
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract— The problem dealing with heterogeneity, even
semantic has been deeply investigated in the field of ontology.
We reflect upon the suitability of the ontology as a candidate for
solving the problem of heterogeneity and ensure greater
interoperability between applications.

As a consequence, we proposed an ontological approach for
application ontology building, which can be profitably exploited
for integrating applications.

We describe in this paper how ontologies may be used to
model heterogeneous applications. We first look at what aspects
need to be described for the purpose of application model design
in the context of enterprise integration. Then we show how these
aspects are related to each others.

Index Terms— Application ontology, EAI, interoperability,
Semantic heterogeneity.

I. INTRODUCTION

new technology called EAI (Enterprise Application
Integration) has emerged as a field of enterprise

integration. In essence, EAI provides tools to interconnect
multiple and heterogeneous enterprise application systems
such as CRM (Customer Relationship Management), SCM
(Supply Chain Management), ERP (Enterprise Resource
Planning) and legacy systems. The most difficulty of this
interconnection is due to the fact that the integrated systems
were never designed to work together [12], [14].

Collaboration of heterogeneous partners leads to the
interoperability issue [2], which represents a major barrier in
the business sector. Obstacles to heterogeneity arise from the
fact that partners do not share the same semantics for the
terminology of their business process models. Moreover, they
use various collaboration scenarios with different
organizational constraints. In addition, the growing
heterogeneity of standards for information interchange
implies that no partner has enough power to impose their

Manuscript received October 23, 2006. This work was supported by the
LIRE Laboratory of Computer Science Department, Mentouri University of
Constantine.

 H. Guergour is with the LIRE Laboratory, Department of Computer Science,
Mentouri University of Constantine, 25000, Algeria, (phone: 213-3181-8817;
fax: 213-3181-8817; e-mail: habib_guergour@ yahoo.fr).

R. Driouche is with the LIRE Laboratory, Department of Computer Science,
Mentouri University of Constantine, 25000, Algeria, (phone: 213-3181-8817;
fax: 213-3181-8817; e-mail: driouchera@ yahoo.fr).

Z. Boufaïda, is with the LIRE Laboratory, Department of Computer Science,
Mentouri University of Constantine, 25000, Algeria (e-mail:
boufriche@hotmail.com).

standard. So, semantic heterogeneity occurs because there is a
disagreement about the meaning, i.e. inconsistent
interpretation. In the semantic Web, ontologies are often seen
as new solutions providing semantically enriched information
exchange facilities [13]. They provide a common terminology
that captures key distinctions in business domain.

In our context, integration is the process of linking
heterogeneous applications, to make a unit complete and
confers to it properties related to the interoperability and the
coherence of applications. Many attempts have been made to
integrate different applications. In most approaches, the
remaining problems are still twofold. They are developed for
specific business sectors and they do not cope with the
challenge of incorporating semantics into applications [6],
[7]. An architecture based on ontology is often seen as new
solution providing exchange facilities of semantically
enriched information. It supports mapping process for
integrating local ontologies related to heterogeneous and
distributed applications. For us, ontologies should be used for
two main reasons: first, for modeling the application’s
structure and behaviour in a precise and rigorous way and
second, for representing vocabularies and providing semantic
rules of mapping in order to integrate enterprise applications
[6].

The rest of the paper is organized as follows: Section 2
outlines some important related work. The section 3 shows
more details on our architecture for application integration,
gives a description of the two levels: applicative and
collaborative. Section 4, describes our application ontology
building process based on Methontology [18]. Finally, Section
5 discusses conclusion and sketches future work.

II. RELATED WORK

EAI is the process of adapting a system to make distributed
and heterogeneous applications work together to carry out a
common objective [12]. In companies, the essential
requirement for heterogeneous and distributed applications is
to be able to exchange information and services with other
ones in a semantically rich and sound way. Thus, semantics
should be captured, verified and used to validate reliable
information exchange. This is commonly referred to as the
problem of interoperability. Ontology is an appropriate way to
enable interoperability. It includes an explicit description of
both a domain structure and the related terms describing this

An Approach for Application Ontology Building
and Integration Enactment

H. Guergour, R. Driouche and Z. Boufaïda.

A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

domain. It allows applications to agree on the terms, they use
when communicating.

However, an EAI model provides the language used to
specify an explicit definition of an enterprise. It must have the
expressiveness to capture the sets of applications, its activities
that they perform and the resources required by these
activities. One of the basic concepts, which enable us to
capture the integration, is the structure, the behaviour and the
domain of the application.

The focus of this paper is on the application ontology
building process based on Methontology [18].

A range of methods and techniques have been reported in
the literature regarding ontology building methodologies [15].
Mike Uschold’s methodology [16], Michael Grüninger and
Mark Fox’s methodology [17] and Methontology [18] are the
most representative. Grüninger methodology is only limited
to ontologies using first-order-logic languages. Uschold’s
and Methontology have a common that they start from the
identification of the ontology purpose and the need for
domain knowledge acquisition. Uschold proposes a
codification of knowledge in a formal language. In
Methontology, a set of intermediate representations
independent of the formal language to be used is expressed.
Thus, Methontology enables experts and ontology designers
who are unfamiliar with implementation environments to
build ontologies from scratch.

