
Integrated Electronic Health Record Access by Object
Object Versioning and Metadata

Tore Mallaug1,2, Kjell Bratbergsengen2

1 Faculty of Informatics and e-Learning,
Sør-Trøndelag University College

NO-7004 Trondheim, Norway
torem@aitel.hist.no

2 Department of Computer and Information Science,
Norwegian University of Science and Technology

NO-7491 Trondheim, Norway
{torem, kjellb}@idi.ntnu.no

Abstract. Digitization of personal health data facilitates easier and timely data
access in integrated healthcare services and in medical or (historical) demo-
graphic research. We suggest a common middle layer framework that repre-
sents data content, related schemas and possible ontologies as temporal object
versions on a timeline. Bidirectional and bi-temporal object versioning are in-
cluded. The versioning is extended to accept mappings to none-existing (po-
tential) data value versions in time. We enrich this framework by including
temporal representation of mappings, and by adding metadata elements related
to temporal data change and mapping generation. Such metadata is useful proc-
essing database requests from different local applications in the time space. The
paper also provides examples and a short discussion of certain useful metadata
elements. The usage is exemplified by XML with elements related to the Elec-
tronic Health Record (EHR) case.

1 Introduction

1.1 A Data Versioning Solution for the EHR-case

In a modern integrated health care system the need for collected personal health data
is increasing [1,2,3]. To establish an independent national personal EHR (Electronic
Health Record) [4] centered around each person makes it easier for citizens to collect,
manage and control their own health data. This future EHR stores both the most up-
dated version and all older versions of a person’s health data. The data is collected
from different service providers (hospitals, doctors, dentists, ...), different health
related registers and other information on general health conditions, living conditions,
and more over time. This scenario asks for a safe and timely common access to the
overall EHR system, managed under tight restricted access control, Today such a
service does not exist. Message passing exchange between heterogeneous frag-
mented health information systems is the only way to aggregate health data about a

given person. Our approach is to build a common (national) middle layer framework
for such a data access and data collection, linked to a common database solution for
the integrated EHR. We are going from a message passing system to a data sharing
system. Because of legal problems and organizational problems a realization of our
middle layer and a related database is impossible for the time being. A fully inde-
pendent national personal health record database requires reforms in laws. The man-
agement of such a national database must be independent of service providers, and
service providers must be by law obliged to document their actions in this database.
The middle layer framework uses a temporal object data model (shortly described in
[6]) that allows object versioning (like schema versioning [7]) to make it possible for
local applications to read (access) and write (store) personal health data on different
heterogeneous formats, for example formats related to aging terminology or aging
ontology. The object versioning can be implemented in a common middle layer sys-
tem. We choose to call this system the DRL – short for the Data Representation
Layer.
We are also examining how different metadata about a mapping between object ver-
sions can help in interpretation of data. Such metadata can include information about
why the mapping is needed (the cause of data changes, in some cases this is trigged
by temporal changes) and how the mapping is (was) generated, including information
about the mapping (match) type and the chosen mapping approach in the mapping
generating process. Note that all mapping examples in the paper are sub-mappings
between sub-elements in two object versions.

1.2 Research Objectives

In this paper we focus on some versioning problems for our temporal object data
model on the middle layer. The database layer is not discussed. Different research
questions can be discussed concerning an implementation of our DRL (Data Repre-
sentation Layer) system. We touch three questions in the following:

1. How to represent mappings between object versions? Each individual (sub-)
mapping has to be related to a mapping rule represented in a well-known
language, for example XSLT [8].

2. How to approximate inexact (sub-) mappings when needed and how to han-
dle impossible (sub-) mappings? To this question we include how to repre-
sent metadata about approximations, and how to representation errors if a
requisite result is impossible to generate. An approximation may be moti-
vated by medical profession reasons related to the semantic of the data.

3. How to represent and store metadata about causes of data changes. The
causes are linked to temporal changes, both structural and semantically
changes [6]. In some cases data changes are related to changes in ontologies
[9], for example changes in the conceptualization of the data.

