
MDSS: A framework for the integration of ontology
mapping tools

Gabriele Marcelli
IASI - CNR

Viale Manzoni, 30
00185 Roma, Italy

Email: marcelli@ing.univaq.it

Tania Di Mascio
University of L’Aquila

Monteluco di Roio
67040 L’Aquila, Italy

Email: tania@ing.univaq.it

Fulvio D’Antonio
IASI - CNR

Viale Manzoni, 30
00185 Roma, Italy

Email: dantonio@iasi.rm.cnr.it

Abstract— In the last period there has been a prolifer-
ation of tools that support users in discovering mappings
among given ontologies in an automatic or semi-automatic
way. However the way such tools are developed is un-
standardized: they usually differ in input/output formats,
type of user interaction and external resources exploited,
hindering the possibility of making them interoperate (for
example composing different mapping algorithms). In this
paper we propose MDSS (Mapping Discovery Support
System) a framework for the integration of mapping
tools, aiming at solving interoperability issues among
different mapping discovery tools and at supporting users
in choosing the best suited mapping discovery algorithm
for their needs.

Keywords— ontology alignment, ontology mapping,
mapping discovery, service-oriented architecture.

I. INTRODUCTION

The Semantic Web proposes a common framework
that allows data to be shared and reused across dif-
ferent applications, enterprises and community bound-
aries. In the current web, resources (such as documents,
web pages, etc.) contain data expressed in a machine-
readable, but not machine-understandable form. For the
Web to scale, programs must be able to share and process
data even when these programs have been designed to-
tally independently. The Web can reach its full potential
only if it becomes a place where data can be shared and
processed by automated tools as well as by people. To
this end ontologies play a crucial role that allow the
formalization of semantics of information and enable
interesting reasoning operations such as verification of
consistency, equivalence and so on.

However, as it is plausible that a single universal
ontology can not be built, we must expect an explosion
in the number of ontologies, even when considering the
same domain. For these reasons, a key challenge in

building the Semantic Web is to enable interoperability
among different ontologies. Ontologies can interoperate
only if correspondences between their elements have
been identified and established. At the moment, if a prob-
lem of this type is encountered, the mapping is mainly
achieved by hand. But this task is tedious, error-prone,
and time consuming; therefore the manual solution of
the ontology interoperability problem is likely to become
a bottleneck in building a network of cooperating in-
formation management systems. Hence, introduction of
new methodologies and user-friendly tools that support
users (knowledge engineers) in discovering semantic
correspondences is crucial to the success of the Semantic
Web. For instance, in order to discover semantic corre-
spondences, knowledge engineers generally must possess
a high degree of technical skill, and a deep knowledge
of algorithms employed.

Our system aims at solving the issue of interoperabil-
ity among different mapping discovery tools and it also
aims at supporting users in choosing optimal mapping
discovery algorithms.

The paper is structured as follows: in Section II
we present the problem of ontology mapping discovery
and the various issues connected with it; in Section
III we propose our abstract framework highlighting the
architecture and its information flow; in Section IV we
give an implementation of the framework using Web
Service technology; a brief state of the art is described
in Section V.

II. THE ISSUES OF MAPPING DISCOVERY

In this work we deal with the mapping discovery
process, that is the process of finding mappings between
two ontologies; it is, in other words, the identification of



relations holding among the entities in the two ontolo-
gies (concepts and properties equivalence/subsumption,
similarity degrees etc.). The process is also known
in literature as ontology matchmaking ([3]), ontology
alignment ([6]), or ontology mapping ([16]), where the
key terms mapping and alignment have been defined
in [6] as follows: mapping is “a formal expression
that states the semantic relation between two entities
belonging to different ontologies”, and alignment is a set
of correspondences between two ontologies expressed as
mappings.

However, as stated before, performing mapping dis-
covery is a complex process, and as long as it will require
a deep human intervention it will be highly expensive
and hardly scalable.

