Policy-based reasoning for
smart web service interaction

Marco Alberti Federico Chesani
Marco Gavanelli Paola Mello
Evelina Lamma Marco Montali
ENDIF, Universi& di Ferrara Paolo Torroni
{marco.albertmarco.gavanellgvelina.lamma@unife.it DEIS, Universia di Bologna

{fchesanipmelldgmmontaliptorroni} @deis.unibo.it

Abstract—We present a vision of smart, goal-oriented web and exploit them. This solves part of the problem: as through
services that reason about other services’ policies and evaluatediscovery we only know that there are some services, which
the possibility of future interactions. We assume web services possibly follow some standards, but understanding whether

whose interface behaviour is specified in terms of reactive rules.
Such rules can be made public, in order for other web services interacting with them will be profitable or detrimental, is far

to answer the following question: “is it possible to inter-operate from being a trivial question. For one, it is not possible to think

with a given web service and achieve a given goal?” In this article to try and invoke all newly discovered services and analyze the
we focus on the underlying reasoning process, and we propose aresults. Beside being highly error-prone, such a method would
declarative and operational abductive logic programming-based aqire expensive rollbacks that are often unaffordable at run-

f k, called WAV
ramework, called time. Thus, alternative approaches have to be developed. This

NOTE is what we intend to address in this article.
This article is a modified version of [5]. The focus of this article is the following problem: how
to dynamically understand if two web services can inter-
|. INTRODUCTION operate, without them having a-priori knowledge of each

Service Oriented Computing (SOC) is rapidly emerging axther’s capabilities, but by reasoning about policies exchanged
a new programming paradigm, propelled by the wide ava#t run-time
ability of network infrastructures, such as the Internet, and by We present a vision of smart, goal-oriented web services
the success of its predecessor, Object Oriented programmihgt reason about other services’ specifications, with the aim to
paradigm. Web service-based technologies are an implemesgparate out those that can lead to a fruitful interaction, without
tion of SOC, aimed at overcoming the intrinsic difficulties ofesorting to trial and error. We envisage a two-phase discovery
integrating different platforms, operating systems, languagestivity on the side of web services. First, web services collect
etc., into new applications. It is then in the spirit of SOC tinformation about other web services, and try and understand
take off-the-shelf solutions, like web services, and compobg reasoning which ones can lead to a fruitful interaction.
them into new applications. Service composition is very athis activity is carried out off-line, beforehand. Then they use
tractive for its support to rapid prototyping and possibilitghe available information to interact with each other. It is the
to create complex applications from simple elements. It &me philosophy of search engines: before, collect information
the philosophy followed, e.g., by BPEL [11]: composing newhrough web spiders, then use it when requested by the user.
applications through existing web services. In this article we focus on the reasoning involved in the off-

If we adopt the SOC programming paradigm, how to expldiine phase, assuming that a new web service has been found,
the potential of a growing base of web services becomasd we must decide about the possibility to interact with it.
one of our strategic issue. In a domain in which being mok/e assume that each web service publishes, alongside with its
competitive means knowing more and using all availabM/SDL, itsinterface behaviour specificationBy reasoning on
information at best, how shall we cope with the proliferatiothe information available about other web services’ interface
of new services? How shall we decide to use a web servisehaviour, each web service can verify which goals can be
rather than another one? when new ones become availabdached by interaction.
shall we go for them? are there new opportunities that wereTo achieve our vision, we propose a proof theoretic ap-
not there before? It is a necessary, never-ending, heavy gmdach, based on computational logic — in fact, on abductive
thus potentially very costly decision process, but it could aldogic programming. In particular, we formalise policies for
be very rewarding, if we had the proper tools. web services in a declarative language which is a modification

A partial answer to these questions is given by service disf the SCIFF language originally defined in the context of the
covery. As new services become available, they are publishéd) 1IST-2001-32530 project, to specify and verify social-level
for instance by registration on some yellow-pages servagent interaction.
existing services can then become aware of the new ones$n this new language, policies can be defined by way

