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Abstract— Semantic Web Mining can be considered as Data
Mining (DM) for/from the Semantic Web. Current DM systems
could serve the purpose of Semantic Web Mining if they were
more compliant with, e.g., the standards of representation for
ontologies and rules in the Semantic Web and/or interoperable
with well-established tools for Ontological Engineering (OE) that
support these standards. In this paper we present a middleware,
SW ING , that integrates the DM systemAL-QUI N and the OE
tool Protéǵe-2000 in order to enableAL-QUI N to Semantic Web
applications. This showcase suggests a methodology for building
Semantic Web Mining systems.

I. I NTRODUCTION

Data Mining (DM) is an application area arisen in the 1990s
at the intersection of several different research fields, notably
Statistics, Machine Learning and Databases, as soon as devel-
opments in sensing, communications and storage technologies
made it possible to collect and store large collections of scien-
tific and commercial data [1]. The abilities to analyze such data
sets had not developed as fast. Research in DM can be loosely
defined as the study of methods, techniques and algorithms for
finding models or patterns that are interesting or valuable in
large data sets. The space of patterns if often infinite, and the
enumeration of patterns involves some form of search in one
such space. Practical computational constraints place severe
limits on the subspace that can be explored by a data mining
algorithm. The goal of DM is eitherpredictionor description.
Prediction involves using some variables or fields in the
database to predict unknown or future values of other variables
of interest. Description focuses on finding human-interpretable
patterns describing data. Among descriptive tasks, data sum-
marization aims at the extraction of compact patterns that
describe subsets of data. There are two classes of methods
which represent taking horizontal (cases) and vertical (fields)
slices of the data. In the former, one would like to produce
summaries of subsets, e.g. producing sufficient statistics or
logical conditions that hold for subsets. In the latter case, one
would like to describe relations between fields. This class of
methods is distinguished from the above in that rather than
predicting the value of a specified field (e.g., classification)
or grouping cases together (e.g. clustering) the goal is to find
relations between fields. One common output of this vertical
data summarization is calledfrequent (association) patterns.
These patterns state that certain combinations of values occur
in a given database with a support greater than a user-defined
threshold. The systemAL-QUIN [2] supports the DM task

of frequent pattern discovery [3]. It implements a framework
for learning Semantic Web rules [4] which adoptsAL-log
[5] as the Knowledge Representation and Reasoning (KR&R)
setting and Inductive Logic Programming (ILP) [6] as the
methodological apparatus.

Semantic Web Mining[7] is a new application area which
aims at combining the two areas of Semantic Web [8] and Web
Mining [9] from a twofold perspective. On one hand, the new
semantic structures in the Web can be exploited to improve
the results of Web Mining. On the other hand, the results of
Web Mining can be used for building the Semantic Web. Most
work in Semantic Web Mining simply extends previous work
to the new application context. E.g., Maedche and Staab [10]
apply a well-known algorithm for association rule mining to
discover conceptual relations from text. Indeed, we argue that
Semantic Web Mining can be considered as DM for/from the
Semantic Web. Current DM systems could serve the purpose
of Semantic Web Mining if they were more compliant with,
e.g., the standards of representation for ontologies and rules in
the Semantic Web and/or interoperable with well-established
tools for Ontological Engineering (OE) [11], e.g. Protéǵe-2000
[12], that support these standards.

In this paper we present a middleware,SW ING, that inte-
gratesAL-QUIN and Prot́eǵe-2000 in order to enable Seman-
tic Web applications ofAL-QUIN. This solution suggests a
methodology for building Semantic Web Mining systems, i.e.
the upgrade of existing DM systems with facilities provided
by interoperable OE tools.

The paper is structured as follows. Section II and III
briefly introduceAL-QUIN and Prot́eǵe-2000 respectively.
Section IV presents the middlewareSW ING. Section V draws
conclusions and outlines directions of future work.