Therefore, the hope is to automatize as much as
possible the process (see for instance in [16] and [18])
and that is the main reason for proliferation of tools
that support users in discovering mappings among given
ontologies; they usually make possible computation of
alignments in an automatic or semi-automatic way - see
[12] and [16].

These tools may be characterized by the following
function (see [6]):

A′ = f(O1, O2, A, P,R)

where A′ is the result alignment, O1, O2 are the source
ontologies, A is some previously known alignment be-
tween O1 and O2, P is a set of parameters, and R is
a set of external resources used in the process.

We have chosen to adopt these definitions in order to
abstract from implementation details of mapping discov-
ery tools and to have a unifying view about their features;
moreover, this characterization of mapping discovery
tools is a first step toward definition of a “mapping dis-
covery algebra” (e.g. formally representing the iteration
and composition of mapping discovery tools).

mapping 
discovery

tool

O1

O2

A A'

R

P

Fig. 1. The mapping discovery tools schema

Figure 1 describes the Input/Output schema of map-
ping discovery tools, but it does not highlight that
alignments (A,A′) represented by tools and parame-
ters/resources (P,R) of tools are not standard; therefore
composition of mapping algorithms from different tools
is hard, when not impossible at all. Moreover the choice
of mapping discovery strategies is not supported by tools,
and user interaction strongly differs among them; in
other words, the focus of mapping discovery tools (as
clarified for instance in [16]) is on the performance of
mapping discovery, it is not on users (the knowledge
engineers).

We conclude highlighting two open issues of mapping
discovery process we deal with:

• from the system point of view: the lack of a
common platform to compose mapping algorithms
from different tools;

• from the user point of view: the lack of a strategy
to support users in performing mapping discovery
process.

III. OUR PROPOSAL: MAPPING DISCOVERY SUPPORT

SYSTEM (MDSS)

We propose a framework called MDSS (Mapping
Discovery Support System) to support users in the map-
ping discovery process using algorithms supported from
different tools; this framework is an intermediate layer
between mapping tools and knowledge engineers; MDSS
cooperates with existing tools to compute alignments (it
is not another mapping discovery tool).

MDSS aims at solving the two open issues mentioned
in Section II, providing the following main features:

• it handles low-level details regarding input and
output of each tool;

• it supports users in the choice of mapping discovery
algorithms.

Low-level handling of inputs and outputs makes easier
composition of algorithms from different tools; more-
over, this also simplifies access to supported mapping
tools, providing a single and uniform interaction modal-
ity.

The choice of mapping algorithms requires a high
level of technical knowledge; in order to simplify this
choice, we propose a new approach: the mapping algo-
rithm chosen is obtained thanks to a set of qualitative
parameters. More details of this approach are described
in Section III-B.

A global picture of our system is sketched in Figure 2.
Let us explain the main concepts exposed in the

diagram:



Tool 1 
adapter

Tool i 
adapter

Tool n 
adapter

Tool 1 Tool i Tool n

Core components
O1

O2

A

R

P

A'

Mapping Discovery Support System

Fig. 2. A system to support the mapping discovery process

• MDSS cooperates with existing tools to compute
alignments; access to external tools is mediated
through the adapter pattern[13] (one adapter com-
ponent for each tool),

• inputs and outputs depicted in Figure 2 have the
same meaning of inputs and outputs of Figure 1
except P , that here represents not only tool param-
eters, but also parameters of the MDSS system.

MDSS parameters are used to determine how our
system works; for instance, they are used to choose
mapping discovery algorithms, or to select particular
formats for alignment representation.

A. MDSS Architecture

We have designed MDSS architecture according to
modularity and extensibility. Modularity means that
each component not only is independent, but it also
has definite boundaries and specific goals. Extensibility
means that it is easy to extend the set of supported
mapping discovery tools; in fact, it is enough to create
a plug-in component as described below.

Main components of MDSS architecture, shown in
Figure 3, are: the Control Subsystem, the Tools and
Algorithms Registries, the Algorithm Chooser Module,
the Alignment Formats Handling Subsystem, and the
Mapping Discovery Tools Adaptation Layer.