For the ontology evaluation, Ushold’s methodology
includes this activity but does not state how to carry it out.
Grüninger and Fox propose the identifying a set of
competency questions. Evaluation in Methontology occurs
throughout the ontology development.

 For our purpose, we have chosen the Methontology for the
application ontology building. It enables the construction of
ontologies at the knowledge level. It includes the
identification of the ontology development process, a life
cycle based on evolving prototypes and particular techniques
to carry out each activity.

III. INTEGRATION ARCHITECTURE

In the system, we identify several types of legacy,
client/server and Web applications, developed using different
programming languages. They work on different operating
system platforms and use various format for the exchange of
data. By using application ontologies, we enhance
communication between applications, for the benefit of
integration. Hence, ontologies serve as stable basis for
understanding the requirements for the user applications [10].

Fig.1. Integration system architecture
The integration system we propose aims at offering a

support for integrating heterogeneous and distributed
applications, accessing multiple ontologies (Fig.1). It
provides a communication framework as a central service. It
permits an appropriate exchange of information between
applications ontologies and generates the global one. The
introduced framework tries to enhance the ontology mapping,
which enables the reuse of mapping information for
managing heterogeneity. The integration process is based on
the semantic bridges to indicate the semantic equivalence of
ontology entities for assembling them. These applications are
linked seamlessly to partners, vendors and suppliers through
a common interface.

Furthermore, we give an overview about the two-level
approach for application integration, the applicative level and
the collaborative one:

- Applicative level consists of heterogeneous and
distributed applications. Each application has its own local
ontology. Our important direction is the development of a
communication framework for ontology mapping. In our
architecture, we aim to overcome the gap between local
ontologies application, according to the semantic relations. A
special component, named mapper, is invoked to perform its
tasks for building the global ontology. The latter can be seen
as enterprise ontology and permits the resolution of semantic
conflicts in both concepts and attributes [10].

- Collaborative level takes place in the business process
collaboration with partners. Each company has a mobile
agent that is responsible for requesting and providing the
services and the negotiation for selecting the best partner

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

<rdf:RDF>
…
<rdf: Description about=" URI of ontology" >
<Domain> Enterprise Application Integration </Domain >
<Date> September 30, 2006 </ Date >
<Developed-by>

<rdf:Sequence>
<rdf:_1 H. Guergour, LIRE laboratory University of Mentouri >
<rdf:_2 R. Driouche, LIRE laboratory University of Mentouri>
<rdf:_3 Z. Boufaïda, LIRE laboratory University of Mentouri >

</rdf:Sequence>
</Developed -by>

<Purpose> Ontology modeling the behavioral and structural properties of
an application and properties of domain in which the application belongs.
This ontology will facilitate the integration of different applications of the
enterprise </ Purpose>

<Level_of_formality formel />
<Terms>

<rdf:Sequence>
<rdf:_1 Application> <rdf:_2 Application-Behavior>

 <rdf:_3 Application-Structure > <rdf:_4 Application-Domain >
 <rdf:_5 Activity><rdf:_6 Atomic-activity >
 <rdf:_7 Composite-activity ><rdf:_8 Sequence-activity >

<rdf:_9 Split-activity > <rdf:_10 Choice-activity >
 <rdf:_11 Repeat-Until-activity > <rdf:_12 Application-model >
 <rdf:_13 Input > <rdf:_14 Parameter ><rdf:_15 Output >
 <rdf:_16 Precondition><rdf:_17 Effect >
 <rdf:_18 Computed-parameter> <rdf:_19 Computed-input >
 <rdf:_20 Computed-output ><rdf:_21 Computed-precondition >
 <rdf:_22 Computed-effect> <rdf:_23 IDL-description >
 <rdf:_24 XDR-description > <rdf:_25 WSDL-description >
 <rdf:_26 Creator > <rdf:_27 Date ><rdf:_28 Interface-structure >
 <rdf:_29 Product > <rdf:_30 Method-structure >
 <rdf:_31 Transportation > <rdf:_32 Input-structure >
 <rdf:_33 Output-structure > <rdf:_34 Level >
 <rdf:_35 Domain-description > <rdf:_36 Functional- description >
 <rdf:_37 Non- Functional-description> …
</rdf:Sequence>

</Terms>
<Sources>

<rdf:Sequence>
<rdf:_1 “ An ontology for semantic middleware: extending DAML-S

beyond Web services”>
<rdf:_2 “Enterprise Application Integration”. Edition Addison-Wesley,

Boston et al. 2003.>
<rdf:_3 Semantic Web Service Tutorial >
<rdf:_4 rdf:resource= " kmi.open.ac.uk/projects/dip/resources/hicss-

39/HICSS06-slides.ppt ">
</rdf:Sequence>

</Sources>
</rdf:description>
</rdf:RDF>

basing itself on criteria (e.g., price limits, product
configurations or delivery deadlines). It uses the collaboration
scenario for achieving business process. The mobile agent
permits to perform the integration tasks according to process
ontology and using optimized itinerary. The latter improves
the quality of the system and reduces the response time. The
EbXML [20] extended scenario is based on the integration of
agent paradigm to guarantee a saving of search time, to
negotiate business parameters and to offer a great
performance especially in the presence of the characteristic of
mobility which solves problems related to the networks while
decreasing consumption in resources networks [22].