II. T HE DM SYSTEMAL-QUIN

The systemAL-QUIN [2] (a previous version is described
in [13]) supports a variant of the DM task of frequent pattern
discovery. In DM apattern is considered as an intensional
description (expressed in a given languageL) of a subset
of r . The support of a pattern is the relative frequency of
the pattern withinr and is computed with the evaluation
function supp. The task offrequent pattern discoveryaims at
the extraction of allfrequentpatterns, i.e. all patterns whose
support exceeds a user-defined threshold ofminimum support.
The blueprint of most algorithms for frequent pattern discovery



Fig. 1. Organization of the hybrid knowledge bases used inAL-QUIN.

is the levelwise search[3]. It is based on the following
assumption: If a generality order� for the languageL of
patterns can be found such that� is monotonic w.r.t.supp,
then the resulting space(L,�) can be searched breadth-first
starting from the most general pattern inL and by alternating
candidate generationand candidate evaluationphases. In
particular, candidate generation consists of a refinement step
followed by a pruning step. The former derives candidates
for the current search level from patterns found frequent in
the previous search level. The latter allows some infrequent
patterns to be detected and discarded prior to evaluation thanks
to the monotonicity of�.

The variant of the frequent pattern discovery problem which
is solved byAL-QUIN takes concept hierarchies into account
during the discovery process [14], thus yielding descriptions
of a data setr at multiple granularity levels up to a maximum
level maxG. More formally, given

• a data setr including a taxonomyT where a reference
conceptCref and task-relevant concepts are designated,

• a multi-grained language{Ll}1≤l≤maxG of patterns
• a set{minsupl}1≤l≤maxG of minimum support thresh-

olds

the problem of frequent pattern discovery atl levels of
description granularity, 1 ≤ l ≤ maxG, is to find the set
F of all the patternsP ∈ Ll frequent inr , namelyP ’s with
supports such that (i)s ≥ minsupl and (ii) all ancestors of
P w.r.t. T are frequent. Note that a patternQ is considered
to be an ancestor ofP if it is a coarser-grained version ofP .

In AL-QUIN (AL-log QUery INduction) the data setr is
represented as anAL-log knowledge baseB and structured
as illustrated in Figure 1. The structural subsystemΣ is based
onALC [15] and allows for the specification of knowledge in
terms of classes (concepts), binary relations between classes
(roles), and instances (individuals). In particular, the TBoxT
contains is-a relations between concepts (axioms) whereas the
ABox M contains instance-of relations between individuals
(resp. couples of individuals) and concepts (resp. roles) (as-
sertions). The relational subsystemΠ is based on an extended

form of DATALOG [16] that is obtained by usingALC concept
assertions essentially as type constraints on variables. The
portion K of B which encompasses the wholeΣ and the
intensional part (IDB) ofΠ is considered asbackground
knowledge. The extensional part ofΠ is partitioned into
portionsAi each of which refers to an individualai of Cref .
The link betweenAi andai is represented with the DATALOG

literal q(ai). The pair(q(ai),Ai) is calledobservation.
The languageL = {Ll}1≤l≤maxG of patterns allows for

the generation ofAL-log unary conjunctive queries, called
O-queries. Given a reference conceptCref , anO-queryQ to
an AL-log knowledge baseB is a (linked and connected)1

constrained DATALOG clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ1, . . . , γn

where X is the distinguished variableand the remaining
variables occurring in the body ofQ are the existential
variables. Note thatαj , 1 ≤ j ≤ m, is a DATALOG literal
whereasγk, 1 ≤ k ≤ n, is an assertion that constrains a
variable already appearing in any of theαj ’s to vary in the
range of individuals of a concept defined inB. TheO-query

Qt = q(X)← &X : Cref

is called trivial for L because it only contains the constraint
for the distinguished variableX. Furthermore the language
L is multi-grained, i.e. it contains expressions at multiple
levels of description granularity. Indeed it is implicitly defined
by a declarative bias specificationwhich consists of a finite
alphabetA of DATALOG predicate names and finite alphabets
Γl (one for each levell of description granularity) ofALC
concept names. Note that theαi’s are taken fromA andγj ’s
are taken fromΓl. We imposeL to be finite by specifying
some bounds, mainlymaxD for the maximum depth of search
andmaxG for the maximum level of granularity.

