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Abstract— We present a vision of smart, goal-oriented web
services that reason about other services’ policies and evaluate
the possibility of future interactions. We assume web services
whose interface behaviour is specified in terms of reactive rules.
Such rules can be made public, in order for other web services
to answer the following question: “is it possible to inter-operate
with a given web service and achieve a given goal?” In this article
we focus on the underlying reasoning process, and we propose a
declarative and operational abductive logic programming-based
framework, called WAV e.

NOTE

This article is a modified version of [5].

I. I NTRODUCTION

Service Oriented Computing (SOC) is rapidly emerging as
a new programming paradigm, propelled by the wide avail-
ability of network infrastructures, such as the Internet, and by
the success of its predecessor, Object Oriented programming
paradigm. Web service-based technologies are an implementa-
tion of SOC, aimed at overcoming the intrinsic difficulties of
integrating different platforms, operating systems, languages,
etc., into new applications. It is then in the spirit of SOC to
take off-the-shelf solutions, like web services, and compose
them into new applications. Service composition is very at-
tractive for its support to rapid prototyping and possibility
to create complex applications from simple elements. It is
the philosophy followed, e.g., by BPEL [11]: composing new
applications through existing web services.

If we adopt the SOC programming paradigm, how to exploit
the potential of a growing base of web services becomes
one of our strategic issue. In a domain in which being more
competitive means knowing more and using all available
information at best, how shall we cope with the proliferation
of new services? How shall we decide to use a web service
rather than another one? when new ones become available,
shall we go for them? are there new opportunities that were
not there before? It is a necessary, never-ending, heavy and
thus potentially very costly decision process, but it could also
be very rewarding, if we had the proper tools.

A partial answer to these questions is given by service dis-
covery. As new services become available, they are published,
for instance by registration on some yellow-pages server;
existing services can then become aware of the new ones

and exploit them. This solves part of the problem: as through
discovery we only know that there are some services, which
possibly follow some standards, but understanding whether
interacting with them will be profitable or detrimental, is far
from being a trivial question. For one, it is not possible to think
to try and invoke all newly discovered services and analyze the
results. Beside being highly error-prone, such a method would
require expensive rollbacks that are often unaffordable at run-
time. Thus, alternative approaches have to be developed. This
is what we intend to address in this article.

The focus of this article is the following problem: how
to dynamically understand if two web services can inter-
operate, without them having a-priori knowledge of each
other’s capabilities, but by reasoning about policies exchanged
at run-time.

We present a vision of smart, goal-oriented web services
that reason about other services’ specifications, with the aim to
separate out those that can lead to a fruitful interaction, without
resorting to trial and error. We envisage a two-phase discovery
activity on the side of web services. First, web services collect
information about other web services, and try and understand
by reasoning which ones can lead to a fruitful interaction.
This activity is carried out off-line, beforehand. Then they use
the available information to interact with each other. It is the
same philosophy of search engines: before, collect information
through web spiders, then use it when requested by the user.

In this article we focus on the reasoning involved in the off-
line phase, assuming that a new web service has been found,
and we must decide about the possibility to interact with it.
We assume that each web service publishes, alongside with its
WSDL, its interface behaviour specifications. By reasoning on
the information available about other web services’ interface
behaviour, each web service can verify which goals can be
reached by interaction.

To achieve our vision, we propose a proof theoretic ap-
proach, based on computational logic – in fact, on abductive
logic programming. In particular, we formalise policies for
web services in a declarative language which is a modification
of theSCIFF language originally defined in the context of the
EU IST-2001-32530 project, to specify and verify social-level
agent interaction.

In this new language, policies can be defined by way



of social integrity constraints(ICs): a sort of reactive rules
used to generate and reason about expectations about possible
evolutions of a given interaction setting.

As claimed in [14], a rule-based approach to reactivity on
the Web provides the following benefits over the conventional
approach:

• Rules are easy to understand for humans. Requirements
specifications often already comes in the for of rules
expressed in a natural or formal language;

• Rule-based specifications are flexible and easy to adapt;
• Rules are well-suited for processing and analyzing by

machines (verification, transformation);
• Rules can be managed in a single knowledge base or

in several knowledge bases possibly distributed over the
Web.