of social integrity constraint{ICs): a sort of reactive rules
evolutions of a given interaction setting. '
As claimed in [14], a rule-based approach to reactivity ¢ WAve Reasoning
. - . o Ve Vg Vg Vg ¥gd U U
the Web provides the following benefits over the convention (S—— T
ap proaCh : policies policies
o Rules are easy to understand for humans. Requireme
specifications often already comes in the for of rule [BjtGus Keu)l Cw e iz, (O
el EE—————,
« Rule-based specifications are flexible and easy to ada
o Rules are well-suited for processing and analyzing
machines (verification, transformation);
« Rules can be managed in a single knowledge base
in several knowledge bases possibly distributed over t network
. Fig. 1. The architecture of WAV
Moreover, we believe that, as advocated by Alferes et al. 9
[10], an approach based on logic programming allows to
express knowledge in form of rules, and to make inferengge versa), a Rule Interchange Format (RIF) is adopted. One
with those ruleg. Like _the_author_s, we follow Tim Bemerspossibility for such a RIF could be RuleML [3]. Finally, as
Lee et al. [12] in considering logic a natural conceptual angd resylt of the reasoning activityys produces an answet
the Web - the means to use rules to make inferences, chogsgieve goals,,,?”
courses of action and answer questions - is the task before thq:ig_ 1 does nbt show control elements, but only information
Semantic Web community at the morfjent flows. We assume that suitable interaction protocols are de-
Based on theSCIFF framework we propose a new declarfined to control the flow of information (e.g. policies) between
ative semantics and a new proof-procedure that combines fya web services. In particular, in a more comprehensive
ing, and is tailored to the discovery activity’s off-line phase's, an incremental way, or could use the resdltof this
venﬁgatlon problem. We have called this new framework,,5oning activity to perform the second, on-line phase of
WAV “(Web-service Abductive Verification). service interaction we mentioned in the introduction. All this
In order to support the exchange of rules between webq side of this picture, and of this article’s scope.
services in a standard format, we also propose a RuleML
We start by showing the ab;tract a.rch|tecture. of WAIN . This scenario is inspired to the one described by the
Sect. Il we mtrodgce a running on-line shopping Sce.narIQVorking Group on Rule Interchange Format [25]. A similar
In Sect. 1V, we prlefly introduce the language used n thsecenario is also in [14]. We consider two entities, which we
framework, and in Sect. V we show how the scenario car
) . . devices.alice is another web service which instead needs
declarative and op_erajuonal semantics of W_Mf?d Sect. Vi to obtain a device, and which is considering buying it from
Proposes the appllcauo_n of WAMo the_ verification p“’b'er.“ eShop. alice andeShop describe their behaviour concerning
in the refere_nce scenario. Sgct. \./”I dlgcusses the. encomngf?i{?es/payment/... of items through policies, specified as rules,
WAV € rules in RuleML. A brief discussion, also with respecf . they publish using some RIF
to related work, follows. :

used to generate and reason about expectations about pos:

expressed in a natural or formal language;

Web.
computational tool for the Semantic WebA@ding logic t0 g the question: “is it possible to inter-operate withs’ and
ward, reactive reasoning with backward, goal-oriented reasQfting,ws andws’ could negotiate the exchange of policies
encoding for our language. I1l. THE alice & eShop SCENARIO
be modeled in WAY in terms ofICs. Sect. VI presents the Al alice and eShop.” eShop is a web service which sells

Before alice buys an item fromeShop, alice checks

[I. THE ARCHITECTURE OFWAV ¢ whether her policies anelShop’s policies are compatible, i.e.,

Fig. 1 depicts our general reference architecture. Arrolsthey allow a successful transact.ion. During this process, it
indicate the flow of policies between web services. The layerB§ns out thateShop accepts credit card payments, besides
architecture of a web service, exgs, has WAV at the top of Other payment methods, and thdice can only pay by credit
the stack, performing reasoning based on its own knowledg@d: in this case, in order to ?roceed with the payment, she
and on the policies obtained from other web servicesqesy. 'eduires evidence of the shop’s membership to some trusted
The functionalities of the various elements of the knowledgBetter Business BureauBB5) association. We assume that
will be explained in Sect. IV. For the moment, we sa%"\'/e shop is able and ready to provide such a piece of evidence.
that policies are identified with th&C,,, component. The We can thus defineShop's andalice’s policies as follows:
architecture is symmetric. We represented with thick bordersiln this simplified scenario, we identifylice and eShop with their

the r_nOdUIes involved in the operations carried out by, representative software counterparts which will carry out transactions on their
and its output. In order fows’ to passZC,s on tows (and behalf.

(shop1)if a customer wishes to buy an item, then (s)he shouidvolved in (3) is the subject of this article.
pay it either by credit card, or by cash, or by cheque;

(shop2)if a customer wishes to buy an item, and (s)he has IV. THE WAV ¢ FRAMEWORK
paid it either by credit card, or by cash, or by cheque, '
theneShop will deliver the item; In WAV ¢, the observable behaviour of the web services is

(shop3)if a customer wishes to receive a certificate aboygpresented bgvents Since we focus on (explicit) interaction
eShop's membership to th&BB, then the shop will petween web services, events always represent exchanged
send it; messages.

(alice1) if & shop requires thatlice pays by credit card, \yaye considers two types of events: those that one can con-
alice expects that the shop provides evidence of ifsy| ang those that one cannot. Typically, from the standpoint

~_membership to th&BB; _ of a web servicews, an event such as a message generated
(alice2) if a shop requires thatlice pays by credit card, and s himself will fall into the first category, a message

the shop has provided evidence of its membership {,¢ .. is expecting from another fellow web services’
the BBB, thenalice will pay by credit card; will fall instead into the second one. We use two different

In this example, we can identify two kinds of policy rulesfunctors to keep these two categories of messages distinct

shopl andalicel express requirements, i.e., what is needégbm each other. Atoms denoted by funcdr will stand for

in order to proceed with accomplishing some requelsbp2, events that a web service expects to be producing itself; atoms
shop3 and alice2 represent the effect of requests, i.e., theylenoted by functoE will stand for events that a web service
tell what has to be expected if some conditions hold and somgeexpecting, and over which it does not have any control.
request is received. Since WAV is about reasoning on possible future courses of