The Control Subsystem is the core of MDSS. It
manages operations, components and resources, and it
plays the role of front controller to manage external
requests to the system. It contains the main application
controller that interacts with other components of the
system.

The Tools and Algorithms Registries are two repos-
itories; the first is the Tools Registry that contains all
the knowledge that MDSS has about integrated tools
and the second, the Algorithms Registry, contains all the
knowledge that MDSS has about algorithms of each tool.
In particular, the Tools Registry contains the identifier of

tools in the system, the set of algorithms that it provides,
and informations about supported alignment formats; the
Algorithms Registry contains the unique identifier of an
algorithm, its description, metadata about its features,
and metadata about parameters and resources managed.
The main purpose of the Tools Registry is to keep track
of tools integrated into MDSS, and it is used to interact
with them. The main purpose of Algorithms Registry is to
store metadata informations about algorithms used by the
Algorithm Chooser Module and the Control Subsystem.

The Algorithm Chooser Module implements the
logic supporting mapping algorithms choice; this choice
is made according to users requests: the Algorithm
Chooser Module extracts knowledge about algorithms
from the Algorithms Registry, where it is expressed as
sets of qualitative parameters; then these parameters
are compared to the set of preferences expressed by
users. Finally, according to users selections, the module
chooses the algorithm.

Actually, algorithms are classified on the basis of
techniques employed, in a way approximately similar
to the classification made in [12]. Algorithms choice
is then made comparing users preferences with features
of each algorithm, in a tabular fashion. We would like
to remark that our main concern in this work has been
defining our framework, while development of optimal
implementations of its components will be addressed in
future work; in particular, aspects relative to mapping
algorithms classification and selection are one of our
main lines of future research, as remarked later in
Section VI.

MDSS

Tool 1 
adaptation 
component

Tool i 
adaptation 
component

Tool n 
adaptation 
component

Control Subsystem

Tools and 
Algorithms 
Registries

Alignment Formats 
Handling Subsystem

Algorithm 
Chooser 
Module

Mapping 
discovery 
tool 1

Mapping 
discovery 
tool i

Mapping 
discovery 
tool n

Mapping Discovery Tools Adaptation Layer

Fig. 3. Architecture of MDSS



The Alignment Formats Handling Subsystem man-
ages alignment representations. This functionality is es-
sential because no affirmed standard exists (some propos-
als are in [11]). This subsystem offers both automatic and
on-demand management of alignment representations,
performed exploiting the Mapping Discovery Adaptation
Layer.

The Mapping Discovery Adaptation Layer is an
abstraction layer from mapping discovery tools; in other
words MDSS components interact only with this layer,
they never interact directly with tools. The Mapping
Discovery Adaptation Layer is composed of several
modules, one for each tool supported. Each module
is called Pluggable Mapping Discovery Module (or
PMDM), and each module is responsible of encap-
sulating characteristics of a single mapping discovery
tool. Unlike components described above, PMDMs are
not static entities of the system; they are dynamically
discovered and loaded into MDSS at startup time. They
are plug-ins, thus making MDSS easily extensible in
supporting mapping tools; in other words it is enough
writing a PMDM to add support for a specific tool.
A Pluggable Mapping Discovery Module (PMDM)
encapsulates distinctive characteristics and behaviour of
a specific tool. In particular, each module represents both
semantics and functionalities of a particular tool.

At semantic level, a PMDM provides:
• information about tools - entries in Tools Registry,
• metadata about algorithms provided by tools - en-

tries in Algorithms Registry,
• information about alignment format of tools - used

by Aligment Formats Handling Subsystem.
At functional level, a PMDM provides:
• a standard, tool-independent, communication inter-

face for higher level components,
• low-level interaction with mapping tools,
• low-level handling of tools alignment formats.
Summarizing, a PMDM is the basic component

needed to integrate tools into the MDSS architecture.
To add a new mapping discovery tool, it is enough
developing a new PMDM module and plugging it into
MDSS. In order to do that, the new tool has to support
automatic alignment computation.