Moreover, we believe that, as advocated by Alferes et al.
[10], an approach based on logic programming allows to
express knowledge in form of rules, and to make inference
with those rules. Like the authors, we follow Tim Berners-
Lee et al. [12] in considering logic a natural conceptual and
computational tool for the Semantic Web (“Adding logic to
the Web - the means to use rules to make inferences, choose
courses of action and answer questions - is the task before the
Semantic Web community at the moment”)

Based on theSCIFF framework we propose a new declar-
ative semantics and a new proof-procedure that combines for-
ward, reactive reasoning with backward, goal-oriented reason-
ing, and is tailored to the discovery activity’s off-line phase’s
verification problem. We have called this new framework
WAVe(Web-service Abductive Verification).

In order to support the exchange of rules between web
services in a standard format, we also propose a RuleML
encoding for our language.

We start by showing the abstract architecture of WAVe. In
Sect. III we introduce a running on-line shopping scenario.
In Sect. IV, we briefly introduce the language used in the
framework, and in Sect. V we show how the scenario can
be modeled in WAVe in terms of ICs. Sect. VI presents the
declarative and operational semantics of WAVe, and Sect. VII
proposes the application of WAVe to the verification problem
in the reference scenario. Sect. VIII discusses the encoding of
WAVe rules in RuleML. A brief discussion, also with respect
to related work, follows.

II. T HE ARCHITECTURE OFWAV e

Fig. 1 depicts our general reference architecture. Arrows
indicate the flow of policies between web services. The layered
architecture of a web service, e.g.ws, has WAVe at the top of
the stack, performing reasoning based on its own knowledge
and on the policies obtained from other web services, e.g.ws′.
The functionalities of the various elements of the knowledge
will be explained in Sect. IV. For the moment, we say
that policies are identified with theICws component. The
architecture is symmetric. We represented with thick borders
the modules involved in the operations carried out byws,
and its output. In order forws′ to passICws′ on to ws (and
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Fig. 1. The architecture of WAVe

vice versa), a Rule Interchange Format (RIF) is adopted. One
possibility for such a RIF could be RuleML [3]. Finally, as
a result of the reasoning activity,ws produces an answerC
to the question: “is it possible to inter-operate withws′ and
achieve goalGws?”

Fig. 1 does not show control elements, but only information
flows. We assume that suitable interaction protocols are de-
fined to control the flow of information (e.g. policies) between
the web services. In particular, in a more comprehensive
setting,ws andws′ could negotiate the exchange of policies
in an incremental way, or could use the resultC of this
reasoning activity to perform the second, on-line phase of
service interaction we mentioned in the introduction. All this
is outside of this picture, and of this article’s scope.

III. T HE alice & eShop SCENARIO

This scenario is inspired to the one described by the
Working Group on Rule Interchange Format [25]. A similar
scenario is also in [14]. We consider two entities, which we
call alice and eShop.1 eShop is a web service which sells
devices.alice is another web service which instead needs
to obtain a device, and which is considering buying it from
eShop. alice andeShop describe their behaviour concerning
sales/payment/... of items through policies, specified as rules,
which they publish using some RIF.

Before alice buys an item fromeShop, alice checks
whether her policies andeShop’s policies are compatible, i.e.,
if they allow a successful transaction. During this process, it
turns out thateShop accepts credit card payments, besides
other payment methods, and thatalice can only pay by credit
card; in this case, in order to proceed with the payment, she
requires evidence of the shop’s membership to some trusted
“Better Business Bureau” (BBB) association. We assume that
the shop is able and ready to provide such a piece of evidence.
We can thus defineeShop’s andalice’s policies as follows:

1In this simplified scenario, we identifyalice and eShop with their
representative software counterparts which will carry out transactions on their
behalf.



(shop1) if a customer wishes to buy an item, then (s)he should
pay it either by credit card, or by cash, or by cheque;

(shop2) if a customer wishes to buy an item, and (s)he has
paid it either by credit card, or by cash, or by cheque,
theneShop will deliver the item;

(shop3) if a customer wishes to receive a certificate about
eShop’s membership to theBBB, then the shop will
send it;

(alice1) if a shop requires thatalice pays by credit card,
alice expects that the shop provides evidence of its
membership to theBBB;

(alice2) if a shop requires thatalice pays by credit card, and
the shop has provided evidence of its membership to
theBBB, thenalice will pay by credit card;

In this example, we can identify two kinds of policy rules.
shop1 and alice1 express requirements, i.e., what is needed
in order to proceed with accomplishing some request.shop2,
shop3 and alice2 represent the effect of requests, i.e., they
tell what has to be expected if some conditions hold and some
request is received.

