
Personalizing Mobile Fitness Apps using Reinforcement
Learning

Mo Zhou
Department of Industrial

Engineering and Operations
Research

University of California,
Berkeley, CA, USA

mzhou@berkeley.edu

Yonatan Mintz
Department of Industrial

Engineering and Operations
Research

University of California,
Berkeley, CA, USA

ymintz@berkeley.edu

Yoshimi Fukuoka
Department of Physiological

Nursing
Institute for Health & Aging,

School of Nursing
University of California, San

Francisco, CA, USA
yoshimi.fukuoka@ucsf.edu

Ken Goldberg
Department of Industrial

Engineering and Operations
Research

University of California,
Berkeley, CA, USA

goldberg@berkeley.edu

Elena Flowers
Department of Physiological
Nursing, School of Nursing

University of California, San
Francisco, CA, USA

elena.flowers@ucsf.edu

Philip Kaminsky
Department of Industrial

Engineering and Operations
Research

University of California,
Berkeley, CA, USA

kaminsky@berkeley.edu

Alejandro Castillejo
Department of Industrial

Engineering and Operations
Research

University of California,
Berkeley, CA, USA

castillejo.alejandro@berkeley.edu

Anil Aswani
Department of Industrial

Engineering and Operations
Research

University of California,
Berkeley, CA, USA

aaswani@berkeley.edu

ABSTRACT
Despite the vast number of mobile fitness applications (apps)
and their potential advantages in promoting physical activity,
many existing apps lack behavior-change features and are not
able to maintain behavior change motivation. This paper de-
scribes a novel fitness app called CalFit, which implements
important behavior-change features like dynamic goal setting
and self-monitoring. CalFit uses a reinforcement learning
algorithm to generate personalized daily step goals that are
challenging but attainable. We conducted the Mobile Student
Activity Reinforcement (mSTAR) study with 13 college stu-
dents to evaluate the efficacy of the CalFit app . The control
group (receiving goals of 10,000 steps/day) had a decrease in
daily step count of 1,520 (SD ± 740) between baseline and
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10-weeks, compared to an increase of 700 (SD ± 830) in the
intervention group (receiving personalized step goals). The
difference in daily steps between the two groups was 2,220,
with a statistically significant p = 0.039.
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Intelligence: Learning; K.4.1 Computers and Society: Public
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INTRODUCTION
Regular physical activity (e.g., walking or running) is an impor-
tant factor in preventing the development of chronic diseases
like type 2 diabetes, cardiovascular disease, depression, and
certain types of cancer [33, 55, 56]. Because of its impor-
tance in maintaining good health, the 2008 Physical Activity
Guidelines for Americans recommend that adults engage in
at least 150 minutes a week of moderate-intensity physical



Figure 1. Screenshots of the main tabs of the CalFit app are shown, including the (a) splash screen, (b) home tab, (c) history tab, and (d) contact tab.

activity or 75 minutes a week of vigorous-intensity aerobic
physical activity [51, 55]. However, about 50% of adults in
the U.S. [15] are physically inactive. In fact, over 3 million
deaths worldwide are attributed to physical inactivity [54].

Given the high prevalence of physical inactivity, it is necessary
to develop new cost-effective, scalable approaches to increase
physical activity. One promising direction is the use of smart-
phones in the delivery and personalization of programs that
motivate individuals to increase their physical activity. Over
40% of adults worldwide and 77% of adults in the U.S. own
a smartphone [45]. Smartphones have powerful computation
and communication capabilities that enable the use of ma-
chine learning and other data-driven analytics algorithms for
personalizing the physical activity programs to each individ-
ual. Furthermore, the past several generations of smartphones
integrate reliable activity tracking features [2, 14, 18, 25],
which makes possible the real-time collection of fine-grained
physical activity data from each individual.

Though many smartphone applications (apps) for fitness have
been developed, systematic reviews [8, 10, 39, 53] of mobile
fitness apps found an overall lack of persuasive attributes that
are needed for the general public to maintain exercise moti-
vation through continued use of the app. These reviews [10,
53] also identified a lack of experimental validation for the
efficacy of specific features implemented in mobile fitness
apps. For instance, recent studies [28, 36, 47] have shown
that constant step goals provided by existing apps and devices
are ineffective in increasing physical activity and such a one-
size-fits-all approach could even be harmful for some people.
Therefore, maintaining user participation and motivation is
a core challenge in developing effective physical activity in-
tervention platforms, and the personalization of goals within

fitness apps through intelligent user interfaces [16, 21, 30, 48,
52] has shown promise in promoting healthy behavior. Sim-
ple heuristics , such as setting the future goal to be the 60th
percentile of the steps taken in the past 10 days, has shown to
be effective in promoting physical activity [1]. But few stud-
ies have investigated the potential of using more complicated
Machine Learning-based approaches to set personalized step
goals.