B. Information flow

We will now describe the information flow among
MDSS components. We may divide this flow into two
main phases:

1) boot-up phase;

2) ready phase.

BOOT-UP PHASE

First of all, the Control Subsystem looks for available
PMDMs. For each PMDM found, the Control Subsystem
extracts metadata about integrated tool from the PMDM,
and it adds them to the Tools Registry; then, it builds
the list of algorithms provided by the tool. For each
algorithm in this list, metadata is extracted and added to
the Algorithms Registry. Now, MDSS is ready to accept
requests.

READY PHASE

When MDSS is ready, the Control Subsystem waits for
requests. This request may contain a specific mapping
algorithm name, or it contains a set of preferences that
MDSS has to use in order to choose this algorithm.

In order to determine it, the Control Subsystem sends
the set of preferences to the Algorithm Chooser Mod-
ule. This component examines the preferences, and it
selects in the Algorithm Registry the algorithm that better
matches them. The algorithm found is then sent to the
Control Subsystem.

Once MDSS knows which algorithm to use, the map-
ping process starts. First of all, the Control Subsystem
asks to the Algorithms Registry which tool implements
the chosen algorithm. Then, it queries the Tools Registry
to gather informations about the tool.

Using these information, the Alignment Formats Han-
dling Subsystem converts the input alignment to the tool
specific alignment format. The request is then dispatched
to the PMDM of the tool. At first, the PMDM filters
out inputs not supported by the tool; at second, the
PMDM invokes the tool that actually computes the align-
ment. The alignment is then converted by the Alignment
Formats Handling Subsystem to the desired alignment
format and the Control Subsystem returns it.

IV. MDSS IN A SOA CONTEXT

The design of MDSS described above is quite general;
we did not specify any implementation detail, and in
particular how such an architecture could be instantiated
in a specific context. In fact, we have designed MDSS
structure to be independent of its actual realization, be
it a stand-alone application, or a web application, etc.

An interesting possibility is instantiating it in the
context of Service-Oriented Architecture (SOA) using
Web Service technology. In such an architecture, soft-
ware functionalities are represented as discoverable ser-
vices on the network; every function is defined as



an independent service, with a well-defined invokable
interface. Main benefits of SOA are independence from
development technologies and platforms, high degree of
interoperability, easy integration of different services,
on-demand composition of simpler services to perform
complex tasks.

In this context, our goal is using the MDSS archi-
tecture to provide a mapping discovery and ontology
alignment service.

Since its beginnings the semantic web has been
thought explicitly as “an environment where software
agents roaming from page to page can readily carry out
sophisticated tasks for users” ([2]). But such an environ-
ment requires software agents to someway understand
each other, even without being expressly designed to
work together. When semantics is expressed using dif-
ferent ontologies, some kind of reconciliation service is
needed, in order to enable agent interoperability without
human intervention. To summarize: semantic web needs
semantic coordination.

A mapping discovery service could provide some of
this coordination; when two semantically enabled agents
use different vocabularies - that is, different ontologies
- they can ask the service to obtain correspondences
between them, enabling cooperation without human in-
teraction.

As an example, let’s suppose an user entrusting his
personal agent to make weekly reports on books about
themes of his interest. The user would express his
request through a specific ontology; the agent would
in turn query online books resellers - like for instance
Amazon.com or Barnes&Noble - whose books would
be described, in general, with different ontologies. Ex-
ploiting a mapping discovery service, the agent could
translate the request of the user into the vocabulary of
the reseller, obtaining the desired result.

Of course, to realize a such a service one might
simply expose as web service some existing mapping
tool; but this would lead to a different mapping discovery
service for each mapping discovery software, with poor
interoperability among them.

Instead, using the MDSS architecture as base, we
have a single service able to use mapping discovery
capabilities of a variety of tools. This is not restrictive,
since MDSS is designed to interact with remote mapping
tools, so it can even take advantage of other similar
services.