Using this scenario, we want to demonstrate the possibility
of reaching an agreement through rules exchange. Besides, we
want to show how policies support backward and forward rea-
soning, in the following way. Backward, pro-active reasoning
starts from goals to produce (expectations about) actions or
events that should be generated in order to achieve the goals.
Forward, reactive reasoning starts from events and is used to
generate (expectations about) actions that represent reactions
to such events.

In this scenario, the goal ofalice interacting witheShop is
to obtain an item fromeShop. Actions are all the messages
exchanged between the two web services.

The steps that we envisage are as follows:

1) alice wants to obtain a device. She knows that she can
have it ifeShop delivers it to her. Thus, she sendseShop
a request, by which she wants to knoweShop’s policies
regarding the delivery of that device;

2) eShop considersalice’s request, and composes a set
of rules related toalice’s request (its policies), possibly
deriving/filtering them from a larger set. In this example,
the set containsshop1, shop2, andshop3. Once such
a set is put together,eShop communicates it toalice;

3) alice reasons on (1) her goal, (2) her own policies
(alice1 andalice2), and (3)eShop’s policies. Two are
the possible outcomes:

• either alice infers that she andeShop can have
a successful transaction that satisfies each other’s
policies and that achieves her goal,

• or alice infers that there is no such a possibility.

4) possibly, at a later point,alice andeShop may engage
in a transaction which (hopefully) makesalice achieve
her goal.

Points (1) through (3) represent the off-line phase of service
discovery/interaction, whereas point (4) represent the actual
transaction occurring betweenalice andeShop. The reasoning

involved in (3) is the subject of this article.

IV. T HE WAV e FRAMEWORK

In WAVe, the observable behaviour of the web services is
represented byevents. Since we focus on (explicit) interaction
between web services, events always represent exchanged
messages.

WAVe considers two types of events: those that one can con-
trol and those that one cannot. Typically, from the standpoint
of a web servicews, an event such as a message generated
by ws himself will fall into the first category, a message
that ws is expecting from another fellow web servicews′

will fall instead into the second one. We use two different
functors to keep these two categories of messages distinct
from each other. Atoms denoted by functorH will stand for
events that a web service expects to be producing itself; atoms
denoted by functorE will stand for events that a web service
is expecting, and over which it does not have any control.
Since WAVe is about reasoning on possible future courses of
events, both kinds of events representhypothesesthat a web
service can make on possibly happening events. The notation
is: H(ws,ws′,M, T ), for messages (M ) that a web servicews
is expecting to send tows′ at timeT , andE(ws′, ws,M, T )
for messages (M ) expected byws from ws′ for time T .

Web service specifications in WAVe are relations among
expected events, expressed by an Abductive Logic Program
(ALP). In general, an ALP [21] is a triplet〈P,A, IC〉,
whereP is a logic program,A is a set of predicates named
abducibles, andIC is a set of integrity constraints. Roughly
speaking, the role ofP is to define predicates, the role ofA
is to fill-in the parts ofP which are unknown, and the role of
IC is to constrain the ways elements ofA are hypothesised,
or “abduced”. Reasoning in abductive logic programming is
usually goal-directed (beingG a goal), and it accounts to
finding a set of abduced hypotheses∆ built from predicates
in A such thatP ∪ ∆ |= G andP ∪ ∆ |= IC. In the past,
a number of proof-procedures have been proposed to compute
∆ (see Kakas and Mancarella [22], Fung and Kowalski [17],
Denecker and De Schreye [15], etc.).