The support of an O-query Q ∈ Ll w.r.t an AL-log
knowledge baseB is defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

where Qt is the trivial O-query for L. The computation of
support relies on query answering inAL-log. Indeed, an
answer to anO-query Q is a ground substitutionθ for the
distinguished variable ofQ. An answerθ to anO-queryQ is
a correct (resp. computed) answerw.r.t. anAL-log knowledge
baseB if there exists at least one correct (resp. computed)
answer tobody(Q)θ w.r.t. B. Therefore proving that anO-
query Q covers an observation(q(ai),Ai) w.r.t. K equals to
proving that θi = {X/ai} is a correct answer toQ w.r.t.
Bi = K ∪Ai.

The systemAL-QUIN implements the aforementioned lev-
elwise search method for frequent pattern discovery. In par-
ticular, candidate patterns of a certain levelk (called k-
patterns) are obtained by refinement of the frequent patterns
discovered at levelk − 1. In AL-QUIN patterns are ordered
according toB-subsumption (which has been proved to fulfill

1For the definition of linkedness and connectedness see [6].



the abovementioned condition of monotonicity [13]). The
search starts from the most general pattern inL and iterates
through the generation-evaluation cycle for a number of times
that is bounded with respect to both the granularity levell
(maxG) and the depth levelk (maxD).

SinceAL-QUIN is implemented with Prolog, the internal
representation language inAL-QUIN is a kind of DATALOGOI

[17], i.e. the subset of DATALOG 6= equipped with an equational
theory that consists of the axioms of Clark’s Equality Theory
augmented with one rewriting rule that addsinequality atoms
s 6= t to any P ∈ L for each pair(s, t) of distinct terms
occurring inP . Note that concept assertions are rendered as
membership atoms, e.g.a : C becomesc C(a).

III. T HE OE TOOL PROTÉGÉ-2000

Prot́eǵe-20002 [18] is the latest version of the Protéǵe line
of tools, created by the Stanford Medical Informatics (SMI)
group at Stanford University, USA. It has a community of
thousands of users. Although the development of Protéǵe has
historically been mainly driven by biomedical applications, the
system is domain-independent and has been successfully used
for many other application areas as well. Protéǵe-2000 is a
Java-based standalone application to be installed and run in a
local computer. The core of this application is the ontology
editor. Like most other modeling tools, the architecture of
Prot́eǵe-2000 is cleanly separated into a model part and a
view part. Prot́eǵe-2000’s model is the internal representation
mechanism for ontologies and knowledge bases. Protéǵe-
2000’s view components provide a Graphical User Interface
(GUI) to display and manipulate the underlying model.

Prot́eǵe-2000’s model is based on a simple yet flexible
metamodel [12], which is comparable to object-oriented and
frame-based systems. It basically can represent ontologies
consisting of classes, properties (slots), property characteristics
(facetsandconstraints), and instances. Protéǵe-2000 provides
an open Java API to query and manipulate models. An
important strength of Protéǵe-2000 is that the Protéǵe-2000
metamodel itself is a Protéǵe-2000 ontology, with classes that
represent classes, properties, and so on. For example, the de-
fault class in the Protege base system is called :STANDARD-
CLASS, and has properties such as :NAME and :DIRECT-
SUPERCLASSES. This structure of the metamodel enables
easy extension and adaption to other representations.

Using the views of Protéǵe-2000’s GUI, ontology designers
basically create classes, assign properties to the classes, and
then restrict the properties facets at certain classes. Using
the resulting ontologies, Protéǵe-2000 is able to automatically
generate user interfaces that support the creation of individuals
(instances). For each class in the ontology, the system creates
one form with editing components (widgets) for each property
of the class. For example, for properties that can take single
string values, the system would by default provide a text field
widget. The generated forms can be further customized with

2The distribution of interest to this work is 3.0 (February 2005), freely
available athttp://protege.stanford.edu/ under the Mozilla open-
source license.

Fig. 2. Architecture of the OWL Plugin for Protéǵe-2000.

Prot́eǵe-2000’s form editor, where users can select alternative
user interface widgets for their project. The user interface
consists of panels (tabs) for editing classes, properties, forms
and instances.

