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Abstract

The ramification problem concerns the characterisation
of indirect effects of actions. This problem arises when a
theory of action is integrated with a set of state constraints.
So integrating state constraints to a solution of the frame
problem must deal with the ramification problem. In the
situation calculus a general solution to both the frame and
ramification problems has been proposed. This solution in-
cludes the indirect effects of actions in the successor state
axioms. On the other hand, in the situation calculus, the
notion of belief fluents has been introduced in order to dis-
tinguish between facts that hold in a situation and facts that
are believed to hold in a situation. So apart from the tradi-
tional frame and ramification problems, a belief counter-
part of these problems is considered. The successor be-
lief state axioms were proposed to address the belief frame
problem. Inspired in the mentioned approaches, we pro-
pose a general solution to the belief frame and ramifica-
tion problems. We consider two sorts of constraints: the
believed state constraints relating to physical laws and the
believed mental constraints relating to social laws. Con-
straints imposed by social laws are well know in literature
as obligations. Automated reasoning based on the proposal
could easily be implemented in Prolog.

1. Introduction

The frame and ramification problems are classical prob-
lems that arise in reasoning about action using formal logic.
The frame problem concerns the characterisation of facts
that do not change when an action is performed. Reiter pro-
posed a solution to the frame problem in [6]. He introduced
the successor state axioms, which are obtained from (posi-
tive and negative) effect axioms. This solution based in the
situation calculus can be very efficiently computed. How-
ever, in his solution, he does not consider the ramification
problem, i.e. the axioms are obtained assuming that there

are no state constraints. These constraints are a source of
deep theoretical and practical difficulties in modeling dy-
namical systems [8].

Similarly to [3], McIlraith in [4] proposed an extension
to successor state axioms that not only considers direct (pos-
itive and negative) effects of actions on fluents, but also in-
direct effects implicitly defined by a set of state constraints.
Even when we have to accept limitations of expressiveness
in the state constraints, this approach solve both the frame
and ramification problems.

Another extension to the successor state axioms has been
proposed in [2], the authors introduced the notion of belief
fluents in order to distinguish between facts that hold in a
situation and facts that are believed to hold in a situation.
Performance of actions not only results in fluent changes,
but contributes toward change in belief fluents as well. So
we distinguish between the frame and ramification prob-
lems related with facts and the belief counterpart of these
problems related with facts that are believed. In order to
address the belief frame problem, the successor belief state
axioms have been introduced. The expressive power of this
solution is restricted to belief literals, however for a large
class of applications, these restrictions are not real limita-
tions. Automated reasoning could easily be implemented
too.

In this paper, we propose a solution to the belief ram-
ification problem. We consider two kind of constrains in
the belief context: the believed state constraints relating to
physical laws and the believed mental constraints relating
to social laws. Constraints imposed by social laws (or nor-
mative systems) are well know in literature as obligations.
The proposed solution is similar to McIlraith’s approach in
the sense that we extend the solution of the belief frame
problem to include believed constraints. However, our ap-
proach is not restrained to stratified theories as McIlraith’s
approach. Moreover, we propose to include obligations in
a way similar to that in which believed state constraints are
included. Thus the successor belief state axioms are ex-
tended in order to include both state and mental constraints.



Automated reasoning could easily be implemented.
The rest of the paper is organized as follows: in the next

section intuitive ideas concerning the representation of the
world are presented through a simple example. Then, we
give the logical solution to the problems concerning the rep-
resentation of the world. Then, we give an example con-
cerning belief representation, followed by the general logi-
cal solution for belief problems and finally the conclusions.

2 World representation

Situation calculus is a sort of classical first order logic
that allows representation of dynamical worlds [8]. Sit-
uations represent sequences of actions which have been
performed from the initial state to a current state. A sit-
uation is syntactically represented by a term of the form
do(a, s) where a denotes an action, and s denotes a situ-
ation. The initial situation is denoted by S0. Predicates
whose value may change from situation to situation are
called fluents. The last argument of a fluent is a situation.
For instance, position(x, s) represents the fact that a given
object is at the position x in the situation s. Action vari-
ables and situation variables can be quantified. For instance,
¬∃s(position(2, s)) represents the fact that in no situation
is a given object at position 2. Action quantification is an
essential feature in the solution to the frame problem pro-
posed by Reiter.