1.3 Temporal Object Data Model

It is necessary to represent and store different temporal objects (instances) and rela-
tionships between objects in the time space. We need object versions with their own
global temporal OID, a way to represent and store sets of different time stamps re-
lated to each object (the model is bi-temporal [10,11]), and a way to represent and
encapsulate the stored data content in object versions.
We use object versioning to handle different requests (database queries) from local
user applications, it means we handle temporal versioning both forward and back-
ward in time. We choose to implement this by mappings between object versions, and
to represent and store the mappings as own temporal objects as well. We do not pre-
sent a single mapping algorithm for generating new mappings between object ver-
sions. Our suggested data model for the framework has to be general enough to ac-
cept such temporal changes in data representation over a very long-term time span,
like a person’s lifetime (100 years).

Time

D0
xml

D1
xml

S0
dtd

A1

Data representation layer (DRL)

S1
xmls

valid start time
stamps for
object versions

MS0
xslt

MD0
xslt

A0

VIEW0

VIEW1

Time

D0
xml

D1
xml

S0
dtd

A1

Data representation layer (DRL)

S1
xmls

valid start time
stamps for
object versions

MS0
xslt

MD0
xslt

A0

VIEW0

VIEW1

Fig. 1. Example of temporal object versions in the DRL

Fig.1 illustrates some object versions and links between them in the DRL. Each ob-
ject version is temporal and has an own start time stamp (start time may indicates the
transaction-time [10,11] for an object) on a time axis in the DRL-system. In Fig.1 we
operate with three different object types. Data objects (D0 and D1) are validated ac-
cording to schemas stored in own schema objects (S0 and S1, respectively). A bidirec-
tional schema mapping between S0 and S1 is represented by an own mapping object
denoted MS0. In addition it is possible to have a mapping object denoted MD0 for
representing a bidirectional data value mapping between D0 and D1, that we call data
(content) versioning (instance-level in [12]). In some cases we may have data ver-
sioning between instances of the same schema version - means versioning without

any schema update. Also, data versioning can be needed if a schema versioning (map-
ping) gives inexact results for some of the sub-elements involved.
Fig. 1 also shows two local applications denoted A0 and A1. A0 and A1 are imple-
mented to access and store data of the type D as given by S0 through VIEW0 and by
S1 through VIEW1, respectively. A0 may needs to access D1 through S0, while A1
may needs to access D0 through S1. We do not require A0 to be re-implemented or
recompiled to read data in D1 [7] or to write new data versions in the most updated
format (here S1). If both D0 and D1 exist in the DRL, a direct value (data) mapping
between sub-elements can be generated and stored in MD0. However, if D1 does not
exist yet, potential (new) values according to S1 for sub-elements in D0 may be
needed (Section 3.3.1 shows a similar situation backward in time). It is less likely that
old EHR-data is updated if e.g. medical practice is changing and a new schema ver-
sion is introduced, and new EHR-data may be converted to old formats only when
required (as in lazy mechanism of converting data [13]).
In the following, section 2 shortly mentions how our research relates to other work.
Section 3 describes how different metadata elements can be used related to different
temporal issues and mapping problems. Section 4 shortly shows an example using
XSLT. Section 5 summarized.

2 Related Works

2.1 Data and Schema Versioning

In our data model (in DRL) we adopt the following definitions from schema version-
ing [7]: A database system supports schema evolution if it permits modification of the
database schema without loss of data. A database accommodates schema version if it
allows the querying of all data, both retrospectively and prospectively through defin-
able version interfaces (VIEW0 and VIEW1 in Fig.1). Our approach allows both
schema and data (instance) versioning, as [12] distinguished between schema- and
instance-level. This is implemented by a log-only solution (e.g. [14]), where no old
schema or data content versions are ever deleted, but any update is stored as a new
object version. DRL has to represent the versioning process, and the implementation
for the bidirectional mapping between versions in time. This means that DRL has to
represent a schema mapping generating process between already defined (ready to
use, and in some cases already in use) schemas that are not necessary meant for being
a part of such a versioning.

2.2 Integrated Health Information Systems

It is a lack of interoperable EHR systems (e.g. [15]). Studies on an integrated EHR
[3,16,17,18] so far suggest message exchange solutions through a middle layer in
health data networks or Internet. None of these projects focus on common temporal
data representation frameworks or common database solutions.