Prot́eǵe-2000 has an extensible architecture, i.e. an architec-
ture that allows special-purpose extensions (akaplug-ins) to be
easily integrated. These extensions usually perform functions
not provided by the Protéǵe-2000 standard distribution (other
types of visualization, new import and export formats, etc.),
implement applications that use Protéǵe-2000 ontologies, or
allow configuring the ontology editor. Most of these plug-
ins are available in the Protéǵe-2000 Plug-in Library, where
contributions from many different research groups can be
found. One of the most popular in this library is the OWL
Plugin [19].

As illustrated in Figure 2, theOWL Plugin extends the
Prot́eǵe-2000 model and its API with classes to represent the
OWL3 specification. In particular it supports RDF(S), OWL
Lite, OWL DL (except for anonymous global class axioms,
which need to be given a name by the user) and significant
parts of OWL Full (including metaclasses). The OWL API
basically encapsulates the internal mapping and thus shields
the user from error-prone low-level access. Furthermore the
OWL Plugin provides a comprehensive mapping between its
extended API and the standard OWL parsing library Jena4. The
presence of a secondary representation of an OWL ontology
in terms of Jena objects means that the user is able to invoke
arbitrary Jena-based services such as interfaces to classifiers,
query languages, or visualization tools permanently. Based on
the above mentioned metamodel and API extensions, the OWL
Plugin provides several custom-tailored GUI components for
OWL. Also it can directly access DL reasoners such as
RACER [20]. Finally it can be further extended, e.g. to support
OWL-based languages like SWRL5.

3http://www.w3.org/2004/OWL/
4http://jena.sourceforge.net
5http://www.w3.org/Submission/SWRL/



Fig. 3. Architecture and I/O ofSW ING.

IV. ENABLING AL-QUIN TO SEMANTIC WEB

APPLICATIONS WITH PROTÉGÉ-2000

To enableAL-QUIN to Semantic Web applications we have
developed a software component,SW ING, that assists users
of AL-QUIN in the design of Semantic Web Mining sessions.
As illustrated in Figure 3,SW ING is a middleware because it
interoperates via API with the OWL Plugin for Protéǵe-2000
to benefit from its facilities for browsing and reasoning on
OWL ontologies.

Example IV.1. The screenshots reported in Figure 4, 5, 6
and 7 refer to a Semantic Web Mining session withSW ING

for the task of finding frequent patterns in the on-line CIA
World Fact Book6 (data set) that describe Middle East coun-
tries (reference concept) w.r.t. the religions believed and the
languages spoken (task-relevant concepts) at three levels of
granularity (maxG = 3). To this aim we defineLCIA as the set
of O-queries withCref = MiddleEastCountry that can be
generated from the alphabetA= {believes/2, speaks/2}
of DATALOG binary predicate names, and the alphabets

Γ1= {Language, Religion}
Γ2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}

of ALC concept names for1 ≤ l ≤ 3, up to maxD = 5.
Examples ofO-queries inLCIA are:

Qt= q(X) ← & X:MiddleEastCountry

Q1= q(X) ← speaks(X,Y) &
X:MiddleEastCountry, Y:Language

Q2= q(X) ← speaks(X,Y) &
X:MiddleEastCountry, Y:IndoEuropeanLanguage

Q3= q(X) ← believes(X,Y)&
X:MiddleEastCountry, Y:MuslimReligion

whereQt is the trivial O-query forLCIA, Q1 ∈ L1
CIA, Q2 ∈

L2
CIA, and Q3 ∈ L3

CIA. Note thatQ1 is an ancestor ofQ2.
Minimum support thresholds are set to the following values:

minsup1 = 20%, minsup2 = 13%, and minsup3 = 10%.
After maxD = 5 search stages,AL-QUIN returns 53 fre-
quent patterns out of 99 candidate patterns compliant with

6http://www.odci.gov/cia/publications/factbook/

the parameter settings. One of these findings is the pattern
Q2 which turns out to be frequent because it has support
supp(Q2,BCIA) = 13% (≥ minsup2). This has to be read
as ’13 % of Middle East countries speak an Indoeuropean
language’. ♦

Fig. 4. SW ING: step of concept selection.

Fig. 5. SW ING: step of relation selection.