To intuitively present how the solution to the frame prob-
lem can be extended to include state constraints, we use the
following scenario.

Let’s consider a simple robot that can move forward (ac-
tion adv) or backward (action rev) along a railtrack. Per-
formance of actions adv or rev changes his position by one
distance unit.

Indeed, the evolution of the fluents is defined by the suc-
cessor state axioms. This axioms represent a solution to the
frame problem as well. For each fluent F we have an axiom
of the following form:

F (do(a, s)) ↔ Υ+
F (a, s) ∨ F (s) ∧ ¬Υ−

F (a, s)

where Υ+
F characterises all the conditions that have positive

effects on the fluent F , and Υ−
F characterises all the condi-

tions that have negative effects on the fluent F .
For example, for the fluent position, the positive effect

of performing the action adv (respectively rev) when the
robot is at the position x−1 (respectively x+1) in the situ-
ation s, is that it is at the position x in the situation do(a, s).
The positive effects on the position of a robot are repre-
sented by1:

[a = adv ∧ position(x− 1, s) ∨
1We adopt the convention that all the variables are universally quanti-

fied.

a = rev ∧ position(x+ 1, s)]
→ position(x, do(a, s)) (1)

The negative effect axiom expresses that if the robot is at
the position x in the situation s and he performs either the
action adv or the action rev, then in the situation do(a, s)
he is no longer at the position x:

(a = adv ∨ a = rev) ∧ position(x, s)
→ ¬position(x, do(a, s)) (2)

and the successor state axiom is:

position(x, do(a, s)) ↔ [a = adv ∧ position(x−1, s)
∨a = rev ∧ position(x+1, s)] ∨ position(x, s) ∧
¬[(a = adv ∨ a = rev) ∧ position(x, s)]

This axiom represents the evolution of position in terms
of direct (positive and negative) effects of actions but the
axiom does not consider the indirect effects of actions

State constraints represent invariant properties, that is
properties that remain unchanged in every situation. For
instance, the fact that the robot’s position is unique is repre-
sented by the constraint:

∀s, x, x′(position(x, s) ∧ position(x′, s) → x = x′) (3)

Let T be a theory and ψ a state constraint. To check if
the constraint is satisfied in the theory, we have to prove that
ψ is a consequence of T . That is we have to prove: T ` ψ.
The formula ψ is assumed to be a standard formula of the
situation calculus language.

McIlraith proposed considering state constraints as spe-
cial cases of the conditions that make a fluent have the value
“true” or “false”. A practical advantage of this approach is
that we can use the results proposed in [8] for automated
reasoning. In what follows, we present a syntactic manipu-
lation for including constraint (3) to the evolution of fluent
position. From (3) we have:

position(x′, do(a, s))∧¬(x = x′) → ¬position(x, do(a, s))
(4)

Now, by applying properties of classical logic we obtain
all the conditions that cause negative effects on the fluent
from (2) and (4), and these conditions include the state con-
straint.

[(a = adv ∨ a = rev) ∧ position(x, s) ∨
position(x′, do(a, s)) ∧ ¬(x = x′)]

→ ¬position(x, do(a, s)) (5)

If it is assumed that the conditions (1) and (5) are a com-
plete representation of the conditions that may change the



value of the fluent, we get the following successor state ax-
iom (see [6] for details):

position(x, do(a, s)) ↔ [a = adv ∧ position(x−1, s)
∨a = rev ∧ position(x+ 1, s)] ∨ position(x, s) ∧
¬[(a = adv ∨ a = rev) ∧ position(x, s) ∨
position(x′, do(a, s)) ∧ ¬(x = x′)]

McIlraith called the result Intermediate Successor State Ax-
ioms. In order to obtain the Final Successor State Axioms,
she proposed a stratified replacement of atoms expressed
in terms of do(a, s) for the corresponding right-hand side
of the intermediate successor state axioms. The method is
restrained to stratified theories in order to guarantee the ter-
mination of the process. The RHS of the final axioms are
always expressed in terms of s. See [4] for a detailed de-
scription.

As we can see the example does not consider a stratified
theory. The constraint (4) is not a stratified formula. The
intent of replacing the atom position(x′, do(a, s)) in and
by the RHS of the intermediate successor state axiom of
position force the method to draw in a infinite cycle.