Using this scenario, we want to demonstrate the possibiligvents, both kinds of events represégpotheseshat a web

of reaching an agreement through rules exchange. Besides s&/ice can make on possibly happening events. The notation
want to show how policies support backward and forward reg: H(ws,ws’, M, T), for messages)() that a web services
soning, in the following way. Backward, pro-active reasoning expecting to send tas’ at timeT', andE(ws’, ws, M, T)
starts from goals to produce (expectations about) actionsfer messages)() expected byws from ws’ for time T.

events that should be generated in order to achieve the goalsyep service specifications in WAVare relations among
Forward, reactive reasoning starts from events and is usedsighected events, expressed by an Abductive Logic Program
generate (expectations about) actions that represent reactiqip). In general, an ALP [21] is a tripletP, 4, IC),

to such events. where P is a logic programA is a set of predicates named

In this scenario, the goal aflice interacting withe.Shop is apducibles and IC is a set of integrity constraints. Roughly

to obtain an item fromeShop. Actions are all the messagesspeaking, the role of is to define predicates, the role df
exchanged between the two web services. is to fill-in the parts ofP which are unknown, and the role of

The steps that we envisage are as follows: IC is to constrain the ways elements dfare hypothesised,

1) alice wants to obtain a device. She knows that she cam “abduced”. Reasoning in abductive logic programming is
have it ifeShop delivers it to her. Thus, she sendshop usually goal-directed (being: a goal), and it accounts to
a request, by which she wants to kneWwhop’s policies finding a set of abduced hypothesasbuilt from predicates
regarding the delivery of that device; in AsuchthatP U A E GandP U A | IC. Inthe past,

2) eShop considersalice’s request, and composes a sed number of proof-procedures have been proposed to compute
of rules related tailice’s request (its policies), possibly A (see Kakas and Mancarella [22], Fung and Kowalski [17],
deriving/filtering them from a larger set. In this exampleDenecker and De Schreye [15], etc.).
the set containshopl, shop2, andshop3. Once such Definition 4.1 (Web service interface behaviour specification):
a set is put togethee,Shop communicates it talice; Given a web servicevs, its web service interface behaviour

3) alice reasons on (1) her goal, (2) her own policiegpecificationP,,, is an ALP, represented by the triplet
(alicel andalice?), and (3)eShop’s policies. Two are
the possible outcomes: Puws = (KBuws, Ewsy ZCus)

« either alice infers that she andShop can have
a successful transaction that satisfies each othewsere:
policies and that achieves her goal, e KB, is ws's Knowledge Base
« or alice infers that there is no such a possibility. s is ws's set ofabducible predicatesand

4) possibly, at a later pointlice andeShop may engage « ZIC,, is ws's set of Integrity Constraints
in a transaction which (hopefully) makesice achieve 5, . is a set of clauses which declaratively specifies pieces
her goal. of knowledge of the web service. Note that the bodyCéf,,,,'s

Points (1) through (3) represent the off-line phase of servickuses may contailE expectations about the behaviour of the

discovery/interaction, whereas point (4) represent the actwab services, as defined aboy&s,,s’s syntax is summarised
transaction occurring betweeiice andeShop. The reasoning in Eq. (1).

KBys == [Clause|*
Clause == Atom «— Cond
Cond == ExtLiteral [A ExtLiteral |* (1)
ExtLiteral == Atom | true | Expect | Constr
Expect = E(Atom, Atom, Atom, Atom)

Ews INCludesE
defined inKCB,s.

Icws = [IC]*
IC = Body — Head
Body = (Event | Expect) [NBodyLit|*
BodyLit = FEwvent | Expect | Atom | Constr
Head == Disjunct [V Disjunct |* | false (2)
Disjunct == (Expect | Event | Constr)
[A (Expect | Event | Constr)|*
Expect = E(Atom, Atom, Atom, Atom)
Event = H(Atom, Atom, Atom, Atom)

Integrity Constraints(ICs) are forward rules, of the form
Body — Head (Eqg. (2)). TheBody of ICs is a conjunction
of literals and expected events; thiead instead is a disjunc-

expectationsH events, and predicates not

IC shop2 says that, itilice expectsShop to deliver the Item,
and alice has paid for it, thereShop will actually deliver it

to alice. In that case, the abducible in the head is an event,

because it represents an action th&thop should perform,
and therefore it assumes that it will indeed happen (since it is
its own responsibility).

E(eShop, ali'ce7 gz'bve,guarantee, Ty) (shop3)
—H(eShop, alice, give_guarantee, Ty).
IC shop3 says that ifalice expects to receive a guarantee,
then eShop will send it. The following two rules represent
alice’s policies.
E(alice, eShop, pay(Item, cc), Tp)

alicel
—E(eShop, alice, give_guarantee, Ty) ATy < Tp.()

IC alicel says that, ifeShop expectsalice to pay for an
Item by credit card, themlice expects thatShop will have
provided a guarantee by the time she pays.

E(alice, eShop, pay(Item, cc), Tp)
A H(eShop, alice, give_guarantee, Ty) N Ty < Talice2)
—H(alice, eShop, pay(Item, cc), Tp).