The scenario is represented in Figure 4. The core
MDSS architecture can be easily exposed as web service,
realising the mapping discovery service we described

above. Interaction with the system is so extended to other
software, and not only to human users. Remote mapping
discovery tools are also supported, since as depicted only
the tool’s PMDM is local to MDSS.

MDSS mapping discovery service

Remote Server

Web Service 
Interface

MDSS core 
architecture

Local Tool 
PMDM

Local 
Mapping Tool

uses

plugs into

exposes

Remote Tool 
PMDM

plugs into

Remote 
Mapping Tool

uses

Software Agent

Human User

consumes

consumes

Fig. 4. MDSS as a service

V. RELATED WORK

As described in Section II, mapping tools solve the
mapping discovery process issue, but it is worth noting
that there are few systems in literature explicitly designed
to solve the main issue we deal with: mapping discovery
tools interoperability.

About this issue, the INRIA Alignment API[11] is
maybe the most remarkable proposed solution. INRIA
proposes an RDF-based alignment representation format
and a Java API to handle it. Main goals of INRIA
Alignment API are:

• composition of alignment algorithms,
• iterative mapping process, through reuse of previ-

ously computed alignments,
• mapping discovery algorithms modularization.
The main focus of the INRIA system is to define an

alignment representation format and to provide an API
to work with it; in our system, we used this format due
to its flexibility; in fact it is easy (using the provided
API) to convert the INRIA format to a large number of
other formats.

Moreover, differently from INRIA, our system ex-
plicitly supports integration of “external” algorithms as
described in Section III-A. In the INRIA tool, in fact,
in order to use an external algorithm, it has to be
implemented using the provided API.

MDSS aims at playing the same role in the mapping
discovery field as the GATE system [7],[4],[5] plays in



the Natural Language Processing (NLP) field; as GATE
represents a framework for NLP, that provides a frame-
work of reusable Language Engineering components,
MDSS represents a framework for mapping discovery.

It is worth also referring to several mapping discovery
tools studied, in view of the fact that each of them pos-
sess ideas (e.g., iterative mapping discovery) supported
by our MDSS. They are FOAM [9],[10], CROSI Map-
ping System (CMS) [15],[14], and COMA++ [8],[1].

FOAM is a mapping discovery tool developed by
University of Karlsruhe. Similarly to our system (as
described in Section III-B), FOAM aims at supporting
the choice of mapping strategies using some parameters
called “scenario” and “strategy”.

CMS is a mapping discovery system developed by
University of Southhampton and HP Laboratories. Sim-
ilarly to our system, CMS supports existing mapping
tools integration; in fact it integrates the INRIA Align-
ment API and FOAM implementing an ad-hoc wrapper
for each of them. MDSS, instead, supports existing
mapping tools integration using PMDMs. This approach
(described in Section III-A) allows supporting tools with
automatic alignment computation.

COMA++, developed by University of Leipzig, is
a mapping tool proposing a composite approach to
the mapping discovery issue: different algorithms are
combined, using computed alignments as input to next
iterations of mapping process. MDSS supports the same
mapping process approach, naming it iterative mapping
discovery.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented MDSS (Mapping
Discovery Support System), a framework for mapping
tools integration, aiming at solving interoperability issues
among different mapping discovery tools and at support-
ing users in choosing the best suited mapping discov-
ery algorithm for their needs. These issues were only
partially addressed by existing solutions in literature.
We have presented MDSS as an abstract architecture,
and proposed a possible implementation based on Web
Service technology. In the future our research about
MDSS will concentrate along two lines:

• creating new MDSS integration patterns, in order
to easily integrate an increasing number of Ontol-
ogy mapping tools

• enhancing the mechanism for supporting the
user choice of an optimal mapping algorithm
(with respect to users mapping problems); this re-
quires development of a more sophisticated Deci-

sion Support System (DSS) being able to match
users problem descriptions with MDSS integrated
tools.

REFERENCES

[1] D. Amueller, H. Do, S. Massmann, and E. Rahm, “Schema
and ontology matching with coma++,” in SIGMOD, June 14-
16 2005.

