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Abstract. In this paper, we identify issues and present solutions de-
veloped – both theoretical and experimental – during the course of de-
veloping a data stream management system (DSMS) for applications in
a sensor environment. Specifically, we summarize our solutions for CQ
processing, trigger mechanisms, and Quality of Service (QoS) manage-
ment in a stream data processing system. Specifically, we first present
our query processing model and then discuss our scheduling strategies to
support different requirements of stream applications. We further discuss
our QoS framework in such a DSMS and present our load shedding tech-
niques, queueing model, and analysis techniques in order to effectively
deliver QoS requirements for those applications. Finally, we discuss our
integration model to enhance the active capability of a DSMS.

1 Introduction

The main issues encountered in the design of a data stream processing system
(DSMS) used in sensor and other applications environments include:

1. Both the number of data streams and the amount of data are large. Various
computer programs (agents) in the system generate data at regular or ir-
regular intervals. numerous hardware sensors distributed at different places
emit sensor readings.

2. Stream-based applications have different requirements for the underlying
stream data processing system. The monitoring component requires query
processing system to detect user-defined events in a timely manner. Although
the applications in this category can accept approximate results (since the
impact of one missing observation or wrong observation is limited on the final
pattern/event recognition), they have a near real-time requirement to detect
any defined events because they have to trigger a series of actions based on
the detected event in a timely manner. The second category of applications
such as decision making components require accurate results and has a real-
time processing requirement. The consequence of one missing event can be
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significant. The remaining applications have more tolerant requirements for
the accuracy of query results or the on-line processing time.

3. The types of queries to be handled include: continuous queries (CQs) – which
run in the system for ever theoretically with one submission, and one time
ad-hoc queries which are analogous to queries used in a traditional database
management system.

In summary, the main issues we have to address are:

1. bursty inputs, which introduce consequently bursty and unpredictable load
in the system;

2. efficient processing of a large number of queries and the capability to support
large number of triggers;

3. quality of service (QoS) requirements, which include the tolerance for the
accuracy of query results, and tuple latency;

4. scalability, which allows the system to scale in order to handle a smart-
environment (e.g., MavHome [5]).

In the rest of the paper, we present our initial work on the design of a data
stream processing system to address the above issues.

1.1 Related Work

A number of projects that focus on stream data processing share similar objec-
tives. The NIAGARA system [4] proposes an architecture for CQs with group
optimization techniques. The Fjord architecture [8] supports both a continu-
ous data stream and a traditional static data set by connecting the push-based
operators with the pull-based operators via queues. The STREAM project [1]
is trying to build a general data processing architecture that can support the
functionalities of both database management system (DBMS) and data stream
management system (DSMS). The Aurora system [3] presents an architecture
to process data streams with some QoS requirements by decoupling a CQ into a
few pre-defined operators. The differences between these projects and our work
is that our system not only has the capability to support CQs over stream data
with QoS constraints, but also provides full support for active capability through
a set of rich event-condition-action (ECA) rules. Specifically, 1) we present a fam-
ily of scheduling strategies to meet different requirements of stream applications,
ranging from memory-optimized path capacity scheduling strategy to latency-
optimized segment scheduling strategy. 2) We also present a set of mechanisms
and algorithms to effectively deliver QoS requirements of those applications.
These algorithms are different from those developed in Aurora and STREAM
in that: the algorithms do not depend on specific system parameters such as
CPU cycles used in Aurora and our load shedding mechanism used collabora-
tively with our scheduling strategies provides an effective mechanism to resource
allocation and management. 3) We present an integrated stream and even pro-
cessing model to enhance the capability of data stream processing systems to
include complex event processing..