IC alice2 says that, ifeShop expectsalice to pay for an

tion of conjunctions of expectations, events and literals, ¢tem by credit card, an&Shop has providedalice with a
false The syntax ofZC,,, is a modification of the integrity guarantee, thealice will pay the Item by credit card. Finally,
constraints in theSCIFF language [6]. In particular, unlike the following clause is part okBajice
SCIFF, WAV© treatsH events as abducible predicates, and
as such it allows them to occur in thdead of integrity
constraints; however, this initial version of WAWoes not
yet accommodate negative expectations nor negatidnWe Clausealice3 says that, in order foslice to have an Item at
intend to consider these two features in future extensionsténe 7', thenalice expectseShop to deliver the Item by time
WAV €, T.
Intuitively, the operational behaviour of integrity constraints
is similar to forward rules: whenever the body becomes true, V! DECLARATIVE AND OPERATIONAL SEMANTICS
the head is also made true. We have assumed that all web services have their own
V. MODELING IN WAV ¢ interface behaviour specified in the languageZdfs. This
In this section, we demonstrate web service policy mo#terface behaviour could be thought of as an extension of
elling in WAV® by showing the specification oflice and WSDL, that could be used by other fellow web services to
eShop. The first three rules representhop’s policies. reason about the specifications, or to check if inter-operability
E(eShop, alice, deliver(Item),Ts) is possible.
—E(alice, eShop, pay(Item, cc), Tee) A Tee < Tk Another approach would be to obtain web services’ in-
VE(alice, eShop, pay(Item, cash), Toa) A Tea < T Ferfacg behaviour th'rough an appropriate request protocol,
VE(alice, eShop, pay(Item, cheque), Ton) A Ton, < T in which ZCs are (interactively) exchanged so that each

. . web service may disclosad hog¢ customised information on
IC shopl says that, ifalice expectseShop to deliver an y ¢

Item, theneShop expectsalice to pay by credit card, cash, Ordeman_d. o)
cheque, and that payment must be made before defvery. N this work, we make the simplifying assumption that all
that case, the abducibles in the head are expectations, becé#ifegmation regarding the interface behaviour is provided at
they represent actions that should be performediine: from once. The web service will then try and prove that a fruitful
eShop’s viewpoint, they can only be expected. interaction is possible based on what it receives.
E(eShop, alice, deliver(Item), Ts) The web service initiating the interaction has a ggal
A H(alice, eShop, pay(Item, How), Tp) A Tp < T which is a given state of affairs. A typical goal could be
(shop2) to access a resource, to retrieve some information, or to
obtain a service from another web serviGewill often be an
expectation (of obtaining a service, accessing a resource, or
2The_ alternative in the head ‘could alternatively be expressed V@’athering information), but in general it can be any conjunction
a variable with domain: E(alice, eShop, pay(ltem, How),T) A . : . .
of expectations, CLP constraints, and any other literals, in the

How::[cc, cash, cheque] AT < Ts, where “:” represents a domain o
constraint. syntax ofZC,,s Head Disjuncs (Eq. 2).

have(alice, Item,T) «—

alice3
E(eShop, alice, deliver(Item), Ty) N Ty < T. ()

(shopl)

A How::[ce, cash, cheque))
—H(eShop, alice, deliver(Item), Ts).

The verification of a web services about the possibility to Definition 6.2 (Possible interaction achievigd): Given
achieve a goa{j by interacting with another fellow web ser-two web servicesws and ws’, and a goalG, a possible
vice ws’ makes use oK B,,s, ZCs, G, and of the information interaction achievingG is a possible interaction aboui
obtained aboutvs’’s policies,ZC,s (see Fig. 1). The idea is satisfying Eq. 5.
to obtain, through abductive reasoning, a set of expectationgntuitively, the “—” implication in Eg. 5 avoids situations in
about a possible course of events that together With,; which a web service waits forever for an event that the other
entailsZC,s UZC,s andg. web service will never produce. The—" implication avoids

Note that we do not assume that knows KB,,., as the that one web service sends unexpected messages, which in the
KB is not part of the interface. However, in general integritpest case may not be understood (and in the worst scenarios
constraints can involve predicates defined in the knowledggemay lead to faulty, unpredictable behaviour of the parties
base. For example, they can contain predicates defining parolved).
rameters, deadlines, coefficients, etc., or other knowledge only
available tows’. If the interface behaviour provided hys’ A. Operational Semantics

mvolvles predicates defined i5.,./, unknown tows, we have e gnerational semantics is a modification of $EIFF
two a.ternatlves. _ . _ ~ proof-procedure [9]SCIFF is a transition system, whose state

« either @s’ prOVIdes_ws with the necessary information, jg given by the following tuple:

e.g. with (part of) itskCBB,s;

« orws will have to make assumptions about such unknowrl’ = (R, C'S, PSIC,AA,PEND, HAP , FULF, VIOL)

predicates. . . - .)