In this paper, we introduce a novel fitness app on the iOS plat-
form, CalFit, which automatically sets personalized, adaptive
daily step goals and adopts behavior-change features such as
self-monitoring. The daily step goals are computed using a
reinforcement learning algorithm [5, 40] adapted to the con-
text of physical activity interventions: Our app uses inverse
reinforcement learning to construct a predictive quantitative
model for each user, and then uses this estimated model in con-
junction with reinforcement learning to generate challenging
but realistic step goals in an adaptive fashion. We conducted a
pilot study with 13 college students to demonstrate the efficacy
of our app and the personalized adaptive step goal algorithm
in promoting physical activity.

We first discuss related work and the theory of goal setting in
relation to behavior change. Next we describe the designed
elements. Our contributions toward the app design include
translating elements and features from the theory of goal set-
ting into interface design choices for mobile fitness apps, as
well as the design of a reinforcement learning algorithm that
generates personalized step goals for users. Next we describe
our contributions towards experimental validation of the effi-
cacy of our app design, through conducting the Mobile Student
Activity Reinforcement (mSTAR) study.



RELATED WORK
In this section, we review work on the intersection of mobile
technologies and behavior modification programs. First, we
describe key studies showing the efficacy of combining mo-
bile technologies with clinical coaching to increase physical
activity. Next, we describe behavior change features and their
use in the design of mobile fitness apps. Finally, we survey
the theory of goal-setting. Identified weaknesses in existing
apps and ideas on the theory of behavior change are used to
inform our design of the CalFit app.

Smartphone-based Clinical Trials
Physical activity interventions that involve multiple in-person
coaching sessions are costly and labor-intensive, and so re-
searchers have evaluated the feasibility and efficacy of lower-
cost interventions where the number of coaching sessions are
reduced (but not eliminated) in parallel with the introduction
of mobile technologies (e.g., smartphone apps, digital pedome-
ters, activity trackers) [7, 11, 12, 13, 17, 19, 20, 23, 26, 29, 32,
44, 46]. These studies ranged in size from about 10 to several
hundred participants. Both smartphones and personal digital
assistants (PDA’s) were used to deliver these interventions,
and the interface outputs were predominately text with some
interventions involving simple graphic comparisons to goals.

These interventions featured different levels of interactivity,
ranging from general weekly text messages to customized text
messages based on real-time monitoring of physical activity
and other additional inputs. For instance, the mobile weight
loss program in [11] used weekly input from overweight chil-
dren to send computer-generated text messages. Most studies
[7, 11, 12, 13, 17, 20, 23, 29, 32, 44] asked participants to
self-report dietary, weight, and exercise data. A smaller num-
ber of studies [19, 26] have explored the use of automated
collection of exercise data either through accelerometer data
that is wirelessly transmitted via Bluetooth to a smartphone
[26] or the use of digital pedometers to collect step data [19].

Most of these studies had outcomes of a statistically signifi-
cant decrease in weight or a statistically significant increase in
physical activity [7, 11, 13, 17, 20, 23, 29, 32, 44], supporting
the potential advantages of mobile-based physical activity in-
terventions. However, none of these studies relied solely on
mobile technology. All of these studies involved in-person
coaching sessions during the intervention (though the number
of coaching sessions was lower than in traditional behavior
modification programs) and either used objectively measured
outcomes using an additional device or self-reported outcomes.
The weight or exercise goals in these interventions were man-
ually set by the participants or the clinicians.

Mobile Fitness Apps and Behavior Change Features
Mobile fitness apps have the potential to be a scalable way of
disseminating behavior change interventions in a cost-effective
manner. In addition to being able to deliver interventions
through wireless internet and messaging connectivity, smart-
phones can also leverage in-built tools like GPS, digital ac-
celerometers, and cameras to objectively measure (as opposed
to self-reported data) health parameters. However, systematic
reviews [8, 10, 39, 53] of current mobile fitness apps found a

lack of features that can effectively initiate and maintain the
behavioral changes necessary to increase physical activity.

The low efficacy of current mobile fitness apps is due pri-
marily to this lack of inclusion of important features based
on behavioral theory [8, 10, 39, 53]. Examples of key be-
havior change features include: objective outcome measure-
ments, self-monitoring, personalized feedback, behavioral
goal-setting, individualized program, and social support. In
particular, researchers recommend that self-monitoring should
be conducted regularly and in real-time, so as to target activity
with precise tracking information and emphasize performance
successes. In addition, personalized feedback is most effective
when it is specific, such as in comparing current performance
to past accomplishments and previous goals.