2 System Architecture

Figure 1 shows the system architecture of a stream processing system for sen-
sor applications. The system consists of six components: data source manager,

query processing engine, catalog manager, scheduler, QoS manager, and
ECA manager. The data source manager accepts continuous data streams and
puts input tuples into corresponding input queues of query plans. It also mon-
itors various input characteristics of a stream and data stream characteristics
(i.e., sortedness). Those characteristics provide useful information for query op-
timization, query scheduling, and QoS management. The query processing

engine is in charge of generating query plans and of optimizing query plans
dynamically. It supports both CQs and one-time ad-hoc queries. The catalog

manager stores and manages the meta data in the system, including stream meta
data, detailed query plans, and resource information. The scheduler determines
which query or operator to execute at any time slot due to the continuous na-
ture of the queries in the system. A few scheduling strategies are proposed and
discussed in the next section. Due to the fact that most of stream-based ap-
plications have different QoS requirements, the QoS manager employs various
QoS delivery mechanisms (i.e., load shedding, admission control, and so on) to
guarantee the QoS requirements of various queries. In a sensor environment, to
capture and understand the physical environment, monitoring changes through
CQs is necessary and important. However, it is equally important to react to
those changes immediately. The ECA manager in our system is used to detect
complex events and to respond to those events using predefined actions. We
discuss the details of various components of our system in following sections.

Fig. 1. Architecture of Continuous Query Processing System



3 Query Processing Model

3.1 Continuous Query Processing Model

The main computation required in a general query processing model based on
data streams is to incrementally compute queries against arriving tuples and
meet predefined QoS requirements of each query. This implies that a CQ pro-
cessing model is some what different from a traditional query processing model
in several aspects: 1) It requires queries to stay in the system as long as its
input data streams are not terminated. Those queries are called CQs as opposed
to one-time queries in traditional DBMSs. However, a CQ may only provide
approximate query results as its QoS specification requires. 2) Because of the
long life of CQs and the bursty input characteristics of data streams, a DSMS
has to employ different scheduling strategies to allocate system resources such
as memory, CPU cycles in order to satisfy the requirements of different appli-
cations. 3) The predefined QoS requirements from applications require that CQ
processing systems compute final results correctly and also meet certain QoS re-
quirements (i.e., tuple latency, precision, and so on). The final computed query
results that do not meet predefined QoS requirements may not meaningful . As
a result, a CQ processing system typically has three basic components: query
processing engine, query/operator scheduler, and QoS control and management.

Our query processing model consists of a set of operator trees corresponding
to query plans and the whole CQ processing system forms a data-flow diagram.
A node in such a data-flow diagram corresponds to an operator of a query plan.
Therefore, the basic job of our query processing system is to push each tuple
from incoming data streams through a set of data transformation operations, and
ultimately, the output streams are presented to applications that are represented
as the root node in this data-flow diagram. We further define an operator path

as a path starting from the first operator that a data stream enters and ending
with the root node. In the rest of the paper, we present our solutions for each
component in the DSMS.

4 Query Scheduling

In the literature, a few scheduling strategies have been proposed. The Chain
scheduling strategy [2] is a near optimal scheduling strategy in terms of total
internal queue size. However, we believe that the tuple latency and the memory
requirement are equally important for a stream processing system. And the tuple
latency is especially important for a query processing system where its applica-
tions have to respond in a near real-time manner. This near real-time response
requirements motivate us to propose a family of scheduling strategies. Specifi-
cally, we first propose the path capacity strategy (PCS), which is an optimal
scheduling strategy in terms of overall tuple latency. However, it has much bigger
memory requirement than the Chain scheduling strategy. To overcome the large
memory requirement of PCS, we further propose the segment strategy and
its variant – the simplified segment strategy. These two strategies achieve
a much better tuple latency than Chain strategy with a little larger memory
requirement.



Path Capacity Strategy: Before we present our PCS, we define Opera-
tor path processing capacity CP

Pi
as the number of tuples that can be consumed

within one time unit by the operator path Pi. Therefore, the operator path pro-
cessing capacity depends not only on the processing capacity of an individual
operator, but also on the selectivity of these operators and the number of op-
erators in the path. For an operator path Pi with k operators, its processing
capacity can be derived from the processing capacities of the operators that are
along its path, as follows:

CP
Pi

=
1

1

CP
O1

+ σ1

CP
O2

+ · · · +
� k−1

j=1
σj

CP
Ok

(4.1)

where Ol, 1 ≤ l ≤ k is the lth operator along Pi starting from the leaf node.
The denominator in (4.1) is the total service time for the path Pi to serve one

tuple; and the general item (
∏h

j=1
σj)/CP

Ok
is the service time at the (h + 1)th

operator to serve the output part of the tuple from the hth operator along the
path, where 1 ≤ h ≤ k− 1. Segment processing capacity has the same definition
as operator path processing capacity except that the number of operator along
a segment is different.