We take the second option, and consider unknowns thdie set of expectationEXP is partitioned into the fulfilled
are neitherH events norE expectations as literals that can(_FULF)' violating (VIOL), and pendingREND) expecta-
be abduced, and we keep them in a fetWe then have t_|ons. The other elements are: the resolvery, the a_lbduced
the following two equations that define the set of abducti\}geraIS that are not expectationa\{l), the constraint store

answers representing possible interaction betweeandws’ (CS), a set of implications, inherited from the IFF [17], called
achievingg: partially solved integrity constraintéP.S7C), and the history

of happened eventd{AP).
KB,s UHAPUEXPUA | ¢ () A classical application ofSCIFF is on-line checking of
KBys UHAPUEXPUA E IC,;UZIC,s (4) compliance of agent interaction to protocols. In fa8CIFF
. . : . . was initially developed to specify and verify agent interaction
vyhereHAP IS a conjunction ,OH gtoms,EXP IS & COMUNC- 1y 5t0c0ls on-the-fly, under the assumption of open agent
tion of E: atoms, andA a conjunction of abd‘ﬂc'b'e atoms. o\ironments adopted by other noteworthy agent research
. We can now procged with defining V_/hat kind of 'meraCt'OWork [27]. SCIFF processes events drawing froFEAP
IS pos_5|_b_le/frU|tfuI, given tv_vo Web.serwces and a goaI: and generates (abduces) expectations; then it checks that all
: Defm.mon 6.1 (Possible interaction abog): A . possible expectation are fulfilled by at least one happened event. The
|nt?rgct|on abqgt a goalj between two web servicess and o1 rative semantics GICIFF contains in fact a requirement
ws’ is an A-minimal setHAP U EXP U A such that Eq. 3 E(X) — H(X) — differently from WAV, which has a double
and 4 hold. . : . implication (Eqg. 5). INSCIFF, as soon as ne events are
AmOF‘g all possible interactions al_)O@t some of them processed, a transitidlfilmentlabels the relevant matching
are fruitful, and some are not. An interaction only base@Lpectations atulfilled and moves them to the SETULF. At

on expectations which will not be matched by correspondwiﬂe end of the derivation, if some expectation remains in the

evctar;]ts IS not a frunful((j)_ne: for e?atnhmleéhthe gofl@ mtlghtt ai&;PEND’ a failure node is generated, and other alternative
no ha\ée g ct:orrtlaspon tlné:]Oeven ' futsh € %oa IS not ac lIJd nches will be explored in backtracking, if there exist any.
reached, but onigxpected™r, one ot e Web SEIVICeS COUIT —\y /e extendsSCIFF and abduced events as well as
be waiting for a message from the other fellow, which will . . ; .

) - . . expectations. The events history is not taken as input, but
never arrive, thus undermining the inter-operability.

We select. amona the possible interactions. those Who@ﬁl%possmle interactions are hypothesised. Moreover, in WAV
. o 9 pOSSI ' ._events not matched by an expectation (which are perfectly
history satisfies all the expectations of both the web services, ; , .
: e acceptable in the multi-agent scenario addressed GiFF)
After the abductive phase, we have a verification phase In Lo . .
annot be part of @ossible interaction achievinthe goal.

which there are no abducibles, and in which the previous?y_l_he two phases in the declarative semantics (generation

abduced predicateHl and E are now considered as definedof ossible interactions and their test for conformance) are
by atoms inHAP and EXP, and they have to match. If P

among the possible interactions there exists one satisfyin condensed into one single derivation process, thanks to a new
9 P gtransition adopted in WAV. The expectedransition, symmet-

HAPUEXP | E(X,Y, Action,T) — H(X,Y, Action,T) rical to fulfilment labels eactH events with arexpectedlag

(5) as soon as an expectation matching it is abduced. At the end
thenws has found a sequence of actions that obtains the go#lthe derivation,H with expectedstatus = false will cause
g. failure.

Otherwise, if the WAV derivation in a progranf® for a Given the guaranteelice will pay by credit card (rule
goal G succeeds with set of expectati®XP U HAP U A, (alice2) fires):
we write P Fgxpunapua G.

Soundness and completeness resWV ¢ is a conser- EXP, ={E(eShop, alice, deliver(device),Ts) A Ts < 50

vative modification of theSCIFF proof-procedure, which AE(alice, eShop, pay(device, cc), Tee) A Tee < Ts
is sound and complete under reasonable assumptions [7]. AE(eShop, alice, give_guarantee, Ty) ATy < Tee
Therefore, soundness and completeness results also hold f 4

. . . L . AP, ={H(eShop, alice, give_guarantee, Ty) N Ty < Tec
€
WAV €. A detailed discussion of this issue can be found in [5]. AH(alice, eShop, pay(device, cc), Toe) A oo < T}

We will next demonstrate the operational functioning of by (alice?
verification in WAV in the alice & eShop scenario. (by (alice2)) (10)

VII. V ERIFICATION IN WAV €

In the following, the set€XP.) and HAPY represent
the evolution ofalice’s expectations and events as WAY
derivation progressesy is an incremental index. Let be the
following goal of alice’s: EXP. ={E(eShop, alice, deliver(device), Ts) A Ts < 50

NE(alice, eShop, pay(device, cc), Tee) N Tee < Ts

Having received the paymeniShop’s policy would be to
deliver the device:

g < have(alice, device, 50). (goal)
NE(eShop, alice, give_guarantee, Tg) N Ty < Tec}
Then, by unfolding of clausalice3, HAP? ={H(eShop, alice, give_guarantee, T,) AT, < Tec
o AH(alice, eShop, pay(device, cc), Tec) N Tee < Ts
EXP, :{E(eS.hop, alice, delwer(devzce), Ts) ANTs < 50} (6) /\H(eShop7 alice, deliuer(device)7 TS) NTs < 50}
(by (aliced)) (by (shop2))
11)
To this expectationeShop will react by expecting a pay- o]]
ment: Summarising,alice devised the following set of events,
which should let her achieve her goal (have the desired device)
EXP. —{E(eShop, alice, deliver(device), Ts) A Ts < 50 while respecting both ofilice’s and eShop's policies.