Definition 4.1 (Web service interface behaviour specification):
Given a web servicews, its web service interface behaviour
specificationPws is an ALP, represented by the triplet

Pws ≡ 〈KBws, Ews, ICws〉

where:

• KBws is ws’s Knowledge Base,
• Ews is ws’s set ofabducible predicates, and
• ICws is ws’s set of Integrity Constraints.
KBws is a set of clauses which declaratively specifies pieces

of knowledge of the web service. Note that the body ofKBws’s
clauses may containE expectations about the behaviour of the
web services, as defined above.KBws’s syntax is summarised
in Eq. (1).



KBws ::= [ Clause ]?

Clause ::= Atom← Cond
Cond ::= ExtLiteral [ ∧ ExtLiteral ]?

ExtLiteral ::= Atom | true | Expect | Constr
Expect ::= E(Atom,Atom,Atom, Atom)

(1)

Ews includesE expectations,H events, and predicates not
defined inKBws.

ICws ::= [ IC ]?

IC ::= Body → Head
Body ::= (Event | Expect) [∧BodyLit]?

BodyLit ::= Event | Expect | Atom | Constr
Head ::= Disjunct [ ∨Disjunct ]? | false

Disjunct ::= (Expect | Event | Constr)
[ ∧ (Expect | Event | Constr)]?

Expect ::= E(Atom,Atom,Atom, Atom)
Event ::= H(Atom,Atom,Atom, Atom)

(2)

Integrity Constraints(ICs) are forward rules, of the form
Body→ Head (Eq. (2)). TheBody of ICs is a conjunction
of literals and expected events; theHead instead is a disjunc-
tion of conjunctions of expectations, events and literals, or
false. The syntax ofICws is a modification of the integrity
constraints in theSCIFF language [6]. In particular, unlike
SCIFF, WAVe treatsH events as abducible predicates, and
as such it allows them to occur in theHead of integrity
constraints; however, this initial version of WAVe does not
yet accommodate negative expectations nor negation (¬). We
intend to consider these two features in future extensions of
WAVe.

Intuitively, the operational behaviour of integrity constraints
is similar to forward rules: whenever the body becomes true,
the head is also made true.

V. M ODELING IN WAV e

In this section, we demonstrate web service policy mod-
elling in WAVe by showing the specification ofalice and
eShop. The first three rules representeShop’s policies.

E(eShop, alice, deliver(Item), Ts)

→E(alice, eShop, pay(Item, cc), Tcc) ∧ Tcc < Ts

∨E(alice, eShop, pay(Item, cash), Tca) ∧ Tca < Ts

∨E(alice, eShop, pay(Item, cheque), Tch) ∧ Tch < Ts

(shop1)

IC shop1 says that, ifalice expectseShop to deliver an
Item, theneShop expectsalice to pay by credit card, cash, or
cheque, and that payment must be made before delivery.2 In
that case, the abducibles in the head are expectations, because
they represent actions that should be performed byalice: from
eShop’s viewpoint, they can only be expected.

E(eShop, alice, deliver(Item), Ts)

∧H(alice, eShop, pay(Item, How), Tp) ∧ Tp < Ts

∧How::[cc, cash, cheque])

→H(eShop, alice, deliver(Item), Ts).

(shop2)

2The alternative in the head could alternatively be expressed via
a variable with domain: E(alice, eShop, pay(Item, How), T ) ∧
How::[cc, cash, cheque] ∧ T < Ts, where “::” represents a domain
constraint.

IC shop2 says that, ifalice expectseShop to deliver the Item,
and alice has paid for it, theneShop will actually deliver it
to alice. In that case, the abducible in the head is an event,
because it represents an action thateShop should perform,
and therefore it assumes that it will indeed happen (since it is
its own responsibility).

E(eShop, alice, give guarantee, Tg)

→H(eShop, alice, give guarantee, Tg).
(shop3)

IC shop3 says that ifalice expects to receive a guarantee,
then eShop will send it. The following two rules represent
alice’s policies.

E(alice, eShop, pay(Item, cc), Tp)

→E(eShop, alice, give guarantee, Tg) ∧ Tg < Tp.
(alice1)

IC alice1 says that, ifeShop expectsalice to pay for an
Item by credit card, thenalice expects thateShop will have
provided a guarantee by the time she pays.

E(alice, eShop, pay(Item, cc), Tp)

∧H(eShop, alice, give guarantee, Tg) ∧ Tg < Tp

→H(alice, eShop, pay(Item, cc), Tp).