A wizard provides guidance for the selection of the (hybrid)
data set to be mined, the selection of the reference concept
and the task-relevant concepts (see Figure 4), the selection
of the relations - among the ones appearing in the relational
component of the data set chosen or derived from them -
with which the task-relevant concepts can be linked to the
reference concept in the patterns to be discovered (see Figure
5 and 6), the setting of minimum support thresholds for each
level of description granularity and of several other parameters
required byAL-QUIN. These user preferences are collected
in a file (see ouput file*.lb in Figure 3) that is shown in
preview to the user at the end of the assisted procedure for
confirmation (see Figure 7).



Fig. 6. SW ING: editing of derived relations.

Fig. 7. SW ING: preview of the language bias specification.

A. A closer look to the I/O

The input to SW ING is a hybrid knowledge base that
consists of an ontological data source - expressed as a OWL
file - and a relational data source - also available on the Web
- integrated with each other.

Example IV.2. The knowledge baseBCIA for the Semantic
Web Mining session of Example IV.1 integrates an OWL
ontology (filecia exp1.owl) with a DATALOG database (file
cia exp1.edb) containing facts7 extracted from the on-line
1996 CIA World Fact Book. The OWL ontology8 contains
axioms such as

AsianCountry @ Country.
MiddleEastEthnicGroup @ EthnicGroup.
MiddleEastCountry ≡

AsianCountry u ∃Hosts.MiddleEastEthnicGroup.

7http://www.dbis.informatik.uni-goettingen.de/Mondial/
mondial-rel-facts.flp

8In the following we shall use the corresponding DL notation

IndoEuropeanLanguage @ Language.
IndoIranianLanguage @ IndoEuropeanLanguage.
MonotheisticReligion @ Religion.
MuslimReligion @ MonotheisticReligion.

and membership assertions such as

’IR’:AsianCountry.
’Arab’:MiddleEastEthnicGroup.
<’IR’,’Arab’>:Hosts.
’Persian’:IndoIranianLanguage.
’ShiaMuslim’:MuslimReligion.
’SunniMuslim’:MuslimReligion.

that define taxonomies for the conceptsCountry,
EthnicGroup, Language and Religion. Note that Middle
East countries (conceptMiddleEastCountry) have been
defined as Asian countries that host at least one Middle
Eastern ethnic group. In particular, Iran (’IR’) is classified
as Middle East country.

Since Cref =MiddleEastCountry, the DATALOG

database is partitioned according to the individuals
of MiddleEastCountry. In particular, the observation
(q(’IR’),AIR) containsDATALOG facts such as

language(’IR’,’Persian’,58).

religion(’IR’,’ShiaMuslim’,89).

religion(’IR’,’SunniMuslim’,10).

concerning the individual’IR’. ♦

The output file*.db contains the input DATALOG database
eventually enriched with an intensional part. The editing of
derived relations (see Figure 6) is accessible from the step of
relation selection (see Figure 5).

Example IV.3. The outputDATALOG databasecia exp1.db

for Example IV.1 enriches the inputDATALOG database
cia exp1.edb with the following two clauses:

speaks(Code, Lang)← language(Code,Lang,Perc),
c Country(Code), c Language(Lang).

believes(Code, Rel)←religion(Code,Rel,Perc),
c Country(Code), c Religion(Rel).

that define views on the relationslanguage and religion

respectively. Note that they correspond to the constrained
DATALOG clauses

speaks(Code, Lang)← language(Code,Lang,Perc) &
Code:Country, Lang:Language.

believes(Code, Rel)←religion(Code,Rel,Perc) &
Code:Country, Rel:Religion.

and represent the intensional part ofΠCIA. ♦

The output file*.lb contains the declarative bias specifica-
tion for the language of patterns and other directives.

Example IV.4. With reference to Example IV.1, the content
of cia exp1.lb (see Figure 7) defines - among the other
things - the languageLCIA of patterns. In particular the first



5 directives define the reference concept, the task-relevant
concepts and and the relations between concepts. ♦

The output files*.abox n and *.tbox are the side effect of
the step of concept selection as illustrated in the next section.
Note that these files together with the intensional part of the
*.db file form the background knowledgeK for AL-QUIN.