N(E(alice, eShop, pay(device, cc), Tee) N Tee < Ts

VE(alice, eShop, pay(device, cash), Tea) N Tea < Ts

VE(alice, eShop, pay(device, cheque), Ten) A Ten, < Ts)
(by (shop1))

Co ={H(eShop, alice, give_guarantee, Tg) N Ty, < T,

AH(alice, eShop, pay(device, cc), Tp) ATy < Ts (12)

AH(eShop, alice, deliver(device), Ts) A Ts < 50)}

(7
VIIl. RULE MARK-UP

Since the expectation containing the paymentcbys the 1, \waye the7Cs can be exchanged between web services,
only one which generates an expectation matching a rule af \ye|| a5 advertised together with their WSDL. For this
alice ((alicel)), the first expectation among the three paymerlaéason' a mark-up language is necessary for the rul@gsn
alternatives is selected (the.oth.er branches evgntual!y fﬁilljleML [3] is the perfect mark-up language for exchanging
by Eq. 5, because no matchifg is abduced). This choice ;o5 on the web, so our choice has been easy. RuleML 0.9
triggers @licel): contains mark-ups for expressing important concepts of the
SCIFF proof-procedure. In particulafCIFF is a rule engine

EXP; ={E(eShop, alice, deliver(device), Ts) A Ts < 50 able to distinguish and use both backward and forward rules.
NE(alice, eShop, pay(device, cc), Tee) AN Tee < T ®) Backward rules are used to plan, reason upon events, perform
AE(eShop, alice, give_guarantee, Tg) N Ty < Tec} proactive reasoning. Forward rules are used for reactive rea-

(by (alicel)) soning, to quickly perform actions in response to occurred

.) events. Both are seamlessly integrated@IFF. RuleML 0.9
Then 6hop3) fires, and abduces the happening &fontains adirection attribute that can be attached to rules.

give_guarantee event. We then have: Being based on abductioSCIFF can deal both with negation
as failure and negation by default, that have an appropriate
EXP;, ={E(eShop, alice, deliver(device), T.) A Ts < 50 tagging in RuleML. In this work, we only used standard
NE(alice, eShop, pay(device, cc), Tee) N Tee < Ts RuleML syntax; in future work we might be interested in
NE(eShop, alice, give_guarantee, Ty) AN Ty < Tec} distinguishing between defined and abducible predicates, or
(by (alicel)) between expectations and events.
HAP? —{H(eShop, alice, give_guarantee, Ty) ATy < Toc} SCIFF was implemented in SICStus Prolog: SICStus con-

tains an implementation of the PiLLoW library [19], which
(9) Mmakes it easy to perform http requests, as well as implement-
ing services on the web. Finally, SICStus contains an XML

(by (shop3))

parser, which allowed us to easily implement the RuleMtertain course of events in an acceptable option, possibly after
parser. The RuleML parser is freely available on $@€IFF another mutual verification phase. This is subject of ongoing

web site [26]. work. Finally, we are currently investigating the exchange of
policies between web services, for which a suitable interaction
IX. DISCUSSION AND RELATED WORK protocol needs to be devised. We are thinking of specifying

WAV is a framework intended for describing declarativelguch a protocol for exchanging the policies in the same
the behavioural interface of web services, and for testifgnguage WAV uses to specify policies.
operationally the possibility of fruitful interaction between In this work, we do not address the problem of reasoning
them. WAV answers the question “does there exist a viabfoout ontologies: rather, we focus on the reasoning process,
interaction, between two given web services, which achievéiyen the policies of both the peers involved in the interaction.
a given goalG?” In case of success, WAVproduces a set of Many other approaches instead focus on the former issue:
expectations about events. WAV particularly suitable for hence our proposal could be seen as a complementary func-
highly dynamic environments, in which interoperability is aionality, that could further improve the discovery process. For
unknown that has to be checked. instance, in [24] an ontology language to define web services is