Implemented standards and solutions are related to electronic massage passing ex-
change between local systems, for example MedXML [19] and HL7 [20]. Such stan-
dards typically represent health data as single documents in the time space. It is pos-
sible to link documents in MedXML, but the standard does not give any hints about
versioning between new and old data elements. The MedXML documentation as-
sumes that the most updated data is the data of interest though this is not a limitation
in MedXML’s message standard. Mapping solutions are suggesting mapping to and
from a common message passing format, but not between different local representa-
tions.
It is research on representation of change in medical terminologies, e.g. [21], and
metadata in interoperability between health information systems is discussed e.g. by
[22]. Our use of metadata is not directly related to medical usage, but our general
framework approach in DRL.

3 Metadata Elements for Data Change and Mapping

3.1 Object Versioning

Metadata is data that describes other data to enhance its usefulness. In our case we
add metadata elements to the representation of (sub-) mappings in object versioning.
In this section the meaning and usage of these elements are discussed. Section 4
summarized some of these elements in a XSLT-template. We can call a (metadata)
element for representing a sub-mapping itself: subMapping - a complex element
representing a sub-mapping between elements in two objects.

3.2 Metadata about Causes of Data Change

We include the metadata element: cause - this element shows the reason for a given
data change, and by that the reason for a mapping between two versions of the data.
The value of the element can be one (or many) standardized constant, that indicates
for example (possible causes discussed in [6]) a simple entity update (no structural or
semantically change), a temporal change without any structural or semantically
change, or a temporal change caused by structural and / or semantically schema or
ontology change, e.g. cases where ontology evolution is applicable [9]. An extension
of the model in Fig.1 is to represent a temporal change as an own object with a tem-
poral OID as well, since the change has an influence on the internal query and map-
ping processing (see the temporalHandlers element) in the DRL.

3.3 Temporal Data Change Perspectives

The object versioning has to be seen in relation to different temporal perspectives, or
dimensions, on a time axis. It is important to call attention to the fact that our version-
ing not only focusing on the newest, or most updated, versions of data content, but
has to be able to handle requests from applications that need older data versions and
older data representations (schema and ontology versions) as well. Such a perspective
gives several temporal problems that can be discussed.
A possible metadata element: temporalHandlers - a set of sub-elements con-
cerning the different temporal change perspectives. Such metadata can for example be
useful for tools in the DRL when processing queries, e.g. to consider constraints on
results from a specific time interval. Below we shortly discuss some examples related
to such temporal perspectives.

3.3.1 “Overlapping” Temporal Changes

We say that two or more temporal changes are “overlapping” if (sub-) changes caused
by one of these temporal changes may results in “loss” of semantically knowledge
about specific data content updates. To exemplify the problem we use a simple case
showing updates on citizen’s postal address code. This particular case is partly spa-
tial, and can be used in demographically health research. The postal code 7873 in
Fig.2 is not in use anymore on the date 01.10.2005 and citizens having the code 7873
are split into two possible new codes, 7800 NO or 7700 NO (This change in the Nor-
wegian postal address system is hypothetical for the matter of the example). In this
example we have a value mapping from D0 → D1, that is (‘7873’ → ‘7800 NO’) or
(‘7873’ → ‘7700 NO’). For object instances (citizens) that exist before this temporal
change at the date 01.10.2005, a semi-automatically tool in DRL can choose which of
the two alternative mappings above that work for every specific object (in co-
operation with a system end user). At the same time as the mapping generating proc-
ess decides the right mapping for D0 → D1, the value mapping D1 → D0 is also gen-
erated to make the mapping bidirectional.

7700 NO

7800 NO
Time

01.10.2005

7873 Hamar 7800 NO / 7700 NO
(7873 not used anymore)

case 1

7700 NO

7800 NO
Time

01.10.2005

7873 Hamar 7800 NO / 7700 NO
(7873 not used anymore)

case 1

Fig. 2. Example of temporal update of a postal code (from [6])

However, if a new citizen moves to the geographically post block ‘7800 NO’ after the
change (after 01.10.2005), we do not know if the value mapping (‘7800 NO’ →

‘7873’) holds for this new instance. From an ordinary object versioning point of view
such a mapping back in time is not meaningful since this person did not live at ‘7873’
before the actual temporal change, but for our bidirectional view this problem is rele-
vant. Say if the local application A0 requests the postal code in the (old) format of
‘7873’ after the change of 01.10.2005 (as in Fig.1), we can only return citizens that
lived at ‘7873’ at the time before the change, not the new citizens that lives there after
the change. This example shows that an “old” temporal change can give “loss” of
semantically knowledge in future data changes (in this case a future entity update).
This means that a temporal change not only influence existing object versions by the
time the change occurs, but may also influence future object versions that are intro-
duced after the temporal change in time.
This problem asks for an own separate representation of the temporal change as a
temporal object with an OID. Such a temporal change representation makes it possi-
ble to generate mappings back in time when a new object (instance) is introduced in
the time space, since the DRL tool then can search back to find temporal changes of
interest during the process of generating bidirectional mappings for the new object
version.

