
Describing Interoperability: the OoI Ontology

Yannick Naudet1, Thibaud Latour1, Kevin Hausmann2, Sven Abels2,
Axel Hahn2, and Paul Johannesonn3

1 Henri Tudor Public Research Center, Innovation Center by Information
Technologies (CITI), Luxembourg

2 Business Information Systems, University of Oldenburg, Germany
3 Royal Institute of Technology (KTH), Stockholm, Sweden

Abstract. Though ontologies are widely used to solve some specific in-
teroperability problems, there is no specific ontology defining what inter-
operability actually is, independently from any domain. In this paper, we
propose and discuss a first version of such an ontology, namely the OoI
(Ontology of Interoperability), which we formalized using the Ontology
Web Language (OWL). On the basis of previous research efforts having
lead to UML formalization of our model of Interoperability, we use this
paper for presenting the OWL version and for linking and comparing it
with other models dealing with Interoperability: maturity models for in-
teroperability like e.g. the Levels of Information System Interoperability
(LISI) model, and the Model Morphisms ontology (MoMo), which deals
with interoperability of models. Finally, we illustrate in a brief use case
how the OoI could be used with MoMo to provide solutions to interop-
erability problems between two models.

1 Introduction

Interoperability is commonly implicitly seen as an objective to reach when de-
signing complex systems. Regarding to the IEEE association interoperability is
the ability of two or more systems or components to exchange information and
to use the information that has been exchanged [5]. Considering not only infor-
mation transmission aspects, interoperability is a requirement inside a system
for allowing interaction or composition of its components, but also for the sys-
tem itself, when it needs to be sufficiently flexible to exchange information with
another system, or if it needs to be open to new components. This is the basis of
systems interoperability maturity models like the Level of Information Systems
Interoperability (LISI) model [4] that we discuss further in section 3.2. As soon
as this ability is not achieved when systems or system’s components need to
operate together, interoperability becomes a problem that must be solved.

A system wide interoperability is only possible if all subsystems are able to
work together. This means that all underlying interoperability problems have to
be solved. According to [9] an interoperability problem is the problem of bridging
together heterogeneous and distributed information resources and services. As
for the IEEE definition, and other ones that we already discussed in [10], this



definition however covers only one aspect of interoperability. We try to provide
a larger vision with our own definition, which we recall in the following section.

Because a simple definition is not sufficient, we try to develop a formal model
of the interoperability problem. The so-called Ontology of Interoperability (OoI)
aims at providing a formal (and thus processable) definition of interoperability,
but also to provide a way to describe interoperability problems as well as possible
solutions. This may on the one hand help to get a homogeneous description of
various interoperability issues. On the other hand, it may be used to find similar
problems and hence to detect solutions that might help to solve a concrete
problem. The work presented here has been conducted in the context of the
FP6-IST INTEROP Network of Excellence (NoE) Joint Research Activities [6].
In addition to presenting the first version of the OoI, we provide here the first
investigations toward a validation of our model. The points addressed here are
the following: the connections with other related models or standards, and the
illustration of the use of the model on concrete interoperability problems.

The rest of this paper is structured as follows. First, we present the current
state of the Ontology of Interoperability (OoI). We then explore links with other
models or efforts concerning Interoperability modelisation. We briefly explain
existing links with the interoperability Glossary [9], an effort from another task
group of the INTEROP NoE. Then, some interesting Interoperability models
are presented and compared to the OoI, as well as derived facts and conclusions.
We present then the Model Morphisms (MoMo) ontology [3], which can be used
in association with the OoI to solve interoperability problems between models.
Section 4 presents a brief use case illustrating how the OoI and MoMo provide
interoperability solutions between two standard models. Finally we conclude by
discussing the current state of the ontology as well as future work.

2 OoI as a model for Interoperability

It is our objective to propose a formal and general model for the definition of
Interoperability in order to serve as a representation for common understanding.
Using a clear problem-solving pragmatic view, the ultimate goal is to define
a framework for the creation of Problem-Solution-Induced Problem knowledge
base supporting decision in the domain of interoperability.

Interoperability is a problem pertaining to systems of any sorts. As this con-
cept is often associated to information systems, it is also very often considered
as communication issues between or inside systems. However, beyond software
engineering and computer science in general, interoperability problems can also
occur between ‘hardware’ components. Starting from a systemic point of view,
we do not restrict the scope to information system, but rather consider a system
as a group of independent but interrelated elements comprising a unified whole4.
Generally speaking, the components of a system do not necessary have to com-
municate, but might simply have to be composed together for a specific purpose.