WAV ¢ uses and extends a technology initially developed f@¥oposed. In [1], [2], besides proposing a general language for
online compliance verification of agent interaction to protocol€presenting semantic web service specifications using logic, a
[6]. SCIFF and the protocol specification language based @scovery scenario is depicted and an architectural solution is
social integrity constraints were motivated and inspired Hyfoposed (we draw inspiration for our scenario from the Dis-
conspicuous work done in the context of agent interaction @@very Engine example). A notion of mediator is introduced to
open societies, notably work by Singh [27] and colleague@vercome differences between different ontologies, and then
The extension of such a work to the context of web service®reasoning process is performed over the user inputs and the
centering around the concept of policies, as proposed in thigoothetical effects caused by the service execution. To some
work, seems to be very promising. The idea of policies féxtent, our work can be related to [23], where the authors
web services and policy-based reasoning is one that mdigsent a framework for automated web service discovery that
other authors also adopt. We will cite work by Finin andises the Web Service Modeling Ontology (WSMO) as the
colleagues [20], and by Bradshaw and colleagues [28], the figgnceptual model for describing web services, requester goals
one with an emphasis on representation of actions, the lat&d related aspects. This conceptual framework distinguishes
on the deontic semantic aspects of web service interaction. W& main stages. During the discovery stage, the requester
acknowledge the importance of action modelling and we poitates only the things that are desired, thus seeks for all the
that the idea of expected behaviour of web services can h&gsvices that can potentially satisfy a request of such a kind.
a deontic reading. In fact, previous work SCIFF has been During the contracting stage, instead, the requester provides in
devoted to investigating and clarifying the interesting link§iput specific information for an already requested service. The
between deontic operators and expectation-based reasomHgPOse of this second stage is to verify that the input provided
[8]. The distinguishing features of WAY compare to most Will lead to a desired state that satisfies the requester goal.
work of literature, are its logical underpinning and its sountd our work, we are concerned mainly with the contracting
and complete operational characterisation. It is in our agen®f@ge. While in [23] the authors use F-logic and transaction
to carry out an extensive empiric evaluation of WAWased logic as the underlying formalisms, we rely on extended logic
on interesting cases and scenarios such as those proposddf@gramming. In both the approaches, however, hypothetical
related work, and on the existing implementation of S@FF reasoning is used for service contracting.
framework3 In [23], [1], [2], only the clients goal is considered, while in

Another direction of current work relates to the actual useur framework the client can specify its policies (its intended
of the answers of WAY by web services after they manag@ehaViOUral interface); in this way, the client could be consid-
a successful derivation. In principle, the sequence of evei€d a web service as well. Therefore, our framerwork can be
produced by WAV could be instantiated into a concreteeXploited without major changes to deal with the problem of
sequence of messages, which will guarantee the achieven"i@mroperab”ity between web services behavioural interfaces
of G, under ideal external conditions. But this is true onl{Al-
if the policies disclosed by both web services are a faithful Foster et al. [16] propose a model-based approach to ver-
representation of their actual behaviour. This may not be tif§ & given service composition can successfully execute a
case, as for example policies may depend on sensible data, @ffeography, in particular with respect to the obligations
web services may be not allowed to disclose full informatiofinPosed on the services by a choreography. The web service
to the outside. In that case nothing warrants that the couggecifications and the choreography are translated to FSP
of action produced by WAV will be satisfactory for either algebra and checked by model checking techniques. The main
web service. We might then have to resort to further stegdfference with respect to our work is that Foster et al.

For example both web services could “formally” agree that@€ck a web service composition against a choreography for
conformance, while we check a set of web services for their

3Seehttp://lia.deis.unibo.it/research/sciff . capability to achieve a goal. Another notable difference is in

the adopted formal approaches (abduction in our case, model Revised Selected Papersolume 3267 ofLecture Notes in Artificial
checking in theirs).

The outcome of the reasoning process performed by WA

7

could be intended as a sort of “contract agreement” between

the client and the discovered service, provided that each peer

is tightly bounded to the policies/knowledge bases he/she h%‘.
previously published. For example, the dynamical agreement
about contracts (e-contracting) is addressed in [13], where
Situated Courteous Logic is adopted for reasoning about rule[‘lgj
that defines business provisions policies. The used formal-
ism supports contradicting rules (by imposing a priorization

and mutual exclusion between rules), different ontologies,

and effectors as procedures with side effects. However, thgi
work is more focussed on establishing the characteristics of
a business deal, while our approach address the problem
of evaluating the feasibility of an interaction. To this endji]
we perform hypothetical reasoning on the possible actions

and consequences; moreover, we hypothesised also which

condition must hold, in order to interoperate. Other works
use rules to reason about established contracts: in [18], m] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.

example, Defeasible Deontic Logic of Violation is used t

K]

Intelligence pages 324-339. Springer-Verlag, 2005.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni. Verifiable agent interaction in abductive
logic programming: theSCIFF proof-procedure. Technical Report
DEIS-LIA-06-001, University of Bologna (Italy), March 2006. LIA
Series no. 75.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, Giovanni
Sartor, and Paolo Torroni. Mapping deontic operators to abductive
expectations. Computational and Mathematical Organization Theory
12(2-3):205 — 225, October 2006.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and
Paolo Torroni. TheSCIFF abductive proof-procedure. Rroceedings

of the 9th National Congress on Artificial Intelligence, AI*IA 2005
volume 3673 ofLecture Notes in Atrtificial Intelligencgpages 135-147.
Springer-Verlag, 2005.

Jo® Jilio Alferes, Carlos Viegas Daasio, and Lis Moniz Pereira.
Semantic web logic programming tools. In Francgois Bry, Nicola Henze,
and Jan Maluszynski, editorBPSWR volume 2901 ofLecture Notes

in Computer Sciencepages 16-32. Springer, 2003.

Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,
Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business
process execution language for web services version 1.1, May 2003.
http://www.ibm.com/developerworks/library/ws-bpel/.