IV. BUILDING APPLICATION ONTOLOGY

In this section, we will build an application ontology which
concerns EAI domain. For this purpose, the ontology consists
of a classification of relevant characteristics of applications.
We have some pertinent information about the application,
such as application-behaviour, application-domain,
application-structure …etc. These concepts are inspired from
EAI domain [10], [12], Web services [4], [21] and
middleware technologies [1]. Let us start the building of
application ontology using Methontology [18], we have
affected two modifications there, the first on the specification
phase and the second on the conceptualization one.

To determine the purpose of ontology, we follow the
specification phase describes in [19]. In this work, an RDF
document is created to describe ontology to be built through
its objective, its developers, its creation date, its scope, etc....

In the conceptualization phase, we fused the step of
construction of concepts classification trees with the step of
construction of a relations binary diagram in order to show all
ontology concepts in single diagram and to have a clear
understandable view of all ontology concepts.

A. Specification
We suggest starting the development of ontology, the

definition of its domain and its scope. Thus, we need to
answer at some fundamental questions:

• Which domain will cover ontology?
• In which purpose ontology will be used?
Ontology that we come to build concerns the domain of the

enterprise application integration, we want to specify well the
concepts relating to this domain and relations between them.
These concepts must describe various types of applications,
their models, their structures and the domain to which
applications belong.

We summarize this phase in RDF document presented in
figure 2.

Fig.2 RDF-document specification for Application ontology

B. Conceptualization
After the acquisition of the majority of knowledge in the

first phase, we must organize and structure them by using
semi-formal or intermediate representations which is easy to
understand and independent of any implementation language.
This phase contains several steps which are: Build the
glossary of terms; Build the binary-relations and concepts
classification diagram; Build the concepts Dictionary; Build
the relations-tables; Build the attributes-tables; Build the
logical-axioms table; Build the instances-table.

1) Build the glossary of terms: This glossary contains the
definition of all terms relating to the domain (concepts,
instances, attributes, relations) which will be represented in
the application ontology, for example, in our case the terms
Activity and E-Commerce are concepts but Set-of and Has-

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

precondition represent relations. The table 1 provides a
detailed list of the various terms used in ontology.

The hierarchy of concepts classification shows the
organization of the ontology concepts in a hierarchical order
which expresses the relations sub-class – super-class.

We use the relation "Sub-Class-Of» between the classes to
define their classification. C1 class is sub-class of C2 class if
any instance of C1 class is an instance of C2 class. We follow
a development process from top to bottom. We start with a
definition of the general concepts of domain and then
continue by the specialization of concepts. For example, we
can start by creating classes for the general concepts:
Application, Application-behavior, Application-structure,
Application-domain, Application-Model, Domain-
Description, Application-Model, Parameter, Computed-
Parameter, Application-Structure, Application-Structure,
Output-Structure, Date, Interface-Structure, Product, Method-
Structure, Transportation, Input-Structure, Level and Creator.

2) Build the binary-relations and concepts classification
diagram: In this phase, we will build our diagram in two
principal steps; initially, we determine the organization of
concepts, then we will connect the concepts by relations so
necessary.

We represent the binary relations between classes by a
diagram. In this diagram the classes are represented by
rectangles and the relations by arrows (domain towards Co-
domain) labeled by the name of the relation. We enrich this
diagram by adding dotted arrows (sub-class towards class) to
illustrate the organization between concepts

Figure 3 represents binary-relations and concepts
classification diagram.

We are always in the conceptualization phase, for each tree
of concepts classification obtained in the previous step; we
build the following intermediate representations: concepts
Dictionary, relations-tables, attributes-tables, logical-axioms
table, instances-tables.

3) Build the concepts Dictionary: In this step, we will
accord a semi-formal description of concepts which were
presented in the classes hierarchy, this process corresponds to
the creation of concepts dictionary accorded to Methontology.
In this dictionary, we define for each concept: instances,
attributes, relations which the source is this concept,
synonyms and acronyms of this concept;

The table 2 represents a concepts dictionary for the domain
« Application ».

4) Build the relations-tables: The binary relations are
represented in the form of properties which attach a concept
to another. For each relation whose source is in the tree of
concepts classification, we define: its name, the name of the
source concept, the name of the target concept, cardinality
and the name of the inverse relation; For example, the table 3
represents a relations table for the domain « Application ».

TABLE I
TABLE OF TERMS GLOSSARY

Term name Description
Application An entity, a program or a set of activities having a certain

behavior, a structure and a domain to which it belongs.
Application-
Behavior

Sub-ontology modeling the behavioral properties of an
application. Characterized by a set of activities and a
model of their execution.

Application-
Structure

Sub-ontology modeling the structural properties of an
application. It specifies the interface between the
application and the middleware.