(alice2)

IC alice2 says that, ifeShop expectsalice to pay for an
Item by credit card, andeShop has providedalice with a
guarantee, thenalice will pay the Item by credit card. Finally,
the following clause is part ofKBalice

have(alice, Item, T )←
E(eShop, alice, deliver(Item), Td) ∧ Td ≤ T.

(alice3)

Clausealice3 says that, in order foralice to have an Item at
time T , thenalice expectseShop to deliver the Item by time
T .

VI. D ECLARATIVE AND OPERATIONAL SEMANTICS

We have assumed that all web services have their own
interface behaviour specified in the language ofICs. This
interface behaviour could be thought of as an extension of
WSDL, that could be used by other fellow web services to
reason about the specifications, or to check if inter-operability
is possible.

Another approach would be to obtain web services’ in-
terface behaviour through an appropriate request protocol,
in which ICs are (interactively) exchanged so that each
web service may disclosead hoc, customised information on
demand.

In this work, we make the simplifying assumption that all
information regarding the interface behaviour is provided at
once. The web service will then try and prove that a fruitful
interaction is possible based on what it receives.

The web service initiating the interaction has a goalG,
which is a given state of affairs. A typical goal could be
to access a resource, to retrieve some information, or to
obtain a service from another web service.G will often be an
expectation (of obtaining a service, accessing a resource, or
gathering information), but in general it can be any conjunction
of expectations, CLP constraints, and any other literals, in the
syntax ofICws Head Disjuncts (Eq. 2).



The verification of a web servicews about the possibility to
achieve a goalG by interacting with another fellow web ser-
vice ws′ makes use ofKBws, ICws, G, and of the information
obtained aboutws′’s policies,ICws′ (see Fig. 1). The idea is
to obtain, through abductive reasoning, a set of expectations
about a possible course of events that together withKBws

entailsICws ∪ ICws′ andG.
Note that we do not assume thatws knowsKBws′ , as the

KB is not part of the interface. However, in general integrity
constraints can involve predicates defined in the knowledge
base. For example, they can contain predicates defining pa-
rameters, deadlines, coefficients, etc., or other knowledge only
available tows′. If the interface behaviour provided byws′

involves predicates defined inKBws′ , unknown tows, we have
two alternatives:

• either ws′ providesws with the necessary information,
e.g. with (part of) itsKBws′ ;

• or ws will have to make assumptions about such unknown
predicates.

We take the second option, and consider unknowns that
are neitherH events norE expectations as literals that can
be abduced, and we keep them in a set∆. We then have
the following two equations that define the set of abductive
answers representing possible interaction betweenws andws′

achievingG:

KBws ∪HAP ∪EXP ∪∆ |= G (3)

KBws ∪HAP ∪EXP ∪∆ |= ICws ∪ ICws′ (4)

whereHAP is a conjunction ofH atoms,EXP is a conjunc-
tion of E atoms, and∆ a conjunction of abducible atoms.

We can now proceed with defining what kind of interaction
is possible/fruitful, given two web services and a goal.

Definition 6.1 (Possible interaction aboutG): A possible
interaction about a goalG between two web servicesws and
ws′ is anA-minimal setHAP ∪ EXP ∪∆ such that Eq. 3
and 4 hold.

Among all possible interactions aboutG, some of them
are fruitful, and some are not. An interaction only based
on expectations which will not be matched by corresponding
events is not a fruitful one: for example, the goal ofws might
not have a corresponding event, thus the goal is not actually
reached, but onlyexpected. Or, one of the web services could
be waiting for a message from the other fellow, which will
never arrive, thus undermining the inter-operability.

We select, among the possible interactions, those whose
history satisfies all the expectations of both the web services.
After the abductive phase, we have a verification phase in
which there are no abducibles, and in which the previously
abduced predicatesH and E are now considered as defined
by atoms inHAP and EXP, and they have to match. If
among the possible interactions there exists one satisfying

HAP∪EXP |= E(X, Y,Action, T )↔ H(X, Y,Action, T )
(5)

thenws has found a sequence of actions that obtains the goal
G.

Definition 6.2 (Possible interaction achievingG): Given
two web services,ws and ws′, and a goalG, a possible
interaction achievingG is a possible interaction aboutG
satisfying Eq. 5.