Goal Setting
Goal setting is a critical factor for facilitating behavior change
[9, 37]. Prior studies using persuasive technology usually
assigned a fixed goal to all participants (e.g., 10,000 steps per
day) [3, 28, 36], but a fixed goal fails to capture the differences
between participants (different baseline physical activity level,
reaction to goals, etc). Conversely, personalized goal setting
have the potential to increase the effectiveness of physical
activity interventions. Simple heuristics, such as setting the
future goal to be the 60th percentile of the steps taken in the
past 10 days, has shown to be effective in promoting physical
activity [1]. But few studies have investigated the potential of
using more complicated Machine Learning-based approaches
to set personalized step goals.

In recent years, human-computer interaction (HCI) studies
have investigated interface design for goal-setting. Munson
et al. [41] developed a smartphone app that implements pri-
mary (base) and secondary (stretch) weekly goals and found
that such a personalized goal-setting approach can be bene-
ficial. However, the app lacks an explicit algorithm to help
participants set “sweet spot” goals based on their past behav-
ior. DStress [34] algorithmically sets daily goals based on
previous performance, where if the daily goal is achieved for
the day, then a more difficult goal is assigned for the following
day and vice versa. Though this can effectively set adaptive
goals, the goals for high variance targets (like steps) can be
highly variate, which leads to reduced intervention impact.
For example, if a participant normally walks 8,000 steps but
walks 1,000 steps on one day, then using the 1,000 value as
the baseline to set the step goal for the following day will
lead to a too-easy goal. A more comprehensive algorithm is
needed to incorporate all previous performance information
to decide the “sweet spot” of future goals in a personalized
fashion. In this paper, we describe a novel algorithm based
on Reinforcement Learning that set goals ’smartly’ by first
learning the behaviors of each participant and then determines
the most effective future goal in an adaptive fashion.

THE CALFIT APP
CalFit is a mobile fitness app that uses key behavior change
features to improve effectiveness. It combines a personal-
ized goal setting algorithm and a structured interface with
regular self-monitoring and feedback to provide an adaptive
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Figure 2. The CalFit app interface uploads step data to a SQL database on a server, and the stored step and goals data is accessed by the Behavioral
Analytics Algorithm (BAA) comprised of inverse reinforcement learning to estimate model parameters describing the user and followed by reinforce-
ment learning to compute personalized step goals that will maximize the user’s future physical activity. The personalized step goals are stored in the
SQL database and communicated to the user via the CalFit app interface.

and individualized physical activity intervention. This sec-
tion discusses the design of the interface, communication, and
computation elements of our app, which are shown in Figure
2.

Interface
The CalFit app interface is built for the iOS platform. Upon
opening the app interface, the user first sees the splash screen
(Figure 1a) and then lands on the home tab (Figure 1b). On
the home tab, the user can find his/her step goal for the day
and the steps done so far today. The steps are tracked in
real-time using the built-in health chip on the iPhone and are
updated every 10-minutes. (Accuracy of step data collected by
the built-in health chip on the iPhone and other smartphones
has been validated by several studies [2, 14, 18, 25].) This
design facilitates direct comparison between daily step goals
and objectively measured daily steps in order to enhance self-
monitoring.

There are two icons at the bottom of the home tab. If the left
icon on the home tab is clicked, the user is shown the history
tab (Figure 1c) that displays a barplot outlining the user’s
performance in the past 7 days. The black lines on each bar
represent the step goal, and the height of each bar represents
the actual measured steps. If the user achieved the goal, then
the bar is green. If the user did not achieve the goal, then
the bar is red. This tab is designed to provide a quick, yet
comprehensive, visualization of the user’s past performance,
allowing the user to quickly identify days of successes and
failures. If the right icon on the home tab is clicked, the user
is directed to the contact tab (Figure 1d), where they can type
in a message and send it to the research team regarding their
concerns, app bugs, etc.

Behavioral Analytics Algorithm (BAA)
Automated goal setting is a crucial component of the CalFit
app. To set personalized goals that are challenging yet attain-
able for each user, we use a reinforcement learning algorithm
[5, 40] that we have adapted to the context of physical activity
interventions. The Behavioral Analytics Algorithm (BAA)
uses inverse reinforcement learning to construct a predictive
quantitative model for each participant, based on the historical
step and goal data for that user; then, it uses the estimated
model with reinforcement learning to generate challenging but
realistic step goals in an adaptive fashion.

Below, we elaborate upon the mathematical formulations un-
derlying these steps of BAA. Since the BAA algorithm does
calculations for each user independently of the calculations
for other users, our description of the algorithm (and accom-
panying models) is focused on calculations for a single user.