Application-
Domain

Sub-ontology modeling the properties of the domain to
which the application belongs.

Activity A function, a service, an entity or a work allowing to
achieve such a spot.

Atomic-activity An activity which we cannot divide it into sub-activities.
Composite-
activity

An activity which we can extract from other activities

Input An argument or a data which must be affected to an
activity or program.

Output Represents the result of the execution of an activity.
Precondition Represents the conditions necessary to execute an activity.
Effect Represents effects produced after the execution of an

activity. An effect can prevent the execution of other
activities.

IDL-structure Affirms that the interfaces of an application are specified
by IDL language, i.e. the application is connected to
middleware CORBA.

WSDL-
Structure

Affirms that the interfaces of an application are specified by
WSDL language, i.e. application represents a Web Service.

Functional-
description

This term allows to determine in which domain the
activity or the application belongs.

Non-functional-
description

This term allows to determine in which domain the
parameter belongs.

(…) (…)
Provides Affirms that any application must have a certain

behavior.
Has-domain Affirms that any application must belong to a certain domain.
Has-structure Affirms that any application must be connected to a

middleware.
Has-input Indicates that an activity must have input data.
Has-output Indicates that an activity must present results.
Description-type Indicates that the domain can have functional description

and non functional description.
Exp. Travel-service is a functional description
 Person is non functional description

Maps-Method Affirms that the method name in interface of a
middleware must correspond to an activity.

Refers-to 1 Indicates that the functional description of term refers to
an activity.
Exp. Name_Instance1 is an instance of Hotel-reserv.
Name_Activity1 is an instance of Activity.
Name_instance1 refers to Name_activity1. Thus
Name_activity1 is an activity of Hotel reservation.
(Hotel-reserv sub-class of Functional-description)

Refers-to 2 Indicates that the non functional description of term
refers to a parameter.
Exp. Name_Instance1 is an instance of Hotel.
Name_Parameter1 is an instance of Parameter.
Name_instance1 refers to Name_Parameter1. Thus
Name_Parameter is a parameter of Hotel.
(Hotel sub-class of non-functional-description)

(…) (…)
Name Indicates the application name of an activity…
Type Indicates the type of the parameter.
Code Represents the product code.

(…) (…)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

Fig. 3: binary-relations and concepts classification diagram
TABLE II

CONCEPTS DICTIONARY FOR THE DOMAIN « APPLICATION »
Concept

name
Synonyms Acro-

nyms
Ins-

tances
Attributes relations

 Application Program ;
Software ;
…

App - Name
Text-
description

Provides
Has-structure
Has-domain

Activity Function;
Service;
Act;
…

- - - Has-parameter
Has-Precondition
Has-Input
Has-Output
Has-Effect
Has-subactivities

Atomic-
activity

Atomic-
function;…

- - - Realizes

Composite
-activity

Composite-
function;
Composite-
service;
; …

- - - Has-Computed-parameter
Has-Computed-
Precondition
Has-Computed-Input
Has-Computed-Output
Has-Computed-effect
Realized-by

Split-
activity

Split-
function;

Split-service ...

- - - -

Choice-
activity

Choice-
function;.

- - - -

Repeat-
until-activity

Repeat-until-
function; ..

- - - -

TABLE III
RELATIONS TABLE FOR THE DOMAIN « APPLICATION »

Relation-name Source concept Target concept Cardina-
lity

Inverse relation

Provides Application Application-
behavior

(1,1) Provided-by

Has-structure Application Application-
structure

(1,1) -

Has-domain Application Application-domain (1,1) -
Has-parameter Activity Parameter (0,n) -
Has-Precondition Activity Precondition (0,n) -
Has-Input Activity Input (0,n) -
Has-Output Activity Output (0,n) -
Has-effect Activity Effect (0,n) -
Has-subactivities Activity Activity (0,n) Has-subactivities
Realizes Atomic-

activity
Composite-activity (1,n) Realized-by

Realized-by Composite-
activity

Atomic-activity (1,n) Realizes

Has-computed-
precondition

Composite-
activity

Computed-
precondition

(0,n) -

Has-Computed
-input

Composite-
activity

Computed-input (0,n) -

Has-Computed
-output

Composite-
activity

Computed-output (1,n) -

Has-Computed
-effect

Composite-
activity

Computed-effect (1,n) -

Has-computed
-parameter

Composite-
activity

Computed-
parameter

(0,n) -

Relation between classes
Sub-class relationship.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

5) Build the attributes-table: The attributes are properties
which take its values in the predefined types (String, Integer,
Boolean, Date…); for example the concept Parameter has
attributes: Name, Text-description, and the type of the
parameter.

For each attribute appearing in the concepts dictionary, we
specify: its name, type and interval of its possible values and
its cardinality; for example, the table 4 represents an
attributes table for the domain « Parameter ».

6) Build the logical-axioms table: In this step, we will
define the ontology concepts by using the logical expressions
which are always true. In the table below, we define for each
axiom, its description in natural language, the name of the
concept to which the axiom refers, attributes used in the
axiom and the logical expression; we specify some axioms as
it is represented in table 5.

