I.
The contents of the operation is to extract the positive infor-

mation of φ. That is ` ψ → ∼!φ, for all ψ. As expected,
we have φ→ ψ =!φ( ψ. The exponential obeys the rules
!φ ( φ and !!φ(!φ. The DeMorgan dual of ! is defined
as ?φ = ∼!∼φ = φ ∨ I, which obeys the rules φ(?φ,
?φ =??φ and φ(?ψ = ∼ψ → φ.

Algebraically, we have

H×Hop −→! H× 1 ∼= H

that is, ! is a projection from the algebra of Ncd (a paracon-
sistent logic) to a Heyting algebra (a consistent logic). Note
that ! is an interior operation on the poset (H × Hop,().
Similarly, H × Hop −→? 1 × Hop ∼= Hop. Additionally,
other projections can be defined, which are defined in terms
of the undefined unit ⊥,

!̂φ = φ ∨ ⊥ ?̂φ = φ ∧ ⊥,

and hence

H×Hop −→!̂ 0×Hop H×Hop −→?̂ H× 0

respectively. These exponentials do not occur in linear
logic.

Patterson et al [5] showed (via the Chu construction) that
H×Hop is a model of linear logic, with comonads arising
from the exponentials ! and ?. This produces a sound trans-
lation t of linear logic intoNcd, as show in the table1 below.

Linear logic Ncd

0t 0
>t 1
1t I
⊥t I
(φ⊗ ψ)t ∼((φt → ∼ψt) ∧ (ψt → ∼φt))
(φ( ψ)t (φt → ψt) ∧ (∼ψt → ∼φt)
(φ.................................................

............
.................................. ψ)t (∼φt → ψt) ∧ (∼ψt → φt))

(φ&ψ)t (φt ∧ ψt)
(φ⊕ ψ)t (φt ∨ ψt)
(φ⊥)t ∼φt

(!`φ)t φt ∧ I =!φt

(?`φ)t φt ∨ I =?φt

Therefore, if a formula φ is valid in linear logic, then φt

is valid in Ncd.
As a result, the exponentials of linear logic can be di-

vided into two parts, one dealing with counting the occur-
rence of assumptions (typically, considered as consumable
resources), and the other captures the embedding of intu-
itionistic logic into a paraconsistent logic.

What is especially attractive is the identification of Nel-
son’s strong negation ∼ in Ncd as the linear duality ⊥.

1Since 1⊥ = ⊥ in linear logic, it is clear why we have 1t = ⊥t = I.



2. Discussion: towards an equivalent charac-
terisation

Osorio et al shown in [4] a characterisation of stable
models for augmented programs formed by a linear part (for
modelling consumable resources) and augmented clauses
for representing knowledge (which involves strong nega-
tion). Such characterisation is based on the Girard’s embed-
ding of intuitionistic logic into linear logic, together with a
series of results which characterise stable models as prov-
ability in intutionistic logic [6]. Such results are later ex-
tended to Nelson’s logic N3 and super intuitionistic log-
ics [3]. It is important to mention that strong negation ∼
and linear duality ⊥ were considered as different operators
in such references. What seems clear is that Nelson logic
was enough for the purposes intended.

The general approach of [4] is summarised as follows.

Let Π an augmented program and M a set of ∼-literals,
that is M ⊆ L∗Π = {∼a

∣∣ a ∈ LΠ} ∪ LΠ. Let M̃ =
M − L∗Π. M is a stable model of Π if and only if

Π ∪ ¬¬M̃ ∪ ¬¬M `̀ M (1)

that is,

• Π is consistent, that is, for no atom a ∈ LΠ, Π ` a and
Π ` ¬a, (where ¬a = a→ 0),

• Π is complete, that is, Π ` l or Π ` ¬l for all ∼-literal
l ∈ L∗Π,

• Π `M .

As mentioned, the characterisation (1) above works for
intuitionistic logic (IL), Nelson’s logic (N3) and certain
super-intuitioinistics logics, appropriately adapted in each
case. When the logic for provability ` considered in [4]
is linear logic (LL), a number of translations are necessary.
The first is the well-know Girard’s embedding from IL to
LL:

aG = a (a ∈ P ) (φ→ ψ)G = φG ( ψG

(φ ∧ ψ)G = φG&ψG (φ ∨ ψ)G =!φG⊕!ψG

(¬φ)G =!φG ( 0.