3.3.2 Indirect Mappings

Say, if we have an object version A, and a newer introduced version B, there might
be a sub-mapping from A to B that is impossible or inexact. Later in time a newer
version C is introduced, and the sub-mapping from A to C can still be possible even if
A → B does not work. In real this situation asks for a change to generate a “new”
sub-mapping from A by the time C is introduced, or in other words a “re-generating”
of the mappings from A forward in the time space.
An example is if the postal code 7873 belonging to the post office “Hamar” is not in
use by the postal service for a given time period and citizens having code 7873 are
given the neighbor post office code 7870 “Oslo” from 01.10.2000 to 01.10.2002. At
01.10.2002 the code 7873 is reopened (Fig. 3).

Time

01.10.200201.10.2000

7873 Hamar 7870 Oslo
(7873 not in use)

7873 Hamar 7870

7904

7760

7880

7873case 2

Time

01.10.200201.10.2000

7873 Hamar 7870 Oslo
(7873 not in use)

7873 Hamar 7870

7904

7760

7880

7873case 2

Fig. 3. Example of temporal update of a postal code (from [6])

Time

D0
7873 S0

MD0

MD1

t1 = 01.10.2000 D1
7870

D2
7873

t2 = 01.10.2002

ti

Time

D0
7873 S0

MD0

MD1

t1 = 01.10.2000 D1
7870

D2
7873

t2 = 01.10.2002

ti

Fig. 4. Example of object versions and a time interval ti

If a person moves to “Hamar” during the time sequence between 01.10.2000 and
01.10.2002, it is impossible to generate a mapping back in time to the period before
01.10.2000 since “Hamar” does not exists as a post office at the time this person
moves to the area. However, after 01.10.2002 the person’s postal code is updated
from 7870 to 7873, and by then a mapping back to before 01.10.2000 is possible (it is
an equal value map 7873 → 7873, a link from D0 to MD1 is illustrated as a dotted line
in Fig. 4).

3.3.3 “Impossible” Temporal Database Queries

For a certain time interval a given query can be “impossible” to process, or returns an
inaccurate result. Say we have a query Q1 and a time interval given by the time
stamps t1 and t2. Processing Q1 before t1 and after t2 can be ok, but in between t1
and t2 (illustrated as the time interval ti in Fig. 4) on the time axis Q1 may give a
wrong or inexact result. This problem is from temporal databases where a query re-
turns different results when evaluated at different times [11].
If t1 and t2 are the dates in postal code example in Fig. 3 and if Q1 is the following
SQL SELECT:
SELECT Person.* FROM Person
WHERE post_office = ‘Hamar’ AND date = ‘01.01.2001’;

At the date Q1 requires, the post office value is “Oslo” instead of “Hamar”. The of-
fice element was updated at the date 01.10.2000 when “Hamar” stopped to exist as a
post office, and the citizens in “Hamar” got the same post office as for the citizens of
“Oslo”. However, after that update it is impossible to know who are living in
“Hamar”, and because of that it is difficult to process Q1 for the required date. To
return all citizens of “Oslo” as a result (meaning using a value mapping from
“Hamar” to “Oslo”, that is a legal mapping from an object versioning point of view)
will return too many entities (citizens).