Intuitively, the “→” implication in Eq. 5 avoids situations in
which a web service waits forever for an event that the other
web service will never produce. The “←” implication avoids
that one web service sends unexpected messages, which in the
best case may not be understood (and in the worst scenarios
it may lead to faulty, unpredictable behaviour of the parties
involved).

A. Operational Semantics

The operational semantics is a modification of theSCIFF
proof-procedure [9].SCIFF is a transition system, whose state
is given by the following tuple:

T ≡ 〈R,CS, PSIC,∆A,PEND,HAP,FULF,VIOL〉

The set of expectationsEXP is partitioned into the fulfilled
(FULF), violating (VIOL), and pending (PEND) expecta-
tions. The other elements are: the resolvent (R), the abduced
literals that are not expectations (∆A), the constraint store
(CS), a set of implications, inherited from the IFF [17], called
partially solved integrity constraints(PSIC), and the history
of happened events (HAP).

A classical application ofSCIFF is on-line checking of
compliance of agent interaction to protocols. In fact,SCIFF
was initially developed to specify and verify agent interaction
protocols on-the-fly, under the assumption of open agent
environments adopted by other noteworthy agent research
work [27]. SCIFF processes events drawing fromHAP
and generates (abduces) expectations; then it checks that all
expectation are fulfilled by at least one happened event. The
declarative semantics ofSCIFF contains in fact a requirement
E(X)→ H(X) – differently from WAVe, which has a double
implication (Eq. 5). InSCIFF, as soon as newH events are
processed, a transitionfulfilment labels the relevant matching
expectations asfulfilled and moves them to the setFULF. At
the end of the derivation, if some expectation remains in the
setPEND, a failure node is generated, and other alternative
branches will be explored in backtracking, if there exist any.

WAVe extendsSCIFF and abducesH events as well as
expectations. The events history is not taken as input, but
all possible interactions are hypothesised. Moreover, in WAVe

events not matched by an expectation (which are perfectly
acceptable in the multi-agent scenario addressed bySCIFF)
cannot be part of apossible interaction achievingthe goal.

The two phases in the declarative semantics (generation
of possible interactions and their test for conformance) are
condensed into one single derivation process, thanks to a new
transition adopted in WAVe. Theexpectedtransition, symmet-
rical to fulfilment, labels eachH events with anexpectedflag
as soon as an expectation matching it is abduced. At the end
of the derivation,H with expectedstatus = false will cause
failure.



Otherwise, if the WAVe derivation in a programP for a
goal G succeeds with set of expectationEXP ∪HAP ∪∆,
we writeP `EXP∪HAP∪∆ G.

Soundness and completeness results.WAVe is a conser-
vative modification of theSCIFF proof-procedure, which
is sound and complete under reasonable assumptions [7].
Therefore, soundness and completeness results also hold for
WAVe. A detailed discussion of this issue can be found in [5].

We will next demonstrate the operational functioning of
verification in WAVe in the alice & eShop scenario.

VII. V ERIFICATION IN WAV e

In the following, the setsEXPN
a and HAPN

a represent
the evolution ofalice’s expectations and events as WAVe’s
derivation progresses;N is an incremental index. Letg be the
following goal of alice’s:

g ← have(alice, device, 50). (goal)

Then, by unfolding of clausealice3,

EXP0
a ={E(eShop, alice, deliver(device), Ts) ∧ Ts < 50}

(by (alice3))
(6)

To this expectation,eShop will react by expecting a pay-
ment:

EXP1
a ={E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧(E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∨E(alice, eShop, pay(device, cash), Tca) ∧ Tca < Ts

∨E(alice, eShop, pay(device, cheque), Tch) ∧ Tch < Ts)

(by (shop1))
(7)

Since the expectation containing the payment bycc is the
only one which generates an expectation matching a rule of
alice ((alice1)), the first expectation among the three payment
alternatives is selected (the other branches eventually fail
by Eq. 5, because no matchingH is abduced). This choice
triggers (alice1):

EXP2
a ={E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc}
(by (alice1))

(8)

Then (shop3) fires, and abduces the happening of
give guarantee event. We then have:

EXP3
a ={E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc}
(by (alice1))