Path Capacity Strategy: At any time instant, consider all the operator paths
that have input tuples waiting in their queues in the system, schedule a single
time unit for the operator path with largest processing capacity to serve until its
input queue is empty or there exists an operator path which has a non-null input
queue and a larger processing capacity than the currently scheduled one. If there
are multiple such paths, select the one with the largest processing capacity. If there
are multiple paths with the largest processing capacity, select one arbitrarily. The
bottom-up operator scheduling strategy is used to schedule the operators of the
chosen path.

The PCS is a static priority scheduling strategy. The priority of an operator
path is its processing capacity, which is completely determined by the number
of operators along its path, and the selectivity and the processing capacity of
each individual operator. Therefore, the priority of an operator path does not
change over time until we revise selectivity of operators. The scheduling cost is
minimized and can be negligible. Most importantly, the PCS has the following
two optimal properties that are critical for a multiple CQ processing system.

Theorem 1 The PCS is an optimal one in terms of the total tuple latency or
the average tuple latency among all the scheduling strategies.

Theorem 2 Any other path-based scheduling strategy requires at least as much
memory as that required by the PCS at any time instant in the system.

The detailed proofs of Theorem 1 and 2 are presented in [7].
Segment Scheduling Strategy: Although the PCS has optimal memory

requirement among all path-based scheduling strategies, it still buffers all un-
processed tuples at the beginning of an operator path. In a query processing



system with a shortage of main memory, a trade off exists between the tuple
latency and the total internal queue size. The segment scheduling strategy

employs a similar strategy as the Path Capacity strategy except that the segment
scheduling strategy schedules the operator segment with the biggest processing
capacity rather than the operator path with the biggest processing capacity.
Therefore, the segment scheduling strategy can minimize the memory require-
ment of our query processing system. The operator segments are constructed by
the following algorithm.

Segment Scheduling Strategy: At any time instant, consider all the oper-
ator segments that have input tuples waiting in their input queues. Schedule a
single time unit for the operator segment which has the maximal memory release
capacity to serve until its input queue is empty or there exists another operator
segment which has a non-null input queue and a larger memory release capacity
than the currently scheduled one. If there are multiple such segments, select the
one with the largest memory release capacity. If there are multiple segments with
the largest memory release capacity, select one arbitrarily. A bottom-up operator
scheduling strategy is used to schedule the operators of the chose segment.

Simplified Segment Scheduling Strategy: Simplified segment strategy dif-

fers from segment scheduling strategy in that it employs a different segment
construction algorithm. In a practical multiple query processing system, we ob-
serve that: (a) the number of segments constructed by the segment construction
algorithm may not be significantly less than the number of operators presented
in the query processing system and (b) the leaf nodes are the operators that
have faster processing capacities and less selectivity in the system; all the other
operators in a query plan have a much slower processing rate than the leaf nodes.
Based on these facts, we partition an operator path into at most two segments,
rather than a few segments. The first segment includes the leaf node and its
consecutive operators such that ∀i, CM

Oi+1
/CM

Oi
≥ γ, where γ is a similarity fac-

tor. In the previous segment construction algorithm, it implicitly states γ = 1.
In the simplified segment strategy, the value of γ used is less than 1 in order to
decrease the number of segments. In our system, we have used γ = 3/4 in our
experiments. The remaining operators along that operator path, if any, form the
second segment.

The simplified segment strategy has the following advantages: (i) Its memory
requirement is only slightly larger than the segment strategy; (ii) The tuple
latency significantly decreases because the number of times a tuple is buffered
along an operator path is at most two; (iii) The scheduling overhead significantly
decreases as well due to the decrease in the number of segments; and (iv) It is less
sensitive to the selectivity and service time of an operator due to the similarity
factor, which makes it more applicable.