3.4 Mapping Approach and Problematic Mappings

In general a mapping that works in both direction has to be 1:1 (one-to-one and injec-
tive). A mapping that is M:1 (many-to-one) in one direction does not have any in-
verse mapping. For example a well-defined functional approach on implementation of
mapping rules is then impossible. In such cases a 1:1 -mapping has to be generated by
adding knowledge about the semantic of the data directly from medical professional
end-users or if possible by using knowledge given by ontologies, or the mapping is
terminated (if such a solution is accepted). Such a case can for example be caused by
changes in the data value domain of an element. An example is if the blood pressure
is represented as an integer value in one schema version and as a string value (e.g. a
value domain of the possible values; “low”, “normal”, or “high”) in another version.
For example a “high” blood pressure is a value higher than 130 +/-2 (mm Hg systolic
pressure), meaning we have critical values from 128 to 132, and the mapping result
(in the direction from the string to the integer) is never exact. Such a problem is criti-
cal if the local application acceptance of approximation in the returned result is low
or not accepted.
Recall Fig.1. Say D0 stores the blood pressure value as the string above, while D1
stores the same value as the integer above. We may have the following scenario: The
most updated version of the blood pressure element has the value “high” and is stored
in D0. A local application A1 wants to read the value as an integer type according to a
schema version S1, but D1 does not exist - it is just a potential version. An approxima-
tion has to be done when generating a value mapping D0.string → D1.integer. The
reason for the approximation can be based (and justified) by a medical domain spe-
cific approach related to the semantic of the data. The approach can also be given by
a temporal conceptual change in the interpretation of the result, like a paradigm shift
in medicine. In this example two general mapping solutions are as follow:
Mapping: D0.string → D1.integer

 Solution 1: “high” → n, where n is an integer digit validated by S1

 Solution 2: “high” → TERMINATED (an impossible mapping)

First, the fact that the mapping result is generated by a specific approach, like a num-
ber approximation, is stored and linked to information about the mapping algorithm
(represented by syntax readable for applications in the future). Second, the reason
why the approach was chosen in this particular case is stored as well. Some com-
ments on each solution:
Solution 1: The decision of a selected approach is taken by a health care profes-
sional end-user based on a medical assessment. Such assessments can be based on
known (medical) ontologies (e.g. ontologies mentioned in [23]), or by present prac-
tice in health care or medicine.
Solution 2: In the “terminated” case we suggest that the DRL offers a set of well-
defined constants used to describe “default” reasons of why a number is not present
in D1. This can still be interpreted as a legal value, even if no number value is given
for D1. However, it is not sure that A1 can read such a constant, so this solution does
not work in all cases, e.g. if the value is critical in emergency. Possible constants are

(but not limited to): NULL that indicates an empty value (as in databases), ERROR
that indicates an mapping attempt that was considered as impossible during the map-
ping generation process (given that such an error is acceptable in the particular case),
and TERMINATED that indicates an end of a temporal line of (sub-) element ver-
sions in the temporal space (for example caused by a paradigm shift in medicine).
The same solutions for the above example can be discussed for the opposite temporal
direction: Mapping: D1.integer → D0.string

Solution 1: 130 → s, where s is a string validated by S0

 Solution 2: TERMINATED → ERROR

Solution 1: An approach can decide that 130 in D1 are transformed to “high” in
D0. However, this mapping works for any value in the range from 128 and higher in
D1, so a question is if this approximation is acceptable. Using this solution the proc-
ess is equal to the mapping D0 → D1. A professional end user has to make a decision
on how the value 130 (if this value in D1) is transformed to a legal string in D0.
Solution 2: In the “terminated” case it is impossible to generate a value for D0
back in time, unless an end-user can generate the value mapping manually.
A metadata element: mappingInfo - shows information about a mapping and the
related mapping generating process, like the mapping approach (or matching) related
to different types in a classification of schema matching [12], e.g. a match can be
linguistic (name) based or constraint-based. Another mapping approach is to build
mappings on a generic schema evaluation across data models as in [24].

3.5 Audit Data

A metadata element: audit - shows audit data about the mapping process, and has a
logging purpose. What were done by whom? Audit data is not discussed in this paper.

4 An Implementation of a Mapping and Metadata

Presume that the data content of the different objects in Fig. 4 (from the postal code
example in Fig. 3) is represented in XML-technology. The following XSLT-template
is a part of the data content of the mapping object MD0 and shows metadata elements
for the mapping from D0 to D1 at the time stamp t1. A similar metadata set can in-
clude the mapping from D1 to D0 as well. The element subMapping represents the
mapping between the two postal codes. The complex element metadata includes
the sub-elements mentioned in Section 3.2 to 3.4. A hierarchical structure of sub-
elements can represent information of different levels of details. More research is
needed on temporalHandlers to support help in the temporal problems of Sec-
tion 3.3. The element tempQueryHandle can be used to identify change in the

"post_office" entity (specified by S0) and to identify interval ti when generating
metadata for MD1 at t2.