[2] T. Berners-Lee, J. Handler, and O. Lassila, “The semantic web,”
Scientific American, pp. 28–37, May 2001.

[3] D. Bianchini, S. Castano, F. D’Antonio, V. D. Antonellis,
M. Harzallah, M. Missikoff, and S. Montanelli, “Digital re-
source discovery: Semantic annotation and matchmaking tech-
niques,” in Proc. of the Interoperability for Enterprise Software
and Applications Conference (I-ESA 2006), Bordeaux, France,
March 2006.

[4] K. Bontcheva, D. Maynard, V. Tablan, and H. Cunningham,
“Gate: A unicode-based infrastructure supporting multilingual
information extraction,” in Proc. Workshop on Information Ex-
traction for Slavonic and other Central and Eastern European
Languages, Borovets, Bulgaria, 2003.

[5] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham,
“Evolving gate to meet new challenges in language engineer-
ing,” Natural Language Engineering, 2004.

[6] P. Bouquet, M. Ehrig, J. Euzenat, E. Franconi, P. Hitzler,
M. Kroetzsch, L. Serafini, G. Stamou, Y. Sure, and S. Tessaris,
“Knowledgeweb deliverable 2.2.1 - specification of a common
framework for characterizing alignment,” Knowledge Web Con-
sortium, Tech. Rep., 2005.

[7] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan,
“Gate: an architecture for development of robust hlt applica-
tions,” in Proc. of the 40th Annual Meeting on Association
for Computational Linguistics. Association for Computational
Linguistics, 2001.

[8] H. Do and E. Rahm, “Coma - a system for flexible combination
of schema matching approaches,” in Proc. of the 28th VLDB
Conference, 2002, 2002.

[9] M. Ehrig and S. Staab, “Qom: Quick ontology mapping,” in
Proc. of the International Semantic Web Conference (ISWC),
2004, pp. 683–697.

[10] M. Ehrig and Y. Sure, “Ontology mapping - an integrated
approach,” in Proc. of the European Semantic Web Symposium
(ESWS), 2004, pp. 76–91.

[11] J. Euzenat, “An api for ontology alignment,” in Proc. 3rd
international semantic web conference, Hiroshima(JP), 2004.

[12] J. Euzenat, J. Barrasa, P. Bouquet, J. D. Bo, R. Dieng, M. Ehrig,
M. Hauswirth, M. Jarrar, R. Lara, D. Maynard, A. Napoli,
G. Stamou, H. Stuckenschmidt, P. Shvaiko, S. Tessaris, S. V.
Acker, and I. Zaihrayeu, “Knowledgeweb deliverable 2.2.3
- state of the art on ontology alignment,” Knowledge Web
Consortium, Tech. Rep., 2004.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[14] Y. Kalfoglou and B. Hu, “Issues with evaluating and using
publicly available ontologies,” in Proc. of 4th International
EON Workshop, Evaluating Ontologies for the Web, Edinburgh,
UK, May 2006.

[15] Y. Kalfoglou, B. Hu, D. Reynolds, and N. Shadbolt, “Crosi
project, final report,” School of Electronics and Computer
Science, University of Southhampton, Tech. Rep., 2005.
[Online]. Available: http://eprints.ecs.soton.ac.uk/11717/



[16] Y. Kalfoglou and M. Schorlemmer, “Ontology mapping: the
state of the art,” The Knowledge Engineering Review, 2003.

[17] J. Madhavan, E. Rahm, and P. A. Bernstein, “Generic schema
matching with cupid,” in Proc. 27th VLDB Conference, Roma,
2001.

[18] N. Noy, “Semantic integration: a survey of ontology-based
approaches,” ACM SIGMOD Record, 2004.

[19] P. Shvaiko and J. Euzenat, “Ontology matching initiative.”
[Online]. Available: http://www.ontologymatching.org

[20] ——, “A survey of schema-based matching approaches,” Jour-
nal on Data Semantics, 2005.