5 QoS Control and Management

Quality of Service is one of the main factors that distinguishes a DSMS from
a traditional DBMS. Each application can specify its own QoS metrics such as



latency and accuracy-tolerance. The key problem is to deliver those QoS require-
ments. Currently, the mechanisms that we have been exploring are: (i) multi-
query optimization, which is an important mechanism to deliver QoS require-
ment. For example, in this approach, QoS can be satisfied through sharing a
common sub expression to decrease the system load or dynamically adapting
a query plan to trade off the resource requirement and the QoS requirement.
(ii) memory allocation: due to the fact that approximate results are applicable
for most of stream-based applications, we are able to prevent from violating
the maximal approximation error an operator can introduce by reserving the
minimal buffer space for that operator. (iii) scheduling strategy, which is one
mechanism to control QoS management. It assigns a higher priority to the oper-
ators that have to meet a better QoS requirement and a lower priority to those
which have a lower QoS requirement; (iv) load shedding, which is an explicit
mechanism at tuple level to deliver QoS requirements. It dynamically inserts a
drop operator, which drops unprocessed or partially processed tuples in a random
manner or based on some semantics, in an existing query plan during heavy load
periods and removes the drop operator when system load decreases to a certain
level. (v) admission control, which works at the query level, is the final choice
to satisfy the QoS requirements of those active queries in the system. In the
worst case, the system cannot guarantee the QoS requirement even it sheds all
the load that it can shed without violating the maximal tolerant approximation
errors. When this situation happens, the only solution is to choose some victim
queries in the system and to disable them during a high load period.

For the last two mechanisms, a fundamental problem is to efficiently estimate
the system load, based on which the system has to determine when to activate
load shedding, how much load to shed, and whether to accept a new query into
the system or not. In the following section, we present our solution for these
problems.

5.1 Estimation of System Load

For each query, assume a maximal tolerant latency (MTL) requirement. Without
loss of generality, m active queries in the system can be further decomposed into
k operator paths P = {p1, p1, · · · , pk}. To prevent a query from violating its
MTL , we have to guarantee that the output results from each of its operator
paths do not violate its MTL, which implies that each operator path has a MTL
requirement, which is the MTL of its query. For any operator path pi, the query
processing system has to process all the tuples that arrived during the last li
time units if its MTL is li time units no matter what scheduling strategy it
employs. It may schedule some operators along the path multiple times in the
last li time units, or schedule some operators more often than others. But the
age of the oldest unprocessed or partially processed tuple left in the queues along
that operator path must be less than its MTL. Therefore, without considering
the cost of scheduling, the minimal computation time Ti required by operator



path pi within li time units is

Ti =

∫ t

t−li
vk(t)dt

Ci

; 1 ≤ i ≤ k (5.1)

where vk(t) is the input rate of its input stream, and Ck is its processing ca-
pacity. The equation (5.1) gives the minimal absolute computation time units
the operator path pi required within its MTL. Furthermore, the percentage of
computation time units φi it requires is,

φi = Ti/li (5.2)

Without considering the sharing segments among the operator paths, the
total percentage of computation time units Φ for a query processing system with
k operator paths is:

Φ =
∑k

i=1

φi =
∑k

i=1

∫ t

t−li
vk(t)dt

Cili
(5.3)

Due to the fact that the MTL of a query is no more than a few seconds,
we can expect that the input rate during its MTL can be captured by its mean
input rate. Then the equation (5.3) can be approximated as:

Φ ≈
∑k

i=1

v̄kli
Cili

=
∑k

i=1

v̄k

Ci

(5.4)

where v̄k is the mean input rate of the input stream of the operator path pk

within a period of time of its MTL.
When there are some sharing segments among the operator paths, we have to

deduct the over-counted parts. Assume that there are g sharing segments in the
system, and that each of them is shared fi times, where fi ≥ 2 and 1 ≤ i ≤ g,
then

Φ ≈
∑k

i=1

v̄k

Ci

−
∑g

i=1

(fi − 1)
v̄i

CS
i

(5.5)

where CS
i is the processing capacity of the sharing segment.

From (5.5), we can efficiently estimate the system load through monitoring
the input rates of all input streams. If Φ > 1, we know that the system is out
of computational resources, we have to activate either load shedding mechanism
or admission control mechanism to prevent the system from violating the pre-
defined QoS requirements.

5.2 Load Shedding

The load shedding is implemented as insertion of a drop operator into a victim
query plan. Two kinds of drop operators have been proposed: a random drop op-
erator and a semantic drop operator. The random drop operator is implemented
as a p gate function: for each tuple, it generates a random value ṕ. The tuple
passes to the next operator if ṕ ≥ p. Otherwise, it is discarded. The semantic



drop operator discards tuples based on a condition whose selectivity corresponds
to 1 − p, it requires some specific-application information from a query and its
application domain. We choose the randomly drop operator as our load shedder
in our system.