The second translation deals recursively with the strong

negation:

a◦ := (!a)⊗>
(φ ∨ ψ)◦ := φ◦

.................................................
............
.................................. ψ◦

(φ ∧ ψ)◦ := φ◦&ψ◦

(φ→ ψ)◦ :=!(φ¬◦.................................................
............
.................................. ψ◦)⊗>

(¬φ)◦ := (!φ¬◦)⊗>
(∼ φ)◦ := φ∼◦

a∼◦ := (!(a.................................................
............
.................................. 0)⊥)⊗>

(∼ φ)∼◦ := φ◦

(¬φ)∼◦ := φ◦

(φ ∨ ψ)∼◦ := φ∼◦&ψ∼◦

(φ ∧ ψ)∼◦ := φ∼◦
.................................................

............
.................................. ψ∼◦

(φ→ ψ)∼◦ := φ◦&ψ∼◦

a¬◦ := ?(a.................................................
............
.................................. 0)⊥

(¬φ)¬◦ :=?(φ◦)
(∼ φ)¬◦ :=!φ¬∼◦ ⊗>
(φ ∨ ψ)¬◦ := φ¬◦&ψ¬◦

(φ ∧ ψ)¬◦ := φ¬◦
.................................................

............
.................................. ψ¬◦

(φ→ ψ)¬◦ := φ◦&ψ¬◦

a¬∼◦ := ?a
(¬φ)¬∼◦ := φ¬◦

(∼ φ)¬∼◦ := φ¬◦

(φ ∨ ψ)¬∼◦ := φ¬∼◦
.................................................

............
.................................. ψ¬∼◦

(φ ∧ ψ)¬∼◦ := φ¬∼◦&ψ¬∼◦

(φ→ ψ)¬∼◦ := φ¬◦
.................................................

............
.................................. ψ¬∼◦

and so, the characterisation (1) of asp as provability in LL
takes the form

• !(Π)G ⊗ φ⊗ (M⊥
& )G) ( 0 is not provable in LL,

• !(Π)G ⊗ φ( q ⊗ (M&)G is provable in LL,

where φ is any formula in linear logic (standing for re-
sources), q is an atom from atoms(φ) (which works as a
query), and M& stands for the set of atoms of M connected
by &.

Despite being purely syntactical translations, they don’t
seem to be very enlightening as to provide insights into a
model theoretic (or algebraic) justification.

Evidently, one expects that the characterisation (1) based
on provability be equivalent to the model theoretic counter-
part. That is, for a valuation function h : P −→ N in a
Nelson algebra N ,

{ĥ(φ)
∣∣ φ ∈ Π} ∪ h[¬¬M̃ ] ∪ h[¬¬M ] |= h[M ] (2)

(where h[X] is the usual direct image of h on the set X ).
This seems an interesting path to explore.

In the previous section we have seen how the algebra
H×Hop is a model of linear logic and furthermore, a model



for Ncd. Hence, we can use a valuation h : P → H×Hop

in the characterisation (2). Furthermore, linear duality ⊥ is
captured by strong negation∼, so the contents of the second
translation of [4] is not necessary in H ×Hop. Intuitively,
the approach followed in [4] essentially moves from N3
to LL via syntactical translations, whereas Patterson et al
enrichesN4 (which is a conservative extension ofN3) as to
obtain Ncd. The representation ofNcd in terms of H×Hop

provides the necessary algebraic support.
It is necessary to explore the advantages of Ncd for the

characterisation of stable models along the lines previously
summarised, that is, as provability inNcd as well as validity
in H×Hop. This approach would lead to a finer treatment
of stable models for preferential fragments of linear logic,
eg MLL (involving only ⊗, ................................................................

............................... ,( and ⊥) and the exten-
sions MALL, MELL, etc. Also, much insight can be gained
from the use of topological spaces (particulary frames and
locales) as representation of Heyting algebras in the con-
struction of H × Hop. Alternatives to topological spaces,
like algebraic domains, as well as the relation of morphisms
for such domains and proofs in Ncd remain to be seen.
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