Stage 0 – Predictive Model of User’s Step Activity
Our predictive model is based on a model from [5, 40] for
predicting weight loss based on steps and diet, and we have
adapted that model to the specific case of only predicting step
activity. Let the subscript t denote the value of a variable on
the t-th day of using the app, and define the function (x)− as

(x)− =

{
x, if x≤ 0
0, if x > 0

(1)

Our predictive model for the number of steps that the user
takes on the t-th day is

ut = argmax
u≥0
−(u−ub)

2 + pt · (u−gt)
−, (2)

where ut is the number of steps the user (subconsciously) de-
cides to take, ub ∈ R+ is a parameter describing the user’s
natural (or baseline) level of steps in a day, and pt ∈ R+ is a



parameter that quantitatively characterizes the user’s respon-
siveness to the goal gt ∈ R+.

The general idea of (2) is that users make decisions to max-
imize their utility or happiness related to several objectives.
The −(u−ub)

2 term means a user has an ideal level of steps
they prefer to take in a day, wherein the user is implicitly trad-
ing off a small number of steps in a day (and the dissatisfaction
accompanied by physical inactivity) with a large number of
steps in a day (and the effort and time required to achieve many
steps). The parameter ub quantifies this baseline number of
steps that achieves this tradeoff for the user. The pt · (u−gt)

−

term means a user gets increasing happiness the closer their
steps are to the goal gt , and pt describes the rate of increase
in happiness as the steps get closer to the goal; however, this
model says that exceeding the goal results in no additional
happiness. A more complex model would include a term to
describe an increase in happiness as the goal is exceeded, but
a detailed study [5] found that not including this additional
term still produced a model with high prediction accuracy.

There is one additional component to our predictive model.
Equation (2) describes how a user decides the number of
steps to take on the t-th day. The theory of goal setting [9,
37] recognizes that the effectiveness of goals can increase or
decrease over time, depending on the level of the goals and
whether or not an individual was able to meet the goals. To
quantify these effects, our predictive model includes

pt+1 = γ · pt +µ ·1(ut ≥ gt) , (3)

where γ ∈ (0,1) characterizes the user’s learned helplessness,
µ ∈ R+ quantifies the user’s self-efficacy, and 1(·) is the indi-
cator function. Self-efficacy is defined as a user’s beliefs in
their capabilities to successfully execute courses of action, and
it plays an essential role in the theory of goal setting [9, 37].
Self-efficacy influences a variety of health behaviors, includ-
ing physical activity [31, 38]. Though γ will be different for
each individual, the past study [5] found that setting γ = 0.85
generated models with high prediction accuracy.

There are several points of intuition about (3). The term
µ ·1(ut ≥ gt) describes the relationship between self-efficacy
and meeting goals. When a user achieves a goal, 1(ut ≥ gt)
is one and pt+1 increases by µ . Achieving a goal increases
the user’s self-efficacy, leading to increased steps on future
days. But if the user misses a goal, then 1(ut ≥ gt) is zero and
pt+1 does not increase. Not achieving a goal decreases the
user’s self-efficacy, leading to lower steps in the future. The
term γ · pt describes the phenomenon whereby learned help-
lessness reduces the utility or happiness an individual achieves
for achieving goals. Consequently, (3) captures the interplay
between increasing self-efficacy from meeting specific goals
with the decrease in self-efficacy from learned helplessness.

Stage 1 – Inverse Reinforcement Learning
The BAA algorithm first uses inverse reinforcement learning
to estimate the parameters ub, pt ,µ in the predictive model
(2), (3) for a user. Denoting n measurements of the user’s
step counts at times ti as ũti , for i = 1, . . . ,n, our measurement
model ũti = uti + εi is that the observed step counts ũti deviate
from the step counts chosen in the predictive model uti by an

additive zero mean random variable εi. The study [5] found
that assuming εi has a Laplacian distribution led to an easily
computable formulation and generated accurate predictions.

Under the above setup, the inverse reinforcement learning
problem [6, 24, 35, 42] is equivalent to estimating the model
parameters ub, pt ,µ . This problem can be formulated as a
log-likelihood maximization [5, 40]. If we define H to be the
duration of the intervention, then we can write this estimation
problem as a bilevel optimization problem

min
n

∑
i=1

∣∣uti − ũti

∣∣
s.t. ut = argmax

u≥0
−(u−ub)

2 + pt · (u−gt)
−

pt+1 = γ · pt +µ ·1(ut ≥ gt)

0≤ pt ,µ ≤ UBp

0≤ ut ,ub ≤ UBu

(4)

where the constraints hold for t = 1, . . . ,H, and UBp,UBu are
constants that are upper bounds on the possible values. Exist-
ing numerical optimization software is not able to solve the
above problem, but we can rewrite it as a mixed-integer linear
program (MILP) [5, 40]. Let δ be a small positive constant,
and M be a large positive constant. The above optimization
problem can be rewritten as the following MILP:

min
nu

∑
i=1

ati

s.t. −ati ≤ uti − ũti ≤ ati

ut =
1
2 (λ1,t +λ3,t)+ub

0≤ λ3,t ≤ pt

(gt −δ )−Mx1,t ≤ ut ≤ gt −δ +M(1− x1,t)