Without knowing the specific query/domain information, we can assume that
all tuples in the same data streams have the same importance towards the ac-
curacy of the final results of a query. Each query has an maximal relative error
which it can tolerate. Based on this, we discuss how to find a best place for a
shedder,and how to allocate the load that we have to shed among those shedders.

When to shed From section 5.1, we are able to predict the system load
in the next few time units through monitoring current input rates of all input
streams in the system. Therefore, the problem of when to shed can be solved
by simply periodically predicting the system load every few time units. When
total system load is going to exceed 100% of its capacity, then we know that
the system is going to experience a overload period, which will violate some pre-
defined QoS requirements. Therefore, we have to shed some load. The amount
of load we have to shed equals the amount of system load that is beyond the
system capacity.

Placement of load shedders A load shedder can be placed in any location
along an operator path. However, each location has a different impact on the
accuracy of the final results and on the amount of computation time units it
releases. Placing a load shedder earliest in a query plan (i.e., before a leaf op-
erator) is the most effective one in decreasing the amount of computation time
units, but it is not the most effective one in terms of the effect on the accuracy.
Therefore, the best potential location for a load shedder along an operator path
is the place where the load shedder is capable of releasing maximal computa-
tional time units while introducing the minimal relative errors in the final query
results by dropping one tuple there. However, the relative error introduced by
dropping one tuple before an operator is unknown and difficult to estimate. For
example, it is impossible to estimate the error in final results introduced by
dropping a tuple from an input queue of a join operator without having any
apriori knowledge of the input tuples and the applications that depend on this
query. In the following section, we assume that each tuple from a data stream
has an equal impaction on accuracy of final query results of a query.

For each operator path of a query plan, there exists a candidate load shedder.
To find the most effective candidate place of a load shedder among an operator
path, our solution is to compute all potential places of that load shedder among
the path. The best place along that path is the place where the load shedder
has maximal place weight. The place weight of a load shedder is defined as the
percentage of computation time units α it can save to the relative error ε in
its final results introduced by that load shedder through dropping one tuple for
one time unit there. Let v(d) be the maximal drop rate that a load shedder can
introduce at a potential place, then

W =
α

ε
; where ε =

v(d)

vshedder

and α =
v(d)

CS
−

vshedder

CO
shedder

(5.6)



where CS is the processing capacity of the segment starting from the opera-
tor right after the load shedder until the root node (excluding the root node)
along the operator path; CO

shedder is the processing capacity of the load shed-
der; vshedder is the input rate of the load shedder, and vshedder = v

∏xn

i=x1
(σi),

x1 to xn are the operators before the load shedder starting from leaf operator,
and σi is the selectivity of the operator xi, and v is the input rate of the input
stream of the operator path.

For a query plan with k operator paths, we compute the best candidate place
for each load shedder among its k paths. However, we have to merge some load
shedder into one shedder due to the presence of multi-way operators and the
sharing segment(s) among multiple-queries. However, each shedder has its own
limitation to maximal load it can shed, which is determined by both the maximal
tolerant relative error in the final results of a query plan and its place along an
operator path.

Allocation of shedding load among load shedders We find a list of
candidate load shedders for each query plan in the system. The maximal relative
error in final query results each load shedder can introduced is the maximal
relative error limitation of the query plan to which it belongs. We also find the
total load that we have to shed in order to avoid violating the pre-defined QoS
requirements in the system. Now, the problem is to allocate the total load that
we have to shed among all the candidate load shedders in the system with a goal
of minimizing total relative errors introduced in the final query results.

By considering the total percentage of computation time units ∆ we have to
release by load shedding as the total capacity of the ship, and the relative error
εi introduced by a shedder as the weight of an item, and the load αi saved by a
shedder as the total value of the item, the problem of allocation of shedding load
among load shedders is the well known knapsack problem. The 0-1 knapsack
problem is a NP-hard problem, while the fractional knapsack problem is solvable
by a greedy strategy in O(n lg n) time, where n is the total number of candidate
shedders. In our case, fortunately, it is a fractional knapsack problem. Therefore,
the allocation of shedding load problem can be solved as following: Since we aim
to minimize the total relative errors introduced by load shedding, it is easy to
see that an optimal solution will to choose a shedder with a biggest place weight
in the system and to shed maximal load there. If the total load still exceeds
system capacity, we in turn choose the shedder that has the second latest place
weight, and shed maximal load it can shed there. We repeat this procedure until
the total load in the system is less than its capacity.