<xsl:template match="/">
<xsl:element name="subMapping">
 <xsl:element name="postcode">
 <xsl:value-of select="element/postcode"/>
 </xsl:element>

 <xsl:element name="metadata">
 <xsl:element name="cause">
 <xsl:element name="changeID">
 OID.Temporal </xsl:element>
 <xsl:element name="changeCategory">
 <xsl:element name="changeType">
 Temporal Set Update </xsl:element>
 <xsl:element name="changeSchema">
 none </xsl:element>
 </xsl:element>
 </xsl:element>
 <xsl:element name="mappingInfo">
 <xsl:element name="mappingType">
 Absolute Direct </xsl:element>
 <xsl:element name="mappingMethod">
 Value </xsl:element>
 <xsl:element name="mappingProcess">
 Semi-automatical </xsl:element>
 </xsl:element>
 <xsl:element name="temporalHandlers">
 <xsl:element name="tempQueryHandle">
 <xsl:element name="entityChange">
 post_office </xsl:element>
 </xsl:element>
 </xsl:element>
 </xsl:element>
 <xsl:element name="audit"> not present </xsl:element>
</xsl:element>
</xsl:template>

The database storage of all objects and metadata can be done in relations tables in-
cluding time stamp attributes for ensuring the temporal dimension of the data content,
for example [25] have relation tables for a bi-temporal database. Alternatively in this
example some data may be stored as XML, e.g. in an object-relational database or a
native XML-database. However the pure relational table solution is more general, and
can ensure a normalized database.

5 Conclusion and Future Research

5.1 Future Research

Future work includes considering if semantically knowledge from (temporal) sub-
ontologies can increase the efficiency of generating new mappings between object
versions. It is a question how to generate all needed mappings and their metadata in a
cost-efficient semi-automatically way. Manually mapping will be very time-
consuming and also over-complex, since the end user has to consider temporal
changes that may have occurred in the past. A DRL system tool has to help the end
user to firstly; find all the needed mappings, secondly; suggest possible mapping
values for each mapping, and thirdly; help generating desirable related metadata.
Such a mapping generation process can for example be related to an ontology evolu-
tion strategy described in [26].
Future research is needed to test how metadata can improve the query processing in
the DRL-system in the respect of the query result quality. One question is how to
raise the quality of inexact results from approximate mappings by active use of stored
metadata about mappings and temporal changes in the DRL. Examples of implemen-
tation can be done in a conventional programming language, for example Java.

5.2 Conclusion

From a database point of view, the major problem for realization of our temporal data
object framework is the handling of all kinds of mappings between versions of data
content, schemas and possible ontologies. This paper provides some guidelines of
adding interesting metadata elements to sub-mappings in our framework's object
model. Such metadata include information about why the mapping is needed (the
cause of data changes, in some cases this is trigged by temporal changes) and how the
mapping is (was) generated. The metadata about a mapping between object versions
can help in interpretation of data. The paper shows examples on such usage and re-
lates these to the temporal perspectives in our case. We link the problems to the reali-
zation of a future integrated Electronic Health Record (EHR). However, it is in the
nature of our framework that the usage is not limited to a particular application do-
main. The framework is general enough to represent and store any data content re-
lated to temporal perspectives.

References

1. Dick R.S, Steen E.B, Detmer D.E (Eds.). The Computer-Based Patient Record - An Essen-
tial Technology for Health Care, Revised ed., Institute Of Medicine, National Academy
Press 1997.

2. Fagan L.M, Shortliffe E.H, The Future of Computer Applications in Health Care, Chapter 20
in Medical Informatics - Computer Applications In Health Care and Biomedicine, Springer-
Verlag 2001, ISBN 0-387-98472-0

3. Office of Health and the Information Highway Health Canada. Canada Health Infoway:
“Paths to Better Health”, Final Report of the Advisory Council on Health Infrastructure,
February 1999 (http://www.hs-sc.gc.ca).