7) Build the instances-table: In this section, we will present
a description of some ontology instances, for that, we will
specify the instances’ names and values of the attributes for
each one of them; the table 6 illustrates some instances for
each class.

C. Formalization
In this phase, we use the DL (Description Logic) [3]

formalism to formalize the conceptual model that we obtained
it at the conceptualization phase.

DL forms a language family of knowledge representation;
it allows to represent knowledge relating to a specific area
using "descriptions" which can be concepts, relations and
instances. The relation of subsumption allows to organize
concepts and relations in hierarchy; classification and
instantiation are the basic operations of the reasoning on
description logic, or terminological reasoning. Classification
permits to determine the position of a concept and a relation
in their respective hierarchies.

Description logic consists of two parts: terminological
language TBOX in which we define concepts and relations;
and an assertionnel language ABOX in which we introduce
the instances.

1) TBOX construction: We define here concepts and
relations relating to our domain, by using the constructors
provided by description logic to give structured descriptions
at concepts and relations; for example an activity must have a
name and only one, a parameter in input, a parameter at
output and produce an effect at the end of its execution.

We can describe this sentence in description logic by:

Activity= (∃ Name.String) (=1 Name.String)
 0 Has-input.Input) (0 Has-output.Output)
 (0 Has-precondition.Precondition) (0

Has-effect.Effect).
Moreover, we specify subsumption relations which

exist between various concepts; for example to specify
that the Activity class is subsumed by the Application

class we write: Activity ⊆ Application
Table 7 represents the definitions of some concepts
However, we define relations by giving the couples of

concepts source and concepts target of each one, and/or by
specifying its inverse relation; for example the Has-parameter
relation which connects an activity with its parameters is
specified by:

Has-parameter: (Activity, Parameter)
Has-parameter: Refers-to-

Table 8 represents the definitions of different relations of
our ontology.

TABLE V
LOGICAL-AXIOMS TABLE

Concept
name

Axiom description Attributes
used

Logical expression

Application An application
must have a
domain

Has-
domain

∀ X Application (X)
∃ Y Application-
domain(Y) Has-
domain (X,Y).

Activity An activity must
produce at the end of
its execution a results

Has-
Output

∀ X Activity(X)
∃ Y Has-output (Y)
 Has-output(X,Y).

Application-
information

An application can
interact at the interior
or at the exterior of the
company.

Participates ∀ X Application-
information(X)
∃ Y participates (Y)
 participates(X,Y).

Parameter A parameter refers
to an activity

Refers-to ∀ X Parameter (X) ∃ Y
Activity (Y) Refers-
to(X,Y).

Composite-
activity

A composite activity
can be a sequence of
activities, Split
activities or Choice
activities…

- ∀ X Composite-activity
(X) ⇒ (Sequence-
activity
 (X) ∨ Split-
activity(X) ∨ Choice-
activity (X) ∨
Repeat-until-activity(X)
)

IDL-
structure

An application
must have an
interface with the
middleware

Has-
interface-
structure

∀ X IDL-structure (X)
∃ Y Interface-structure
(Y) / Has-interface-
structure (X,Y).

Creator An application is
conceived or
published by a
company.

Design-
by

∀ X Application-
information (X)

∃ Y Creator (Y) /
Design-by (X,Y).

Domain-
description

A domain is
described by
functional and
non-functional
properties.

∀ X Domain-
description (X) ⇒
(Functional-description
(X) ∧ Non-functional-
description (X))

Functional-
description

A functional entity
must refer to an
activity

Refers-to ∀ X Functional-
description (X) ∃ Y
activity (Y) Refers-to
(X,Y).

Non-
functional-
description

A non-functional
entity must refer to
a parameter.

Refers-to ∀ X Non-functional-
description (X) ∃ Y
parameter (Y) Refers-
to (X,Y).

(…) (…) (…) (…)

TABLE IV
ATTRIBUTES TABLE FOR THE DOMAIN « PARAMETER »

Attribute name Type values values Arrange Cardinality
Name String - (1,1)

Text-description String - (1,n)
Type Thing - (1,1)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

2) ABOX construction: The assertionnel language is
dedicated to the description of facts, by specifying the
instances (with their classes) and the relations between them
in the following way:

A: C to indicate that A is an instance of class C;
For example: FLIGHT_RESERVATION: Application.
(A1, A2): R to indicate that the two instances A1 and A2

are connected by the relation R;
For example: (ALGERIA_AIRLINES,

FLIGHT_RESERVATION_INFOS): Creator
In tables 9 and 10 we define some assertions.

TABLE VI
INSTANCES TABLE

Concept Instance Property Value
 Name FLIGHT_RESERVATION Application FLIGHT_RESERVATION

Text-
description

flight reservation

 Name GET_FLIGHT_DETAILSActivity GET_FLIGHT_DETAILS

Text-
description

Take all details of the flight.

 Name CONFIRM_RESERVATIONAtomic-

activity

CONFIRM_RESERVATION

Text-
description

Send confirmation to customer.