5.3 Estimation of Tuple Latency

The effective estimations of both the tuple latency and the memory requirement
of a query plan are fundamental problems in our system because they provide
approximate but important information for us to determine: (a) whether the pre-
defined QoS requirements of a query plan will be satisfied or not (in advance),
which consequently determines whether the system has the capability to accept
new queries or not; (b) which scheduling strategy is the best choice. Some strate-
gies can achieve minimal memory requirement, while others can achieve minimal



tuple latency. When the estimated total memory requirement is a bottleneck in
the system, a scheduling strategy with a goal of minimizing memory requirement
is the best choice; otherwise, a strategy which can achieve minimal tuple latency
is the best choice; (c) when to start the load shedding. When the estimated tuple
latency exceeds the predefined QoS requirement, and the best suitable schedul-
ing strategy cannot recover it back to a normal scenario, then load shedding is
the best choice.

The main idea behind estimating the tuple latency and the memory require-
ment of a query plan is to model each operator in the system as a queueing
system, in which the functionality of the operator is modeled as service facility
of a queueing system, and its input and output buffers are modeled as the input
and the output queue, respectively. As a result, the whole query processing sys-
tem is modeled as a queueing network. Furthermore, an operator in the system
works in two modes, vacation mode and busy mode, as follows: once the operator
gains the processor, which is determined by a particular scheduling algorithm, if
its input queue is empty, the operator goes to vacation immediately. Otherwise,
the processor needs a setup time and then serves a certain number of tuples
determined by a specific service discipline, such as gated-service or exhaustive-
service, using a first-come-first-served (FCFS) order, and the service of a tuple
is non-preemptive. After that, the processor becomes unavailable (to serve other
operators or to handle other tasks) for a vacation period and then returns for
further service. So each operator in the query plan is modeled as a queueing
system with vacation period and setup period.

In this model of queueing network, the queueing systems can be categorized
into three classes based on their inputs:

1. external input(s) queueing system. Intuitively, this class has only external
input(s) from a continuous data stream. Whether it is in a vacation period or
a serving period, the input tuple is inserted into its input queue immediately
whenever it arrives.

2. internal input(s) queueing system. The arrival time of a tuple from an inter-
nal input is the departure time of the output process of another operator.
Therefore, this class only has inputs during its vacation period, and there is
no input during its setup period and service period.

3. external input and internal input queueing system. This class has both inter-
nal input and external input, and its inputs are a combination of the above
two classes.

If we are able to determine the vacation period and the busy period of each
operator in the system, we are able to compute the queue size in its input
queue and the tuple waiting time at that operator (queue waiting time plus the
processing time) based on a Poisson input model. The tuple latency of a query
plan is the sum of the mean waiting times at all the operators along its operator
path. For additional details, please refer to [6].



5.4 Stream Property Monitor

In order to estimate system load and tuple latency, we have to know the input
rates of all input streams. Therefore, we design a stream property monitor to
monitor not only the arrival characteristics, but also the data properties of a
data stream. To monitor the input rate of an input stream efficiently, we sample
a series of points over the time axis. If the input rates at the last n points
have not changed too much (the change is measured by the variance of those
input rates), we decrease the sample rate, otherwise, we increase the sample
rate. This adaptive algorithm makes it possible to monitor hundreds of data
streams efficiently and effectively. A data stream has various properties such as
sortedness, clustering, and so on. Each of them has a different impact on query
optimization. Due to the fact that some properties are well-defined on some
domains while others are not defined or even not applicable, currently there
is no a standard set of data properties to monitor. We monitor the sortedness
for all data streams and clustering only when it is applicable. The sortedness
of a data stream is monitored according to a timestamp attribute or a counter
attribute. The clustering is defined as a group of consecutive tuples which have
a common value on a specific attribute. As this definition is too rigorous for
some applications, a relaxed definition – that of a group of tuples which share a
common value on a specific attribute, and the distance1 between two continuous
tuples is no more than a threshold value k can be used. Detailed information
about how those properties can benefit query processing and how to monitor
those properties are presented in papers [9]. It is worth noting that in a particular
domain, there may have more properties applicable, which can provide more
useful information for query processing.