HAP3
a ={H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc}

(by (shop3))
(9)

Given the guarantee,alice will pay by credit card (rule
(alice2) fires):

EXP4
a ={E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

HAP4
a ={H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

∧H(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts}
(by (alice2))

(10)

Having received the payment,eShop’s policy would be to
deliver the device:

EXP5
a ={E(eShop, alice, deliver(device), Ts) ∧ Ts < 50

∧E(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧E(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc}
HAP5

a ={H(eShop, alice, give guarantee, Tg) ∧ Tg < Tcc

∧H(alice, eShop, pay(device, cc), Tcc) ∧ Tcc < Ts

∧H(eShop, alice, deliver(device), Ts) ∧ Ts < 50}
(by (shop2))

(11)

Summarising,alice devised the following set of events,
which should let her achieve her goal (have the desired device)
while respecting both ofalice’s andeShop’s policies.

Ca ={H(eShop, alice, give guarantee, Tg) ∧ Tg < Tp

∧H(alice, eShop, pay(device, cc), Tp) ∧ Tp < Ts

∧H(eShop, alice, deliver(device), Ts) ∧ Ts < 50)}
(12)

VIII. R ULE MARK-UP

In WAVe, theICs can be exchanged between web services,
as well as advertised together with their WSDL. For this
reason, a mark-up language is necessary for the rules inICs.
RuleML [3] is the perfect mark-up language for exchanging
rules on the web, so our choice has been easy. RuleML 0.9
contains mark-ups for expressing important concepts of the
SCIFF proof-procedure. In particular,SCIFF is a rule engine
able to distinguish and use both backward and forward rules.
Backward rules are used to plan, reason upon events, perform
proactive reasoning. Forward rules are used for reactive rea-
soning, to quickly perform actions in response to occurred
events. Both are seamlessly integrated inSCIFF. RuleML 0.9
contains adirection attribute that can be attached to rules.
Being based on abduction,SCIFF can deal both with negation
as failure and negation by default, that have an appropriate
tagging in RuleML. In this work, we only used standard
RuleML syntax; in future work we might be interested in
distinguishing between defined and abducible predicates, or
between expectations and events.
SCIFF was implemented in SICStus Prolog: SICStus con-

tains an implementation of the PiLLoW library [19], which
makes it easy to perform http requests, as well as implement-
ing services on the web. Finally, SICStus contains an XML



parser, which allowed us to easily implement the RuleML
parser. The RuleML parser is freely available on theSCIFF
web site [26].

IX. D ISCUSSION AND RELATED WORK

WAVe is a framework intended for describing declaratively
the behavioural interface of web services, and for testing
operationally the possibility of fruitful interaction between
them. WAVe answers the question “does there exist a viable
interaction, between two given web services, which achieves
a given goalG?” In case of success, WAVe produces a set of
expectations about events. WAVe is particularly suitable for
highly dynamic environments, in which interoperability is an
unknown that has to be checked.

WAVe uses and extends a technology initially developed for
online compliance verification of agent interaction to protocols
[6]. SCIFF and the protocol specification language based on
social integrity constraints were motivated and inspired by
conspicuous work done in the context of agent interaction in
open societies, notably work by Singh [27] and colleagues.
The extension of such a work to the context of web services,
centering around the concept of policies, as proposed in this
work, seems to be very promising. The idea of policies for
web services and policy-based reasoning is one that many
other authors also adopt. We will cite work by Finin and
colleagues [20], and by Bradshaw and colleagues [28], the first
one with an emphasis on representation of actions, the latter
on the deontic semantic aspects of web service interaction. We
acknowledge the importance of action modelling and we point
that the idea of expected behaviour of web services can have
a deontic reading. In fact, previous work onSCIFF has been
devoted to investigating and clarifying the interesting links
between deontic operators and expectation-based reasoning
[8]. The distinguishing features of WAVe, compare to most
work of literature, are its logical underpinning and its sound
and complete operational characterisation. It is in our agenda
to carry out an extensive empiric evaluation of WAVe based
on interesting cases and scenarios such as those proposed in
related work, and on the existing implementation of theSCIFF
framework.3