 Name BOOK_FLIGHTComposite

-activity

BOOK_FLIGHT

Text-
description

BOOK_FLIGHT=SEQUENCE
_ ACTIVITY{
GET_FLIGHT_DETAILS,
GET_CONTACT_DETAILS,
RESERVE_FLIGHT,
CONFIRM_RESERVATION
}

 Name ACCOUNT_NAME

Text-
description

Name of the account

Computed

-Input

ACCOUNT_NAME

Type String

 Name PASSWORD

Text-
description

Account password.

Computed

-Input

PASSWORD

Type String

 Name ACK

Text-
description

Return “ACK” to user.

Computed

-output

ACK

Type Boolean

 Name IS_MEMBER(ACCOUNT_
NAME)

Text-
description

Is account name valid?

Compute-

Preconditi

on

IS_MEMBER(ACCOUNT
_NAME)

Type Boolean

 Name LOGGED_IN(ACCOUNT_
NAME,
PASSWORD)

Text-
description

Open session of
ACCOUNT_NAME with
the provided password

Computed

-effect

LOGGED_IN(ACCOUNT
_NAME,
PASSWORD)

Type Activity
Name ALGERIA AIRLINES

Phone 00213 31 92 45 74
00213 31 92 46 90

Fax 00213 31 95 55 84
00213 31 92 48 98

e-mail contact@algeria-airlines.dz
infos@algeria-airlines.dz

Site-web www.algeria-air-lines.dz

Creator ALGERIA AIRLINES

Physical-
@

Mohammed Boudhiaf
international Airport, Ain-
Bey Constantine (Algeria)

(…) (…) (…) (…)

TABLE VII
CONCEPTS DEFINITION IN TBOX

Concept Definition subsomption
relation

Application -(∃ Name.String) (=1 provides.application-
behavior) (=1 Has-structure.Application-
structure) (=1 Has-domain-Application-
domain)

Application ⊆ Thing.

Activity = (∃ Name.String) (=1 Name.String) (1

Has-input.Input) (1 Has-output.Output)

 (0 Has-precondition.Precondition) (1

Has-effect.Effect).

Activity ⊆

Application

Atomic-

activity

Activity Application-model

(1 Realizes-Composite-activity)

Atomic-activity ⊆

Activity

Atomic-activity ⊆

Application-model

Sequence-

activity

Composite-activity Sequence-activity ⊆

Composite-activity

Application-

domain

-(∃ Name.String) (=1 Name.String) (=1

Has-info.Application-information) (=1

Has-area.Application-area)

Application-domain ⊆

Thing

Application-

information

Application-domain (=1 Participates.Level

) (=1 designed-by.Level) (=1 Date-

info.Date)

Application-

information ⊆

Application-domain

Application-

area

Education ∪ Medicine ∪ … ∪ E-commerce Application-area ⊆

Application-domain

Parameter -(∃ Name.String) (∃ Type.Thing) (=1

Name.String) (=1 Type.Thing) (1

Refers-to.Activity)

Parameter ⊆ Thing

Computed

-parameter

-(∃ Name.String) (∃ Type.Thing) (=1

Name.String) (=1 Type.Thing) (1

Refers-to.Composite-activity)

Computed-parameter

⊆ Thing

Application-

structure

-(∃ Name.String) (=1 Name.String) (∀

Structure-type{IDL-Structure, XDR-

Structure, … WSDL-Structure})

Application-structure

⊆ Thing

IDL-

Structure

Application-structure (1 Has-interface-

struct.Interface-structure)

IDL-Structure ⊆

Application-structure

Application-

behavior

-(∃ Name.String) (=1 Name.String) (=1

Hs-model.Application-model) (1 Set-

of.Activity)

Application-behavior⊆

Thing

Interface-

structure

(=1 Name.String) (1 Has-method-

structure.Method-structure) (=1Maps-

interface.Application-behavior)

Interface-structure ⊆

Thing

Method-

structure

(=1 Name.String) (1 Has-input-

struct.Input-structure) (1 Has-output-

struct.Output-structure) (=1Maps-

method.Activity)

Method- structure ⊆

Thing

Input-

structure

(=1 Name.String) (=1Maps-input.Input) Input- structure ⊆

Thing

Level (∀ Name.{ Collaborative-level, Applicative-

level })

Level ⊆ Thing

Product (=1 Name.String) (=1 Code.String) (=1

Classification.String)

Product ⊆ Thing

Creator -(=1 Name.String) (1 Phone.String) (1

Fax.String) (=1 e-mail.String) (=1 Site-

web.String) (=1 Phisycal@.String).

Creator ⊆ Thing

(…) (…) (…)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

D. Implementation
The implementation deals with building a computable

model. The effort is concentrated on the suitability of the
OWL DL [11], which is equivalent to the SHOQ (D) [9]. For
checking, we need to use the inference services provided by
many systems such as RACER [8] and DLP [11]. These
systems have shown to work well with large ontologies. The
use of the RACER system can make possible to read OWL
file and to convert it in the form of a DL knowledge bases. It
can also provide inference services. We use that to manipulate
the application ontology and PROTEGE-2000 [9] which
offers a convivial graphical user interface. Additionally,
PROTEGE-2000 provides facilities to impose constraints to
concepts and relations.