6 Event Processing and Rule processing

The capability of detecting composite events and supporting a large number
of triggers is another important problem in order to respond to any abnormal
patterns or user-defined events in a timely manner. Traditionally, the Event-
Condition-Action (or ECA) model is used to detect composite events and pro-
cess associated rules. However, 1) the ECA model does not include does not
include stream processing and current stream processing systems have little or
no support for event detection and rule processing. 2) both the ECA model and
stream processing model employ a similar data-flow processing model for their
computations. Therefore, it is only natural to synthesize these two models and
combine their strengths into an integrated model.

6.1 An Integrated Model For Event Processing

Both ECA and stream processing models have their limitations for handling
applications that require both stream and event processing. The ECA model
has its strength in expressing and processing composite events. On the other

1 The distance between two tuples can be defined as the number of tuples between
them or the time difference of the two time stamps. It is application specific.



hand, the stream processing model is geared towards complex computation, but
it lacks event processing (e.g., to detect a sequence of events) and expressive
event specification capability. The proposed integrated model consists of three
stages: (1) CQ processing stage used for computing continuous queries over data
streams, (2) event processing stage that is used for detecting events (both primi-
tive and composite), and (3) rule processing stage to check conditions and trigger
pre-defined actions.

In our integrated model, the output of a CQ can be specified as a primitive
event. A timestamp is added to the output of a CQ to be used for event detection.
We have added stream modifiers to detect expressive changes between tuples
in a steam before they are sent to event processing. The window concept has
been generalized to create windows that are computation-based (as opposed to
temporal or tuple-based). The simplicity of our integrated model is due the
compatibility of the event detection model in Snoop and the widely-used stream
processing model .
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Fig. 2. Three Stage Integration Model

6.2 Continuous Query (CQ) Processing Stage

The CQ processing stage in our integration model processes normal CQs; it
takes streams as inputs and outputs computed continuous streams. However, we
enhance CQs to support more complicated computation requirements of many
stream applications. None of the enhancements affect the operator semantics,
scheduling algorithms, QoS delivery mechanisms, and any other components
proposed for stream data processing. First, in order to express computations
more clearly, CQs are named. The name of a continuous query is analogous to
the name of a table in a DBMS and it has the same scope and usage as that of
a table. The queue (buffer) associated with each operator in a CQ supports the
output of a named CQ to be fed into the input queue of another named CQ.



Second, the stream modifiers are introduced for CQs in order to extend the
computation of current stream processing to capture the changes of interest in
an input data stream.

A stream modifier is defined as a function to compute the changes (i.e.,
relative change of an attribute) between two consecutive states of its input data
stream. A stream modifier is denoted by

M(< s1, s2, · · · , si > [, P < pseudo >][, O|N < v1, v2, · · · , vj ] >)

where M is called the modifier function that computes a particular kind of
change. The i-tuple < s1, s2, · · · , si > is the parameter required by the modifier
function M . The following P < pseduo > defines a pseudo value for the M
function in order to prevent underflow. The following j-tuple element is called
the untouched attributes that need to be output without any change. The O|N
part is called modifier profile, which determines the oldest values or the latest
values of the j-tuple that need to be output. If O is specified, the oldest values
are output and the latest values are output if N is specified. Both untouched
attributes and modifier profile are optional.

A family of stream modifiers could be defined using the above definition of a
stream modifier. Currently, we have implemented the following three commonly
used stream modifiers in our system.

1. ADiff() is used to detect absolute changes over two consecutive states;
2. RDiff() is used to detect the relative changes over two consecutive states.
3. ASlope() is used to compute the slope ratio of two attributes over two con-

secutive sates;

6.3 Event Processing

Enhanced Events and Event Expressions: In a traditional event processing
system, primitive events are associated with operators that modify the state of
the system. can be of either class level or instance level (i.e., statically deter-
mined). In this model, the output of CQs (perhaps modified using event mod-
ifiers) are treated as events. Masks are used to further reduce the number of
events generated by a CQ and to generate multiple events from the same CQ.