3 Extending successor state axioms

We propose a similar syntactic manipulation in order to
extend Reiter’s successor state axioms to include the state
constrains. Let F be a fluent, Υ+

F (a, s) all the conditions
that have direct positive effect on the fluent F , and Υ−

F (a, s)
all the conditions that have direct negative effect on the flu-
ent F . This Υ’s are called the primary causes. Moreover,
we assume that Υ+

F (a, s) and Υ−
F (a, s) are disjoint.

With a limited loss of generality, it is assumed that all
the state constraints where F occurs can be represented as
follows:

ψ(do(a, s)) → F (do(a, s))
θ(do(a, s)) → ¬F (do(a, s))

The initial theory must satisfy ψ(S0) → F (S0) and
θ(S0) → ¬F (S0). ψ(do(a, s)) and θ(do(a, s)) are called
the secondary causes and their effect over F depend of di-
rect effects of the fluents appearing in them.

The first step is the following replacement: every flu-
ent α(do(a, s)) appearing in ψ(do(a, s)) or θ(do(a, s))
is replaced with the condition Υ+

α (a, s), and the condi-
tion Υ−

α (a, s) substitutes any negation of fluent α(do(a, s))
appearing in ψ(do(a, s)) or θ(do(a, s)). So the result-
ing formulas ψ′(a, s) = replacement(ψ(do(a, s))) and
θ′(a, s) = replacement(θ(do(a, s))) are expressed solely
in terms of s. We have:

ψ′(a, s) → F (do(a, s))
θ′(a, s) → ¬F (do(a, s))

The substitution means intuitively that if the direct effects
of actions trigger the condition ψ′(a, s) or θ′(a, s) then the
fluent changes due to an indirect effect. In this way the
priority is given to the direct effects.

The next step considers the following causal complete-
ness assumption: All the conditions under which an ac-
tion a can lead, directly or indirectly, to fluent F becom-
ing true or false in the successor state are characterised for
Υ+

F (a, s) ∨ ψ′(a, s) and Υ−
F (a, s) ∨ θ′(a, s), respectively.

Then the new form of the successor state axiom that in-
cludes the state constraints is as follows:

F (do(a, s)) ↔ [Υ+
F (a, s) ∨ ψ′(a, s)] ∨

F (s) ∧ ¬[Υ−
F (a, s) ∨ θ′(a, s)]

This axiom may be understood as follows: F holds in
do(a, s) if and only if an action made it true or an indirect
effect made it true or F was true in s and neither an action
nor an indirect effect made it false.

It is assumed that for each fluent F , the positive and neg-
ative conditions are disjoint2:

` T → ∀¬([Υ+
F (a, s) ∨ ψ′(a, s)] ∧ [Υ−

F (a, s) ∨ θ′(a, s)])

4 Belief representation

To define the subjective representation of the evolution
of the world, the language is extended with belief fluents
of the form BiF . We say that the “modalised” fluent BiF
holds in situation s if agent i believes that F holds in sit-
uation s and represent it as BiF (s). Similarly Bi¬F (s)
represents the fact that the fluent Bi¬F holds in situa-
tion s: the agent i believes that F does not hold in sit-
uation s. Let’s consider the robot’s scenario. To repre-
sent the evolution of robot’s beliefs, we have to consider
four effect axioms for each fluent. For example, for the
fluent position(x, s), there are four distinct possible at-
titudes of the robot which are formally represented by:
Brposition(x, s), Br¬position(x, s), ¬Brposition(x, s)
and ¬Br¬position(x, s). Their corresponding axioms (6),
(7), (8) and (9) are given below.

The effect of performing action adv (respectively rev)
when the robot believes that he is at the position x − 1 (re-
spectively x + 1) in the situation s is that he believes that
he is at the position x in the situation do(a, s). The same
belief is produced by the following condition: he senses the
position (action sense) in s and the real position is x:

[a = adv ∧Brposition(x− 1, s) ∨
a = rev ∧Brposition(x+ 1, s) ∨

a = sense ∧ position(x, s)]
→ Brposition(x, do(a, s)) (6)

2Here, we use the symbol ∀ to denote the universal closure of all the
free variables in the scope of ∀.



Note that the two first conditions are examples of updates
and the last one is a revision. The revision does not depend
of a earlier epistemic state of the agent. Revisions make the
connections with the real properties.