To evaluate correctness and completeness of application
ontology, we use query and visualization provided by
PROTEGE-2000. We use the built-in query engine for simple
query searches and query plug-in to create more sophisticated
searches. We also use visualization plug-ins to browse the
application ontology and ensure its consistency.

TABLE VIII
RELATIONS DEFINITION IN TBOX

Relation Couple (domain, co-domain) Inverse-relation
Provides (Application, Application-behavior) Provided-

by
Has-structure (Application, Application-structure) -

Has-domain (Application, Application-domain) -

Has-parameter (Activity, Parameter) Refers-to

Has-Precondition (Activity, Precondition) -

Has-Input (Activity, Input) -

Has-Output (Activity, Output) -

Has-subactivities (Activity, Activity) -

Realizes (Atomic-activity, Composite-activity) Realized-by

Realized-by (Composite-activity, Atomic-activity) Realizes

Has-Computed-

input

(Composite-activity, Computed-input) -

Has-Computed-

output

(Composite-activity, Computed-output) -

Has-Computed-

effect

(Composite-activity, Computed-effect) -

Has-info (Application-domain, Application-

information)

-

Has-area (Application-domain, Application-area) -

Participates (Application-information, Level) -

Designed-by (Application-information, Creator) -

Date-info (Application-information, Date) -

Describes (E-commerce, Domain-description) -

To-dispose-of (E-commerce, Product) -

Mode-delivery (E-commerce, Transportation) -

Refers-to (Parameter, Activity) Has-

parameter

Refers-to (Computed-parameter, Composite-

activity)

Has-

Computed-

parameter

Computed-

parameter

(Composite-activity, Computed-

parameter)

Refers-to

Has-interface-struct (IDL-structure, Interface-structure) -

Maps-interface (Interface-structure, Application-

behavior)

-

Has-method-struct (Interface-structure, Method-structure) -

Maps-method (Method-structure, activity) -

Has-input-struct (Method-structure, Input-struct) -

Has-output-struct (Method-structure, Output-struct) -

Maps-input (Input-struct, Input) -

Maps-output (Output-struct, Output) -

Design-by (Application-information, Creator) -

Provided-by (Application-behavior, Application) Provides

TABLE IX
ASSERTIONNEL DESCRIPTION OF CONCEPTS

Concept Description
Application FLIGHT_RESERVATION : Application

HOTEL_RESERVATION : Application
VEHICLE_RESERVATION : Application

Activity GET_FLIGHT_DETAILS: Activity

RESERVE_FLIGHT: Activity; …

Atomic-activity CONFIRM_RESERVATION: Atomic-activity;

…

Composite-activity BOOK_FLIGHT: Composite-activity

Computed-Input ACCOUNT_NAME: Computed-Input

Computed-Input PASSWORD: Computed-Input

Computed-output ACK: Computed-output

Computed-

Precondition

IS_MEMBER(ACCOUNT_NAME): Computed-

Precondition

Computed-effect LOGGED_IN(ACCOUNT_NAME,

PASSWORD): Computed-effect

Creator ALGERIA_AIRLINES : Creator

(…) (…)

TABLE X
ASSERTIONNEL DESCRIPTION OF RELATIONS

Relation Description
Creator (ALGERIA_AIRLINES,

FLIGHT_RESERVATION_INFOS) :Creator ; …
Computed-
precondition

(BOOK_FLIGHT,
IS_MEMBER(ACCOUNT_NAME) : Computed-
precondition ; …

Computed-Input (BOOK_FLIGHT, ACCOUNT_NAME):
Computed-Input; …

Computed-output (BOOK_FLIGHT, ACK): Computed-output; …
Computed-effect (BOOK_FLIGHT,

LOGGED_IN(ACCOUNT_NAME,
PASSWORD): Computed-effect; …

(…) (…)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

DISCUSS

In the literature, many approaches have proposed to
integrate the applications enterprise. Wasserman [23] has
classified the integration approaches in four classes which are
principally: applications integration using data, treatments
(function), presentations (interface) and processes.

In our work, we developed an application ontology in order
to integrate the enterprise applications. The construction of
this ontology must be based on a model capturing structural
and behavioral properties of an application. In addition, the
properties on the domain to which the application belongs.
The behavioral properties of an application were modeled by
sub-ontology Application-behavior , which maintains the two
integration approaches : by treatments and processes, the
concepts of ontology Application-bahavior do not have any
positive impact on integration without recourse to ontology
Application-domain and Application-structure which also
make it possible to define a concepts set in order to enrich or
to increase the integration capacity and this one by
providing a properties modeling of the application as well as
properties on the application interfaces, i.e., the concepts set
which facilitate to define how the application is connected to
the middleware, for example: ‘IDL-structure’, ‘WSDL-
structure’, etc.…

In conclusion, the ontology is often seen as new solution
providing exchange facilities of semantically enriched
information, which can resolve the heterogeneity problem and
ensure greater interoperability between the integrated
applications.

V. CONCLUSION

The problem dealing with heterogeneity, even semantic has
been deeply investigated in the field of ontology.