Inputs to Event Processing Stage: CQs output data streams in the form
of tuples. These tuples are fed as the input event streams to the event processing
stage. The event detection graphs (EDGs) of Snoop are used in the integrated
model. We assume that each tuple in a data stream that enters the system is
time stamped or has an ordering attribute (i.e., has a monotonically increasing
sequence attribute) and can be used in the event processing stage. Any attribute
of a tuple can be used in the event processing stage for condition checking, for
masking the inputs to the event nodes, and for merging event streams.

Event Specification using Extended SQL: CQ processing model shares
the DAG processing approach with ECA processing model. Thus, by suitably
extending queries over event streams and processing them using a push model,
users’ can monitor diverse event stream combinations in a timely and mean-
ingful manner. Users can specify events based on CQs using the syntax shown



below, where CREATE EVENT creates a named event, SELECT selects the
attributes from the event stream or event expression, MASK applies some con-
dition on the events that enter that node. Event stream is either a CQ name or
an event expression that combines more than one event using event operators,
and attributes from the tuples. In addition, event stream can be replaced by the
create CQ statement.

CREATE EVENT event_name

SELECT attribute as attribute_name, ... MASK attribute_conditions

FROM (event_stream | event_expression)

Event nodes are created in the EDGs based on create event specifications.
Output from the CQ is fed as inputs to the event nodes in the EDGs as event
streams. In an EDG, leaf nodes represent primitive events and internal nodes
represent composite events. In the integrated model, input to the event nodes
can be created either by a CQ, from the underlying system or from an external
source.

6.4 Rule Processing

The rule system is responsible for executing rules (consisting of conditions and
actions). This section briefly describes how rules are defined, triggered, and ex-
ecuted.

Rule Definition: A rule is used to trigger predefined conditions and actions
once its associated event is detected. Rule properties such as coupling mode,
consumption mode and priority are provided, along with the event name and
condition associated with the rule, and the action to be performed when condi-
tions results are true. When a composite event uses this primitive event, only
the event tuples that satisfy this condition are passed on to it. Other conditions
that are pertinent to the rule, and those that are complex (i.e., any arbitrary
condition such as average, standard deviations, PL/SQL code etc.,) are specified
in the rule condition. Syntax for rule definition is shown below,

CREATE RULE rule_name [,coupling mode,consumption mode,priority]

ON event_name

RULE_CONDITION Begin; (Simple or Complex Condition); End;

RULE_ACTION Begin; (Simple or Complex Action); End;

Where ON specifies the event associated with the rule, coupling mode can be IM-
MEDIATE, DEFERRED, and DETACHED, consumption modes can be Recent,
Recent-Unique, Continuous, Cumulative, and Chronicle along with the window
specification, and priority is a numeric value used to set rule priority.

7 Prototype Implementation

Currently, we have a prototype implementation of the proposed system in C++.
It consists of a CQ engine, a resource manager, a stream manager, a query/operator
scheduler, a load shedding manager, a QoS manager, and a rule manager.



The CQ engine compiles a named CQ into a query plan and registers it
with the system. It is capable of processing various select-project-join queries
with simple aggregate operators and stream modifiers presented in this paper.
However, currently the query plans in the system are static query plans, which
are not optimized and cannot adapt to changes in input characteristics and
system load. The operators instantiated in the current system include project,
select, join, group-by, stream modifiers such as ADiff, RDiff, ASlope,
and some aggregate operators, such as max, min, average, count, and special
operators for streaming data processing, such as duplicate, split, and drop.
The window type of a stream operator is implemented as a semantic window,
which can be specified using proposed semantic expression proposed in this paper
in a CQ.

The ECA manager and rule processing component brings the event and rule
processing components implemented in our Sentinel system to our MavStream
system. Its basic role includes management of various ECA rules and provide an
effective means to continuously detect events, evaluate conditions, and execute
per-defined actions once it detects corresponding events.

8 Conclusion and Future Work

In this paper, we have identified a number of issues related to CQ processing in
a sensor environment, and presented our solutions for these issues. First, a fam-
ily of scheduling algorithms are discussed. Then the load shedding approaches
are discussed. Finally, the integrated model is presented that combines complex
event processing with stream processing. The integrated model greatly enhances
current stream data model horizontally and vertically to combine event process-
ing and rule processing with stream processing.
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