The effect of performing either action adv or rev when
the robot believes that he is at the position x in the situation
s is that in the situation do(a, s) he does not longer believe
that he is at the position x:

(a = adv ∨ a = rev) ∧Brposition(x, s)
→ ¬Brposition(x, do(a, s)) (7)

We have two similar axioms defining, in the situation
do(a, s), the belief and unbelief attitudes of the robot with
respect to the fact that he is not at the position x:

(a = adv ∨ a = rev) ∧Brposition(x, s)
→ Br¬position(x, do(a, s)) (8)

[a = adv ∧Brposition(x− 1, s) ∨
a = rev ∧Brposition(x+ 1, s) ∨

a = sense ∧ position(x, s)]
→ ¬Br¬position(x, do(a, s)) (9)

If we extend the causal completeness assumptions to the
robot’s beliefs, we get, after some simplifications, the suc-
cessor belief state axioms for the belief of robot concerning
his position (see axioms (12) and (13) for the general form):

Brposition(x, do(a, s)) ↔ [a = adv ∧
Brposition(x−1, s) ∨ a = rev ∧Brposition(x+1, s)
∨a = sense ∧ position(x, s)] ∨Brposition(x, s) ∧
¬[(a = adv ∨ a = rev) ∧Brposition(x, s)] (10)

Br¬position(x, do(a, s)) ↔ [(a = adv ∨ a = rev) ∧
Brposition(x, s)] ∨Br¬position(x, s) ∧ ¬[a = adv ∧
Brposition(x−1, s) ∨ a = rev ∧Brposition(x+1, s)
∨a = sense ∧ position(x, s)] (11)

Notice that the definitions assume implicitly that if the robot
performs the actions adv, rev or sense, he believes that
he has performed these actions. However, the beliefs of an
agent who does not know the performance of these actions
can evolve in a different way. It is worth to notice that the
approach allows to represent different evolutions of beliefs
concerning the same fluent. Consider a pilot, if the only way
for the pilot to be informed about the position is by checking
it on a control panel (action obs.position(x)), then we have
the following successor belief axioms for the pilot.

Bpposition(x, do(a, s)) ↔
a = obs.position(x) ∨Bpposition(x, s)

Bp¬position(x, do(a, s)) ↔
Bp¬position(x, s) ∧ ¬(a = obs.position(x))

In general for each agent i and each fluent F there are two
axioms of the form:

BiF (do(a, s)) ↔
γ+

i1,F (a, s) ∨BiF (s) ∧ ¬γ−i1,F (a, s) (12)

Bi¬F (do(a, s)) ↔
γ+

i2,F (a, s) ∨Bi¬F (s) ∧ ¬γ−i2,F (a, s) (13)

5 Extending successor belief state axioms

We consider now the integration of invariant beliefs, that
is integration of beliefs that remain unchanged in every situ-
ation. We include first the believed state constraints. These
are invariant beliefs concerning physical laws. For instance,
the fact that the robot believes that the position is unique is
represented by the following believed state constraint:

∀s, x, x′(Brposition(x, s)∧Brposition(x′, s) → x = x′)
(14)

The procedure for including state constraints to the succes-
sor state axiom can be adapted to include believed state con-
straints to the successor belief state axioms.

LetBiF andBi¬F be the belief fluents associated to the
agent i and the fluent F , γ+

i1,F (a, s) all the conditions that
have direct positive effect on the fluent BiF , γ−i1,F (a, s) all
the conditions that have direct negative effect on the fluent
BiF , γ+

i2,F (a, s) all the conditions that have direct positive
effect on the fluentBi¬F , and γ−i2,F (a, s) all the conditions
that have direct negative effect on the fluent Bi¬F .