Scientific AmericanMay 2001.
S. Bhansali and N. Grosof. Extending the sweetdeal approach for e-

monitor the execution of a previously agreed contract. We ~ procurement using sweetrules and ruleml. In Adi et al. [3].
have addressed such issue in a companion paper [8], whiéfé Franois Bry and Michael Eckert. Twelve theses on reactive rules for the
integrity constraints have been exploited and conciliated with

the deontic concepts.

(18]

ACKNOWLEDGEMENTS

1

This work has been partially supported by the MIUR PRII£I °
2005 projectsSpecification and verification of agent inter-
action protocolsand Vincoli e preferenze come formalismo
unificante per I'analisi di sistemi informatici e la soluzione dj17]
problemi realj and by the MIUR FIRB projeciTecnologie
Orientate alla Conoscenza per Aggregazioni di Imprese Fﬂs]
Internet

L
2

3

[4

[5

6

]
]

[19]

REFERENCES
http://mww.w3.0rg/Submission/SWSF-SWSL/. [20]
http://www.w3.0rg/Submission/2005/SUBM-SWSF-Applications-
20050909/
Asaf Adi, Suzette Stoutenburg, and Said Tabet, editoRules and
Rule Markup Languages for the Semantic Web, First International
Conference, RuleML 2005, Galway, Ireland, November 10-12, 200&21]
Proceedings volume 3791 ofLecture Notes in Computer Science
Springer Verlag, 2005. [22]
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Marco Montali. An abductive framework for a-priori
verification of web services. In Michael Maher, editéfoceedings
of the Eighth Symposium on Principles and Practice of Declarativi23]
Programming, July 10-12, 2006, Venice, Itapages 39-50, New York,
USA, July 2006. Association for Computing Machinery (ACM), Special
Interest Group on Programming Languages (SIGPLAN), ACM Press.
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, Marco Montali, and Paolo Torroni. Policy-based reasonirig4]
for smart web service interaction. Rroceedings of the 1st International [25]
Workshop on Applications of Logic Programming in the Semantic Web
and Semantic Web Services (ALPSWS 2006lume 196 of CEUR
Workshop Proceedingpages 87-102, Seattle, WA, USA, August 2006[26]
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni. The SOCS computational logi27]
approach for the specification and verification of agent societies. In
Corrado Priami and Paola Quaglia, editdgobal Computing: IST/FET [28]
International Workshop, GC 2004 Rovereto, Italy, March 9-12, 2004

web. InProceedings of the Workshop on Reactivity on the,\Wainich,
Germany, March 2006.

M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for
abductive logic programsJournal of Logic Programming34(2):111—
167, 1998.

Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-
based analysis of obligations in web service choreographirdoeed-
ings of the International Conference on Internet and Web Applications
and Services (ICIW 20065uadeloupe French Caribbean, 2006. IEEE
Computer Society Press.

T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive
logic programming. Journal of Logic Programming33(2):151-165,
November 1997.

G. Governatori and D. P. Hoang. A semantic web based architecture for
e-contracts in defeasible logic. In Adi et al. [3].

Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed WWW
programming using (Ciao-)Prolog and the PiLLoW libraftheory and
Practice of Logic Progr. 1(3):251-282, 2001.

Lalana Kagal, Timothy W. Finin, and Anupam Joshi. A policy based
approach to security for the semantic web. In Dieter Fensel, Katia P.
Sycara, and John Mylopoulos, editorsiternational Semantic Web
Conferencevolume 2870 ofLecture Notes in Computer Sciengages
402-418. Springer, 2003.

A. C. Kakas, R. A. Kowalski, and Francesca Toni. Abductive Logic
Programming.Journal of Logic and Computatior2(6):719-770, 1993.

A. C. Kakas and Paolo Mancarella. On the relation between Truth
Maintenance and Abduction. In T. Fukumura, editBrpceedings of
the 1st Pacific Rim International Conference on Artificial Intelligence,
PRICAI-90, Nagoya, Japampages 438-443. Ohmsha Ltd., 1990.
Michael Kifer, Ruben Lara, Axel Polleres, Chang Zhao, Uwe Keller,
Holger Lausen, and Dieter Fensel. A logical framework for web service
discovery. InSemantic Web Services: Preparing to Meet the World
of Business Applications, ISWC Worshop, Hiroshima, Japiovember
2004.

D. et al. Martin. http://www.daml.org/services/owl-s/1.0/.

Working Group on Rule Interchange Format. Use cases and
requirements. http://www.w3.0rg/2005/rules/wg/ucr/
draft-20060323.html , March 2006.

The SCIFF abductive proof procedure, 200%ittp://lia.deis.
unibo.it/research/sciff/ .

M. Singh. Agent communication language: rethinking the principles.
IEEE Computerpages 40-47, December 1998.

Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Austin Tate, and
Jeff Dalton. Applying kaos services to ensure policy compliance

for semantic web services workflow composition and enactment. In
Sheila A. Mcllraith, Dimitris Plexousakis, and Frank van Harmelen,
editors,International Semantic Web Confereneelume 3298 of_ecture
Notes in Computer Sciencpages 425-440. Springer, 2004.