(gt −δ )−M(1− x2,t)≤ ut ≤ gt +δ +M(1− x2,t)

(gt +δ )−M(1− x3,t)≤ ut ≤ gt +δ +Mx3,t

pt −M · (1− xt,1)≤ λ3,t ≤M · (1− x3,t)

ut ≤Myu,1

λ1,t ≤M · (1− yu,t)

pt+1 ≥ γ · pt

pt+1 ≤ γ · pt +M · (1− xt,1)

pt+1 ≥ γ · pt +µ−M · xt,1

pt+1 ≤ γ · pt +µ

xt+1,1 ≥ xt,1−1(gt+1−gt < 0)
xt+1,2 ≤ xt,2 +1(gt+1−gt < 0)
xt+1,3 ≤ xt,3 +1(gt+1−gt < 0)
xt,1 + xt,2 + xt,3 = 1
yu,t ,xt,1,xt,2,xt,3 ∈ {0,1}
λ1,t ≥ 0
0≤ pt ,µ ≤ UBp

0≤ ut ,ub ≤ UBu

(5)

where the constraints hold for t = 1, . . . ,H and i = 1, . . . ,n.
The above MILP can be easily solved using standard optimiza-
tion software [4, 22, 27].



Stage 2 – Reinforcement Learning
Under our setup, the reinforcement learning problem [40, 49,
50] for computing an optimal set of personalized goals for the
user is equivalent to performing a direct policy search using
the estimated model parameters ûb, p̂0, µ̂ computed by solving
(5). Adapting the solution in [40] to the current context of
choosing an optimal sequence of step goals leads to a MILP:

max umin

s.t. umin ≤ ut , for t > T
−δ ≤ ut − ût ≤ δ , for t ≤ T
−δ ≤ pt − p̂t ≤ δ , for t ≤ T

ut =
1
2 (λ1,t +λ3,t)+ ûb

0≤ λ3,t ≤ pt

(gt −δ )−Mx1,t ≤ ut ≤ gt −δ +M(1− x1,t)

(gt −δ )−M(1− x2,t)≤ ut ≤ gt +δ +M(1− x2,t)

(gt +δ )−M(1− x3,t)≤ ut ≤ gt +δ +Mx3,t

pt −M(1− xt,1)≤ λ3,t ≤M(1− x3,t)

ut ≤Myu,1

λ1,t ≤M(1− yu,t)

pt+1 = γ pt + µ̂(1− x1,t), for t > T
xt+1,1 ≥ xt,1−gind,t , for t > T
xt+1,2 ≤ xt,2 +gind,t , for t > T
xt+1,3 ≤ xt,3 +gind,t , for t > T
xt,1 + xt,2 + xt,3 = 1
gt+1−gt ≤M(1−gind,t), for t > T
gt+1−gt ≥−Mgind,t , for t > T
yu,t ,xt,1,xt,2,xt,3,gind,t ∈ {0,1}, for t > T
λ1,t ≥ 0
0≤ pt ≤ UBp

0≤ ut ≤ UBu

(6)

where T is the current time, and the remaining constraints
hold for t = 1, . . . ,H and i = 1, . . . ,n. The intuition is that
the above MILP picks future goals in order to maximize the
smallest number of steps on any given day in the future, and
the reason for this choice is that in our simulations we found
that this objective function choice led to the largest increases
(as compared to other possible objective function choices) in
physical activity. Moreover, the above MILP can be easily
solved using standard optimization software [4, 22, 27].

Feedback via Push Notification
Using the BAA algorithm, the CalFit app is able to adaptively
set personalized step goals for users. To optimize the impact
of this goal-setting algorithm, we implemented feedback fea-
tures via iOS push notifications. Each user receives at most
two push notifications each day. The first push notification
is received by every user at 8:00am, and it notifies the users
about their goal for the day. The second push notification at
8:00pm is only received by users who successfully achieved
their step goal for the day. Note the standard iOS push notifi-
cation is used (i.e., appears in both the landing page and the
recent notifications tab), and a user receives push notifications

regardless of whether or not the CalFit app interface is on; and
if the push notification is clicked, it will lead to the homepage
of the app interface. The benefit of sending push notifications
is two-fold: First of all, we want to constantly engage the users
to implicitly remind them to continue using the app interface.
This is particularly important for fully automated physical ac-
tivity interventions since users have a lower intention to adhere
due to the lack of in-person coaching sessions. Secondly, the
congratulating push notifications can be seen as customized
assessment/feedback to users on their daily performance.