Another direction of current work relates to the actual use
of the answers of WAVe by web services after they manage
a successful derivation. In principle, the sequence of events
produced by WAVe could be instantiated into a concrete
sequence of messages, which will guarantee the achievement
of G, under ideal external conditions. But this is true only
if the policies disclosed by both web services are a faithful
representation of their actual behaviour. This may not be the
case, as for example policies may depend on sensible data, and
web services may be not allowed to disclose full information
to the outside. In that case nothing warrants that the course
of action produced by WAVe will be satisfactory for either
web service. We might then have to resort to further steps.
For example both web services could “formally” agree that a

3Seehttp://lia.deis.unibo.it/research/sciff .

certain course of events in an acceptable option, possibly after
another mutual verification phase. This is subject of ongoing
work. Finally, we are currently investigating the exchange of
policies between web services, for which a suitable interaction
protocol needs to be devised. We are thinking of specifying
such a protocol for exchanging the policies in the same
language WAVe uses to specify policies.

In this work, we do not address the problem of reasoning
about ontologies: rather, we focus on the reasoning process,
given the policies of both the peers involved in the interaction.
Many other approaches instead focus on the former issue:
hence our proposal could be seen as a complementary func-
tionality, that could further improve the discovery process. For
instance, in [24] an ontology language to define web services is
proposed. In [1], [2], besides proposing a general language for
representing semantic web service specifications using logic, a
discovery scenario is depicted and an architectural solution is
proposed (we draw inspiration for our scenario from the Dis-
covery Engine example). A notion of mediator is introduced to
overcome differences between different ontologies, and then
a reasoning process is performed over the user inputs and the
hypothetical effects caused by the service execution. To some
extent, our work can be related to [23], where the authors
present a framework for automated web service discovery that
uses the Web Service Modeling Ontology (WSMO) as the
conceptual model for describing web services, requester goals
and related aspects. This conceptual framework distinguishes
two main stages. During the discovery stage, the requester
states only the things that are desired, thus seeks for all the
services that can potentially satisfy a request of such a kind.
During the contracting stage, instead, the requester provides in
input specific information for an already requested service. The
purpose of this second stage is to verify that the input provided
will lead to a desired state that satisfies the requester goal.
In our work, we are concerned mainly with the contracting
stage. While in [23] the authors use F-logic and transaction
logic as the underlying formalisms, we rely on extended logic
programming. In both the approaches, however, hypothetical
reasoning is used for service contracting.

In [23], [1], [2], only the clients goal is considered, while in
our framework the client can specify its policies (its intended
behavioural interface); in this way, the client could be consid-
ered a web service as well. Therefore, our framerwork can be
exploited without major changes to deal with the problem of
interoperability between web services behavioural interfaces
[4].

Foster et al. [16] propose a model-based approach to ver-
ify a given service composition can successfully execute a
choreography, in particular with respect to the obligations
imposed on the services by a choreography. The web service
specifications and the choreography are translated to FSP
algebra and checked by model checking techniques. The main
difference with respect to our work is that Foster et al.
check a web service composition against a choreography for
conformance, while we check a set of web services for their
capability to achieve a goal. Another notable difference is in



the adopted formal approaches (abduction in our case, model
checking in theirs).

The outcome of the reasoning process performed by WAVe

could be intended as a sort of “contract agreement” between
the client and the discovered service, provided that each peer
is tightly bounded to the policies/knowledge bases he/she has
previously published. For example, the dynamical agreement
about contracts (e-contracting) is addressed in [13], where
Situated Courteous Logic is adopted for reasoning about rules
that defines business provisions policies. The used formal-
ism supports contradicting rules (by imposing a priorization
and mutual exclusion between rules), different ontologies,
and effectors as procedures with side effects. However, their
work is more focussed on establishing the characteristics of
a business deal, while our approach address the problem
of evaluating the feasibility of an interaction. To this end,
we perform hypothetical reasoning on the possible actions
and consequences; moreover, we hypothesised also which
condition must hold, in order to interoperate. Other works
use rules to reason about established contracts: in [18], for
example, Defeasible Deontic Logic of Violation is used to
monitor the execution of a previously agreed contract. We
have addressed such issue in a companion paper [8], where
integrity constraints have been exploited and conciliated with
the deontic concepts.
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