B. A look inside the step of concept selection

The step of concept selection deserves further remarks
because it actually exploits the services offered by Protéǵe-
2000. Indeed it also triggers some supplementary computation
aimed at making a OWL background knowledgeΣ usable
by AL-QUIN. To achieve this goal, it supplies the following
functionalities:

• levelwise retrieval w.r.t.Σ
• translation of both (asserted and derived) concept asser-

tions and subsumption axioms ofΣ to DATALOGOI facts

The latter relies on the former, meaning that the results of the
levelwise retrieval are exported to DATALOGOI (see output
files *.abox n and *.tbox in Figure 3). Theretrieval problem
is known in DLs literature as the problem of retrieving all the
individuals of a conceptC [21]. Here, the retrieval is called
levelwisebecause it follows the layering ofT : individuals of
concepts belonging to thel-th layerT l of T are retrieved all
together.

Example IV.5. The DATALOGOI rewriting of the concept
assertions derived forT 2 produces facts like:

c AfroAsiaticLanguage(’Arabic’).

. . .
c IndoEuropeanLanguage(’Persian’).

. . .
c UralAltaicLanguage(’Kazak’).

. . .
c MonotheisticReligion(’ShiaMuslim’).

c MonotheisticReligion(’SunniMuslim’).

. . .
c PolytheisticReligion(’Druze’).

. . .

that are stored in the filecia exp1.abox 2.
The filecia exp1.tbox contains aDATALOGOI rewriting

of the taxonomic relations ofT such as:

hierarchy(c Language,1,null,[c Language]).

hierarchy(c Religion,1,null,[c Religion]).

for the layerT 1 and

hierarchy(c Language,2,c Language,

[c AfroAsiaticLanguage, c IndoEuropeanLanguage, . . .]).

hierarchy(c Religion,2,c Religion,

[c MonotheisticReligion, c PolytheisticReligion]).

for the layerT 2 and

hierarchy(c Language,3,c AfroAsiaticLanguage,

[c AfroAsiaticLanguage]).

. . .
hierarchy(c Language,3,c IndoEuropeanLanguage,

[c IndoIranianLanguage, c SlavicLanguage]).

hierarchy(c Language,3,c UralAltaicLanguage,

[c TurkicLanguage]).

hierarchy(c Religion,3,c MonotheisticReligion,

[c ChristianReligion, c JewishReligion, c MuslimReligion]).

for the layerT 3. ♦

Note that the translation from OWL to DATALOGOI is
possible because we assume thatall the concepts are named.
This means that an equivalence axiom is required for each
complex concept in the knowledge base. Equivalence axioms
help keeping concept names (used within constrained DATA -
LOG clauses) independent from concept definitions.

V. CONCLUSION

The middlewareSW ING supplies several facilities toAL-
QUIN, primarily facilities for compiling OWL down to
DATALOG. Note that DATALOG is the usual KR&R setting
for ILP. In this respect, the pre-processing method proposed by
Kietz [22] to enable ILP systems to work within the framework
of the hybrid KR&R system CARIN [23] is related to ours
but it lacks an application. Analogously, the method proposed
in [24] for translating OWL to disjunctive DATALOG is far
too general with respect to the specific needs of our applica-
tion. Rather, the proposal of interfacing existing reasoners to
combine ontologies and rules [25] is more similar to ours in
the spirit. Furthermore,SW ING follows engineering principles
because it promotes the reuse of existing systems (AL-QUIN

and Prot́eǵe-2000) and the adherence to standards (either
normative - see OWL for the Semantic Web - orde facto- see
DATALOG for ILP). Finally the resulting artifact overcomes the
capabilities of the two systems when considered stand-alone.
In particular,AL-QUIN was originally conceived to deal with
ALC ontologies. Since OWL is equivalent toSHIQ [26] and
ALC is a fragment ofSHIQ [21], the middlewareSW ING

allowsAL-QUIN to deal with more expressive ontologies and
to face Semantic Web applications.

For the future we plan to extendSW ING with facilities for
extracting information from semantic portals and for present-
ing patterns generated byAL-QUIN.
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