Implementation Details
The CalFit app consists of two parts: The interface of the
iOS app (including push notifications) and the BAA dynamic
goal setting algorithm. The backend of the CalFit app was
implemented via the Parse API [43] running on an Intel Xeon
E5-2650 v3 2.3GHz Turbo server with 16GB RAM. The server
was running CentOS 6.6, and the data was stored in an SQLite
database on the same server. The BAA algorithm was written
in Python, and the MILP’s were solved using Gurobi [22]. The
running time for BAA to recommend goals for a single user
was less than one second on average, which is in line with the
benchmarks from [5] for personalizing a weight intervention.

THE mSTAR STUDY
To experimentally evaluate the efficacy of the CalFit app and
personalized goal setting using the BAA algorithm, we con-
ducted the Mobile Student Activity Reinforcement (mSTAR)
study with college students in University of California, Berke-
ley (UCB). The main research question was: Does setting
personalized step goals increase user’s steps compared to fixed
step goals? The secondary research question was: Does set-
ting personalized step goals improve adherence? The study
was approved by the Committee for Protection of Human Sub-
jects of the University of California, Berkeley (IRB Number
2016-03-8609) in July 2016. All participants provided written
informed consent prior to study enrollment.

Methodology
To evaluate the above hypotheses, we designed the app so that
each user is randomly assigned to either the control group or
the intervention group upon joining the study. Users in the
control group received constant step goals of 10,000 steps
everyday during the trial, whereas users in the intervention
group received personalized step goals computed by the BAA
algorithm. Both groups received the morning and evening
push notifications.

Participants
We recruited UCB students by sending email announcements
to departments. Recruitment started in January 2017 and
ended in February 2017. Interested students were directed to
complete an online survey to assess eligibility, and eligible
students were encouraged to sign-up for an in-person session
to complete enrollment in the study and install the app. The
students were randomly assigned to either the control group
or the intervention group upon installation of the app.

The inclusion criteria was: being a full-time UCB student,
intent to become physically active, own an iPhone 5s or newer



All Users (N=13) Control (N=7) Intervention (N=6) p-value
Mean (± SD) Mean (± SD) Mean (± SD)

Baseline daily average steps 6,163 ± 1,822 6,829 ± 2,023 5,387 ± 1,309 0.16
Age (years) 22.2 ± 2.9 21.6 ± 2.3 23.0 ± 3.5 0.40
Weight (kg) 70.4 ± 23.9 73.7 ± 31.9 66.5 ± 20.8 0.61

% (N) % (N) % (N)
Gender 0.88

Male 23.1 (3) 14.3 (1) 33.3 (2)
Female 76.9 (10) 85.7 (6) 66.6 (4)

Ethnicity 0.85
Asian 23.1 (3) 28.6 (2) 16.7 (1)
Hispanic/Latino 15.4 (2) 14.3 (1) 16.7 (1)
White (non-Hispanic) 23.3 (3) 28.6 (2) 16.7 (1)
Other 38.5 (5) 28.6 (2) 50.0 (3)

Marital Status 1.00
Currently Married/Cohabitating 7.7 (1) 14.3 (1) 0.0 (0)
Never Married 92.3 (12) 85.7 (6) 100.0 (6)
Divorced/Widowed 0.0 (0) 0.0 (0) 0.0 (0)

Year in School 0.52
Freshman 0.0 (0) 0.0 (0) 0.0 (0)
Sophomore 15.4 (2) 28.6 (2) 0.0 (0)
Junior 30.8 (4) 28.6 (2) 33.3 (2)
Senior 23.1 (3) 14.3 (1) 33.3 (2)
Graduate 30.8 (4) 28.6 (2) 33.3 (2)

Own a Dog 1.00
Yes 7.7 (1) 14.3 (1) 0.0 (0)
No 92.3 (12) 85.7 (6) 100.0 (6)

Transportation to Work 0.43
Car 23.1 (3) 28.6 (2) 16.7 (1)
Public Transportation 7.7 (1) 14.3 (1) 0.0 (0)
Walk 61.5 (8) 42.9 (3) 83.3 (5)
Bicycle 7.7 (1) 14.3 (1) 0.0 (0)

Table 1. Comparison of Baseline Characteristics shows that the differences between participants in the control and intervention groups were not
statistically significant, which is expected since participants were randomly assigned to groups.
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Figure 3. The objectively measured daily steps of the control group and the intervention group over the 10-week study period show the statistically
significant difference in the number of daily steps at the end of the study. The plotted values are computed by averaging the raw data over each user
in the corresponding group, adjusting the baseline value based on the value computed from the LMM model, and then smoothing the data using a
standard (nonparametric) Nadaraya-Watson estimator.



model, and willing to carry the iPhone during the study period.
The exclusion criteria was: preexisting health conditions that
may make participation unsafe, having participated recently
in a physical activity or weight loss intervention, and regularly
taking 20,000 steps in a day. We excluded students who took
20,000 steps per day because it is not possible to increase
activity by using our app if they were at that activity level
(since the BAA algorithm uses 20,000 steps as the upper bound
for the goal), and the procedure was that students satisfying
the other criteria were enrolled and then excluded if 20,000
steps was observed in the step data collected.