With a limited loss of generality, it is assumed that all the
believed state constraints where BiF and Bi¬F occur can
be represented as follows:

ψ1(do(a, s)) → BiF (do(a, s))
θ1(do(a, s)) → ¬BiF (do(a, s))
ψ2(do(a, s)) → Bi¬F (do(a, s))
θ2(do(a, s)) → ¬Bi¬F (do(a, s))

The initial theory must satisfy ψ1(S0) → BiF (S0),
θ1(S0) → ¬BiF (S0), ψ2(S0) → Bi¬F (S0), and
θ2(S0) → ¬Bi¬F (S0). The first step is to transform
the formulas ψ1(do(a, s)), θ1(do(a, s)), ψ2(do(a, s)), and
θ2(do(a, s)) in terms of direct effects over belief fluents.
Every belief Biα (Bi¬α, resp.) appearing in these for-
mulas is replaced with γ+

i1,α(a, s) (γ+
i2,α(a, s), resp.) and

every unbelief ¬Biα (¬Bi¬α, resp.) is replaced with
γ−i1,α(a, s) (γ−i2,α(a, s), resp.) If ψ′1(a, s), θ

′
1(a, s), ψ

′
2(a, s)

and θ′2(a, s) represent the result of the replacement in



ψ1(do(a, s)), θ1(do(a, s)), ψ2(do(a, s)) and θ2(do(a, s)),
respectively, the believed state constrains are expressed as
follows:

ψ′1(a, s) → BiF (do(a, s))
θ′1(a, s) → ¬BiF (do(a, s))
ψ′2(a, s) → Bi¬F (do(a, s))
θ′2(a, s) → ¬Bi¬F (do(a, s))

Next step considers the following causal completeness as-
sumption: All the conditions under which an action a can
lead, directly or indirectly, to belief fluent BiF becoming
true or false in the successor state are characterised for
γ+

i1,F (a, s) ∨ ψ′1(a, s) and γ−i1,F (a, s) ∨ θ′1(a, s), respec-
tively. And All the conditions under which an action a can
lead, directly or indirectly, to belief fluent Bi¬F becom-
ing true or false in the successor state are characterised for
γ+

i2,F (a, s)∨ψ′2(a, s) and γ−i2,F (a, s)∨θ′2(a, s), respectively.
Then the successor belief state axioms that include the be-
lieved state constraints take the following forms:

BiF (do(a, s)) ↔ [γ+
i1,F (a, s) ∨ ψ′1(a, s)] ∨

BiF (s) ∧ ¬[γ−i1,F (a, s) ∨ θ′1(a, s)]

Bi¬F (do(a, s)) ↔ [γ+
i2,F (a, s) ∨ ψ′2(a, s)] ∨

Bi¬F (s) ∧ ¬[γ−i2,F (a, s) ∨ θ′2(a, s)]

The first axiom may be understood as follows: i believes
F holds in do(a, s) if and only if an action made i believe
F holds or an indirect effect made i believe F holds or i
believes F was true in s and neither an action nor an indirect
effect made disbelieve it. The second axiom has a similar
interpretation.

In order to maintain consistent beliefs, it is assumed that
the theory T meet the following conditions:

(P1) ` T → ∀¬([γ+
i1,F (a, s) ∨ ψ′1(a, s)] ∧ [γ−i1,F (a, s) ∨

θ′1(a, s)])

(P2) ` T → ∀¬([γ+
i2,F (a, s) ∨ ψ′2(a, s)] ∧ [γ−i2,F (a, s) ∨

θ′2(a, s)])

(P3) ` T → ∀¬([γ+
i1,F (a, s) ∨ ψ′1(a, s)] ∧ [γ+

i2,F (a, s) ∨
ψ′2(a, s)])

(P4) ` T → ∀(BiF (s) ∧ [γ+
i2,F (a, s) ∨ ψ′2(a, s)] →

[γ−i1,F (a, s) ∨ θ′1(a, s)])

(P5) ` T → ∀(Bi¬F (s) ∧ [γ+
i1,F (a, s) ∨ ψ′1(a, s)] →

[γ−i2,F (a, s) ∨ θ′2(a, s)])

We include now the believed mental constraints. These
are invariant beliefs concerning social laws. Notice that

state constraints cannot be physically violated. For in-
stance, an object cannot be in two places at the same
time (see, for example, (3)). However, in the case of
mental constraints (social constraints or obligation), agents
might violate them. Suppose the following formula:
∀x, s(trafficlight(x , red , s) → ¬position(x , s)) represents
a constraint, obviously the color red in a traffic light is not
a physical barrier to reach the position of the corresponding
crossroad. The fluent trafficlight(x , color , s) means there
is traffic light corresponding to a road intersection located
at x in order to indicate when it is safe to advance in s using
the following color code: if color is red, it is not safe to
advance. If color is green, it is safe to advance. If color is
yellow, it is a preventive sing saying that color is changing
from green to red. So in order to keep save the advance, a
normative system defines some mental barriers and suppose
an ideal world where everybody obey the rules. The ideal
world is defined through a set of obligations. For instance,
we have the following obligation:

∀x, s(trafficlight(x , red , s) → O¬position(x , s)) (15)

which means if in the real world there is a crossroad with
red traffic light then ideally the agent is not at the cross-
road. Notice that the consequent does not represent a real
fact neither a fact believed by an agent. O¬position(x, s)
represents an ideal fact imposes by the normative system.
Here, our interest does not concern the representation of
ideal world evolution which must integrate a solution to the
corresponding frame problem (see for example [1, 5]). Our
concern is the design of obedient agents, i.e. agents respect-
ing social constraints.

It is worth to notice that when a state constraints such as
(3) is believed by an agent, the corresponding believed state
constraint has the same schema (see (14)). However when
an obligation as (15) is knew by an agent the mapping is not
clear. Suppose a similar schema:

∀x, s(Brtrafficlight(x , red , s) → BrO(¬position(x , s)))
(16)

Where the belief fluent Brtrafficlight(x , color , s) repre-
sents the robot’s belief about the traffic light located at x.
And BrO(¬position(x, s))) represents the robot’s belief
about the obligation concerning the position. So the for-
mula (16) represents the understanding of the obligation but
this formula does not show an obedient attitude about a such
obligation.

Our approach considers the fact that agents create habits
by force of respect social rules. For example, some persons
stop automatically when they see a red traffic light without
thinking about the related social rule. Our approach propose
to formalise this behaviour in order to assist a planner in
the search of actions socially valid. So the believed mental



constraint:

∀x, a, s(Brposition(x, s) ∧Brtrafficlight(x + 1 , red , s)
→ Brposition(x, do(a, s)))

represents robot’s custom in order to obey the rule (15). The
intuitive meanings is that if the robot believes to be in front
of a crossroad which has a red traffic light then wherever
happens, he does not change his position (he stops). The
interest in integration of obligations in this way concerns
plan generation. In order to choose the adequate actions the
agent must project his beliefs. If the agent want to avoid
punishments, his projections must consider the satisfaction
of social rules.

These constraints can be integrated to the successor be-
lief state axioms in a similar manner to that in which be-
lieved state constraints were integrated.

Different behaviour can be defined through the believed
mental constraints. For example, if we need a robot that
tries to exit of a violation state when as soon as he is aware
of such violation, we can define the following constraint:

∀x, a, s(Brposition(x, s) ∧Brtrafficlight(x , red , s)
→ Brposition(x+ 1, do(a, s)))

meaning that if the robot believes itself to be at a crossroad
with a red traffic light, he will try to move to the next posi-
tion in order to pass the crossroad.

Thus we obtain the extended successor belief state ax-
iom for Brposition which include both believed state and
mental constraints:

Brposition(x, do(a, s)) ↔ [a = adv ∧
Brposition(x−1, s) ∨ a = rev ∧Brposition(x+1, s)
∨a = sense ∧ position(x, s) ∨Brposition(x, s) ∧
Brtrafficlight(x +1 , red , s)] ∨ Brposition(x , s) ∧
¬[(a = adv ∨ a = rev) ∧Brposition(x, s) ∨ (a = adv ∧
Brposition(y−1, s) ∨ a = rev ∧Brposition(y+1, s)
∨a = sense ∧ position(y, s)) ∧ ¬y = x]

Notice that this axiom does not satisfy (P1) so the con-
straint is not captured. A solution to this problem is the
introduction of preferences. For the sake of space we do
not present the details.

6 Conclusion

We have presented a general solution to solve the frame
and ramification problems in the belief context. A signifi-
cant difference between this approach and that presented in
[7] is that it can be easily implemented and the proof by in-
duction is restricted to two steps (just as for mathematical

induction): verification in the initial state and verification of
the successor state. Constraints that are included in the suc-
cessor belief state axioms could influence the agent to take
a decision. For example, if a robot believes it cannot be
stopped at a crossroad with a red traffic light, then it will re-
ject the goal of having to wait for someone at the crossroad.
The regression theorem presented in [8] justifies a simple
Prolog implementation for reasoning with this proposal as-
suming a closed initial database.
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