We proposed an ontological approach for building
application ontology. This approach enhances application
integration at both applicative and collaborative levels. The
important benefit of our work is that the communicator can
reuse the mapping information for managing interaction
between applications.

Future work will focus on the development of global
ontology by integrating the application ontologies for
managing the enterprise information heterogeneity based on
the semantic bridges concept [5]. A semantic bridge
encapsulates all required information to translate instances of
the source entity to instances of the target entity. So, the
integrated applications can successfully and efficiently
communicate and exchange information as well as services
through the mapper component.

REFERENCES

[1] D. Oberle, M. Sabou, D. Richards, “ An ontology for semantic
middleware : extending DAML-S beyond Web services” International
Conference on Ontologies, Databases and Applications of SEmantics
(ODBASE), Catania, Sicily (Italy), Workshops, 3-7 November 2003.

[2] H. Panetto, M. Scannapieco, M. Zelm, “ INTEROP NoE : Interoperability
research for networked enterprise application and software”, OTM
Workshop, Lecture Notes in Computer Science, vol. 3292, Springer-
Verlag, Heidelberg R. Meersman et al. edition, Berlin, pp. 866-882, 2004.

[3] F. Baader, P. Patel-Schneider, D. Calvanese, L. D. McGuinness, D. Nardi,
editors. “The Description Logic Handbook”, Cambridge University Press,
2003.

[4] J. Chauvet, The book, Services Web avec SOAP, WSDL, UDDI, ebXML.
Eyrolles edition, 2002.

[5] E. Gahleitner, W. Wob, “Enabling Distribution and Reuse of Ontology
Mapping Information for Semantically Enriched Communication
Services”, In: 15th International Workshop on Database and Expert
Systems Applications. IEEE Computer Science, Zaragoza, Spain, 2004.

[6] H. Chalupsky, “OntoMorph: A Translation System for Symbolic
Knowledge”, In the Seventh International Conference of Principles of
Knowledge Representation and Reasoning, San Francisco, USA, 2000.

[7] D. Dou, D. Mcdermott, P Qi, “Ontology Translation by Ontology
Merging and Automated Reasoning”, In EKAW, Workshop on Ontologies
for Multi-Agent Systems (OMAS), Spain, 2002.

[8] V. Haarslev, R. Möller, “RACER System Description”, In IJCAR’01,
2001.

[9] Protégé OWL, version 3.1.1, 2005. http://protege.stanford.edu.
[10] R. Driouche, Z. Boufaida, F. Kordon, “An Ontology Based Architecture

for Integrating Enterprise Applications”, Modelling, Simulation,
Verification and Validation of Enterprise Information Systems’06
Workshop, Cyprus, Paphos, INSTICC Press, pp. 26-37, 2006.

[11] I. Horrocks, P. F. Patel-Schneider, F. V. Harmelen, “From SHIQ and RDF
to OWL: The making of a web ontology language”, In Journal of Web
Semantic, Vol. 1, N° 1, pp. 7-26, 2003.

[12] D. S. Linthicum. “Enterprise Application Integration”. Edition Addison-
Wesley, Boston et al. 2003.

[13] R. T. Gruber, “A Translation Approach to Portable Ontology
Specification”, Knowledge Acquisition, Vol 5, N° 2, pp 199-220, 1993.

[14] S. Izza, L. Vincent, P. Burlat, “Unified Framework for Application
Integration”. In 7th International Conference on Enterprise Information
Systems’05, USA, 2005.

[15] M. F. Lopez, A.G. Perez, “Overview and Analysis of Methodologies for
Building Ontologies”, In Knowledge Engineering Review, 17(2), 2002.

[16] M. Uschold, M. Grüninger, “Ontologies Principles Methods and
Applications”, In Knowledge Engineering Review, 11(2), 1996.

[17] M. Grüninger, M. S. Fox, “Methodology for the Design and Evaluation of
Ontologies”. In IJCAI’95, Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, 1995.

[18] M. Fernandez, A. Gomez-Perez, N. Juristo, “Methontology from
Ontological Art Toward Ontological Engineering”, In AAAI’97, Spring
Symposium Series on Ontological Engineering, USA, 1997.

[19] M. Hemam, Z. Boufaida “An Ontology Development Process for the
Semantic Web”, EKAW’04, 14th International Conference on
Knowledge Engineering and Knowledge Management
 Whittlebury Hall, Northamptonshire, UK, 5-8 October 2004

[20] A. Kotok, D. R. R. Webber, “ebXML: The New Global Standard for
Doing Business over the Internet”. New Riders, Indianapolis, 2002

[21] K. Sycara, M. Stollberg, S. Galizia “Semantic Web Service Tutorial”
Kauai 2006.

[22] R. Driouche, Z.Boufaida, F. Kordon, 2006 “Towards integrating
collaborative business process based on process ontology and ebXML
collaboration scenario” in 6th International Workshop on Web Based
Collaboration’06, IEEE Computer Society Krakow, Poland 4-6
September.

[23] Wasserman A I., “Tool Integration in Software Engineering
Environments”. In software Engineering Environments; Workshop on
Environments. Berlin 1990.