Study Procedure
Eligible users were required to attend two 15-minute in-person
sessions (one at baseline and one at study conclusion). The
first in-person session occurred in January 2017 and the second
occurred in May 2017. During the first in-person session, a
trained research staff member installed the CalFit app on users’
phones and advised them to carry the phone on their person
everyday during their participation in the study. The users
were randomly assigned to either the control group or the
intervention group upon app installation. No other in-person
sessions were conducted during the study period to simulate a
fully smartphone application-based study environment, which
is similar to the environment of most fitness apps.

The users started a 1-week run-in period after the first in-
person session. All users received identical daily step goals
of: 3000, 3500, 4000, 4500, 5000, 5500, and 6000 steps. This
set of adaptive run-in steps goals was designed to engage the
users in using the application regularly. Also, the morning and
the evening push notifications were sent to all eligible users.
Because the same step goals were provided to both the control
and intervention groups, we were able to collect run-in daily
steps data when both groups received identical treatment.

After the 1-week run-in period, the daily step goals for users in
the control group (N=7) were set to 10,000 steps/day through
the CalFit app, whereas the daily step goals for users in the
intervention group (N=6) were set by the BAA algorithm.
The BAA algorithm was applied every week (to mitigate the
impact of large step variance), and it computes the step goals
for the following 7 days. Both groups received morning and
evening push notifications. The study lasted for 10-weeks,
and participants could earn up to a $25 Amazon gift card for
completing all parts of the study, including attending a final
in-person session.

RESULTS
Table 1 shows the baseline characteristics of the participants.
The overall mean age was 22.2 (SD ± 2.9) years and 77% of
the participants were female. The baseline mean daily step
in the control group was slightly higher than that in the inter-
vention group, but the difference is not statistically significant
(6,829 steps versus 5,387 steps, respectively; p = 0.16). The
p-values in Table 1 were computed using t-tests for continuous
variables and χ2-tests for categorical variables.

Physical Activity Outcomes
The primary outcome of the study is the objectively measured
daily steps from baseline to 10-weeks. We conducted our

statistical analysis of the primary outcome of daily steps us-
ing a linear mixed-effects model (LMM) [31, 33, 38] with
random effects for each individual of random slope and ran-
dom intercept, and fixed effects of time, intervention group,
and interaction term of time and intervention group. This
analysis found that the control group had a decrease in daily
step count of 1520 (SD ± 740) steps between baseline and
10-weeks, compared to an increase of 700 (SD± 830) steps in
the intervention group. The difference in daily steps between
the two groups was 2220 (p = 0.039) with a 95% confidence
interval of (100, 4480), which is a statistically significant dif-
ference. The step goals computed by the BAA algorithm were
on average between 6,000 steps and 8,000 steps. They varied
between different users and days resulting from its adaptive
and personalized nature.

Figure 3 shows the change in daily steps over the 10-week
study period, and for fair comparison we baseline-adjusted the
plotted steps by adding the coefficient corresponding to each
group (i.e., control or intervention) computed by the LMM
model. Despite the slightly higher steps in the intervention
group, the daily steps of the two groups did not differ substan-
tially in the first 5 weeks. However, in the last 3 weeks, the
intervention group had an average increase of 1,000 steps and
the control group had an average decrease of 2,000 steps. We
suspect that we fail to see differences in the early weeks due to
the initial stimulation of participating in a fitness program. As
time went by, the excitement from participation cooled down
and the impact of the BAA algorithm started to dominate. We
further defined adherent users to be those who used the Cal-
Fit app for 80% of the days during the study period. Under
this criterion, 2 of the 7 users in the control group and 1 of
the 6 users in the intervention group were identified as non-
adherent. However, the difference in adherence percentage
was not statistically significant (p = 0.61) between the two
groups, primarily due to the small sample size.

Results of Qualitative Interview
During the second in-person session at 10-weeks, a trained
research staff member interviewed the users on their experi-
ence. All users agreed that the CalFit app was easy to navigate,
required minimal effort on the user side, and the number of
push notifications was about right. One user in the intervention
group told us, “I am excited to know my step goal every morn-
ing! I know I am doing well if my goal increases, and I know
I need to keep up when my goal decreases.” Another user
in the control group, however, stated, “The goals are always
the same. It’s impossible for me to get that many steps so I
stopped tracking.”