4. Waegemann C.P. The five levels of electronic health records, in M.D. Computing, Vol.13
No.3 1996

5. van Bemmel JH, Musen MA (ed.). Handbook of Medical Informatics, Springer 1997, ISBN
3-540-63351-0

6. Mallaug T, Bratbergsengen K. Long-term Temporal Data Representation of Personal Health
Data, in LNCS 3631 / 2005, ADBIS 2005, Tallinn, Estonia, September 2005, Proceedings.

7. Roddick J F. A survey of schema versioning issues for database systems. Information and
Software Technology, Vol. 37, No. 7, 1995, pp. 383-393.

8. http://www.w3.org/TR/xslt
9. Flouris G, Plexousakis D, Antoniou G. Evolving Ontology Evolution. SOFSEM 2006, Pro-

ceedings, LNCS 3831 Springer 2006.
10. Jensen et al. A consensus glossery of temporal database concepts. SIGMOD record, 23(1),

1994.
11. Clifford, Dyreson, Isakowitz, Jensen, Snodgrass. On the Semantics of ”now” in Databases.

ACM Transactions on Database Systems, Vol. 22, No.2, 1997.
12. Rahm E, Bernstein P.A. A survey of approaches to automatic schema matching. The VLDB

Journal 10, 2001.
13. Tan L, Katayama T. Meta Operations for Type Management in Object-Oriented Databases,

DOOD 1989.
14. Nørvåg, K. VAGABOND The Design and Analysis of a Temporal Object Database Man-

agement System, Dr. ing. thesis, Norwegian University of Science and Technology, ISBN
82-7984-097-4

15. Berner et al. Will the Wave Finally Break? A Brief View of the Adoption of Electronic
Medical Records in the United States, Journal of the American Medical Informatics
Association, Volume 12, Number 1, Jan / Feb 2005.

16. Grimson J. Delivering the electronic healthcare record for the 21st century, in International
Journal of Medical Informatics 64 (2001).

17. Tsiknakis, Katehakis, Orphanoudakis. A health information infrastructure enabling secure
access to the life-long multimedia electronic health record, CARS 2004 / International
Congress Series 1268 (Elsevier 2004).

18. Katehakis, Sfakianakis, Tsiknakis, Orphanoudakis. An Infrastructure for Integrated
Electronic Health Record Services: The Role of XML (Extensible Markup Language), The
Journal of Medical Internet Research, Volume 3, 2001 (http://www.jmir.org).

19. MedXML Consortium. http://www.medxml.net/E_mml30/MMLV3Spec.pdf
20. ANSI/HL7 Standard Version 2.4 Application Protocol for Electronic Data Exchange in

Healthcare, 2000
21. Oliver, Shahar, Musen, Shortliffe. Representation of change in controlled medical

terminologies, AI in Medicine, 15(1), 1999.
22. Salzano G, Bourret C. Identification and Composition of Metadata for Cooperative

Information Systems – Illustration on the health information systems, at FIS 2005,
http://www.mdpi.org/fis2005/

23. Gomez-Perez A., Fernandez-Lopez M., Corcho O. Ontological Engineering, Springer,
2004.

24. Prakash N, Srivastava S. Engineering Schema Transformation Methods, EMSISE 2003.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Katehakis:Dimitrios_G=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/o/Orphanoudakis:Stelios_C=.html
http://www.informatik.uni-trier.de/%7Eley/db/series/ics/index.html
http://www.informatik.uni-trier.de/%7Eley/db/series/ics/index.html

25. Wei H-C, Elmasri R. Study and Comparison of Schema Versioning and Data Conversion
Techniques for Bi-temporal Databases, Sixth International Workshop on Temporal Repre-
sentation and Reasoning, Orlando, Florida 1999.

26. Stojanovic L, Maedche A, Motik B, Stojanovic N. User-Driven Ontology Evolution Man-
agement, EKAW 2002, LNCS Volume 2473, 2002.

	1.1 A Data Versioning Solution for the EHR-case
	1.2 Research Objectives
	1.3 Temporal Object Data Model
	2.1 Data and Schema Versioning
	2.2 Integrated Health Information Systems
	3.1 Object Versioning
	3.2 Metadata about Causes of Data Change
	3.3 Temporal Data Change Perspectives
	3.3.1 “Overlapping” Temporal Changes
	3.3.2 Indirect Mappings
	3.3.3 “Impossible” Temporal Database Queries

	3.5 Audit Data
	5.1 Future Research
	5.2 Conclusion