DISCUSSION
The mSTAR study reveals the potential of using personalized
step goals to facilitate physical activity. Interestingly, users’
daily steps did not increase at a constant rate over the 10-week
period. Rather, we observe that the daily steps of the two
groups did not differ significantly in the first 5 weeks. But
in the last 3 weeks, the intervention group was taking many
more steps than the control group. We believe that in the first
several weeks, physical activity was driven by users’ initial
enthusiasm with the start of their participation in the study.



However, when this enthusiasm wore out after 5 weeks, we
observed significant difference in physical activity behavior
between the two groups, suggesting the potential of using the
CalFit app (and its underlying features such as the automated
generation of personalized step goals using reinforcement
learning) to deliver physical activity interventions.

DESIGN IMPLICATIONS
There are two major challenges associated with providing fully
automated smartphone-based physical activity interventions.
The first challenge is supporting users through key behavior
change features and effective goal-setting in order to increase
their level of physical activity. The second challenge is en-
suring sustained maintenance of any increases in physical
activity initiated by an intervention. Typical physical activ-
ity interventions address these challenges through frequent
in-person coaching sessions, which are effective in initiating
and maintaining behavior change. Since in-person coaching is
expensive, mobile physical activity interventions seek to lower
costs by reducing the amount of coaching. As a result, meeting
these two challenges is substantially more difficult for fully
automated smartphone-based physical activity interventions.

The mSTAR study demonstrates the potential of adopting
behavior-change features and using personalization in mobile
physical activity interventions to address these challenges. In
particular, we found that sending one or two push notifica-
tions serves as a useful reminder. Furthermore, users prefer
apps that do not require too much time and effort. Features
that require regular user input, such as setting personal goals
or keeping a diary to record steps/food intake, can create a
burden on app adherence. Another main design choice is per-
sonalization. The BAA algorithm that sets personalized step
goals for users is shown to be effective in increasing daily
steps. Providing challenging but yet attainable goals can in-
duce goal-achieving incentives, and giving daily feedback on
performance (i.e., reminder push notification on daily goal and
congratulating push notification) further reinforces exercise
motivation. Conversely, fixed steps goals (10,000 steps/day)
with no personalization can be unrealistically high or too easy
to achieve and hinders users from progressing to be active.

Future designs of mobile fitness apps should consider person-
alized interventions, including but not limited to goals, push
notifications, and displays. In addition, algorithms for goal-
setting should take the complete history of the user as the
basis to generate future interventions, particularly when the
input and target metrics have high day-to-day variations. Im-
plementing behavior change features, such as self-monitoring
and summary feedback on performance, can further motivate
physical activity. Overall, the app should be easy to navigate
and require minimum manual inputs from users, particularly
by using algorithms to automate personalization.

LIMITATIONS AND FUTURE WORK
One limitation of our study is the relatively small sample size.
A larger scale study should be performed to further confirm the
findings. In addition, the population of the study is university
students, who may not be as concerned about their physical
wellness as other populations (i.e., middle aged and elderly

adults managing their chronic diseases). Another limitation
is that the study lasted for only 10-weeks, so the long-term
impact of the CalFit app is unclear.

In the future, we would like to extend our observations fur-
ther by studying hypotheses in three directions. Firstly, how
do different goal setting sources (i.e, self-set, trainer-set, and
machine set) impact the intervention outcome? Secondly, how
do different dynamic goal setting algorithms impact the in-
tervention outcome? In particular, it would be beneficial to
unveil if the success of this study is due to the BAA algorithm
or due to the fact that step goals are not steady. We would
like to compare the BAA algorithm to simpler analytical algo-
rithms, such as, for example, setting the goal to be the 60th
percentile of the steps in the past week. Thirdly, we would like
to isolate the impact of the various design features (i.e., push
notification, history tab, etc.) to provide recommendations on
the most effective features to future fitness app designers.

CONCLUSION
We developed a novel fitness app called CalFit to track and
deliver physical activity interventions. The app implements
a reinforcement learning algorithm adapted to the context of
generating personalized and adaptive daily step goals for each
user so that the goals are challenging but attainable. Further-
more, the app adopts many behavior change features such
as self-monitoring and customized feedback. A pilot study
with 13 university students demonstrated that setting personal-
ized step goals resulted in 2,200 more daily steps than setting
steady step goals (of 10,000 steps/day) after 10 weeks. We
believe the CalFit app (and its underlying features like the au-
tomated generation of personalized step goals using reinforce-
ment learning) has the potential to deliver physical activity
interventions in a fully automated fashion. A large scale, ran-
domized controlled trial of a fully automated physical activity
intervention is warranted.
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