4 WordNet 2.1 Copyright 2005 by Princeton University



From a pure compositional point of view, this can be viewed as a structural in-
teroperability need. When communication or other kinds of action define the
relation between the system’s components, this concerns the behavioral aspect
of interoperability. In our view, interoperability is not only a matter of commu-
nication as it does not necessarily imply a behavioral aspect. According to this,
we propose the following definition:

Definition 1. An interoperability problem appears when two or more heteroge-
neous resources are put together. Interoperability per se is the paradigm where
an interoperability problem occur.

According to this definition, we created the OoI, which is based on research we
have published in [10] and [11]. The center of our ontology is a Problem, which
might be solved by one or more Solutions. We distinguished between an Apri-
oriSolution and a AposterioriSolution. Another central element is the System,
which is described by a specific Model. An extract of the proposed ontology and
its most important elements is displayed in figure 1.

Fig. 1. Extract of the Ontology of Interoperability.

The OoI is structured according to a series of more general models describ-
ing the important concepts that appear in the definition: problem and solution,
resource composition, and system. Our ontology establishes relations between
these three fundamental models. At a conceptual level, these relations are suf-
ficient to provide a definition of what interoperability is. However, at a more
operational level, i.e. when the ontology is used to structure or describe real
cases or if one wishes to set up an interoperability problem-solution knowledge



base, this is not enough. For this reason, we detailed further some of the concepts
arising in the definitional part of the model by providing other specific models
pertaining to the two classes of solutions: homogenization and bridging, as well
as to communication.

In the next part of this section, we shall briefly present each fundamental
models followed by the interoperability and more specific models. The systematic
definition of the most important concepts and relations of the OoI is out of the
scope of this paper. However, the complete OWL file can be obtained from the
authors.

2.1 The decisional model

Because interoperability has been defined as a problem, and because we adopted
a clear problem-solving position regarding our definition of ontology, the deci-
sional model is at the heart of OoI. This model clearly separates the problem
from the solution, enforcing prior analysis of the problem before suggesting any
solution. As modelling problems independently in a reductionist view reduces
drastically the complexity of the decision, we did not represent problem com-
position directly. Rather, relations between problems are only seen indirectly
through the introduction of new problems induced by the solutions selected to
solve other problems. These new induced problems should then be solved recur-
sively.

Both problems and solutions are related to existence and application condi-
tions, respectively. These are essential, to take into account the context of the
decision, i.e., among all possible problems and solutions, the subset of those that
are pertinent with respect to the particular situation.

Problems and solutions are often related by a temporal entailment. Indeed,
the solution used to solve a particular problem may be applied before the problem
effectively occurs, or after it occurs. Therefore, solutions that solve problems by
anticipation are called a priori solutions, and solutions that correct problems
after they occurred are called a posteriori solutions.

2.2 The resource composition model

Interoperability problems occur only when resource are put together to form
a target system. The resource composition model identifies the resources, their
objectives and their composition relations. Here, resources are defined as ‘things’
that can be manipulated and put in relation with others.

Relations between resources can be either structural (e.g. between a plug and
a socket) or behavioral(e.g. calling a Web Service). They are ‘physically’ realized
through an interface which, as a resource itself, is also part of the resource. All
sorts of relations are considered, and according to our model, communication is
a particular kind of behavioral relation.

The objective associated to the resource is an important concept that can
be somehow related to the existence and application conditions of problems



and solutions in the decisional model. The objective of a resource states what
the resource is useful for. Similarly, technical aspects can also be related to
objectives of resources and systems of resources. This enables relating contexts
(e.g. technical aspects, existential and application conditions) with resources and
systems.

2.3 The systemic model

Composition of resources results in the formation of a system. As for each in-
dividual resource, every system subsumes an objective to achieve, which is not
simply the composition of the individual objective of the composing resources.

In engineering, resources and systems are the result of a building process.
The result of such building process is a system, built from an a priori model.
Such model is most of the time established from a description of the reality (or
a part of it). This description of reality also constitutes a model of a pre-existing
system. From this observation, it appears that system and model relations are
dual: on one hand, certain models describe existing systems with the objective of
understanding the reality; while on the other hand, certain models define a new
system to build. Analysis and specification models in software engineering are
typically such models where one has first to understand the business and draw
a model of it, and then derive another model specifying the software that will
support that business. This indirect relation between the system to understand
and the system to build also implies a time entailment where the model used
to describe a system always comes before the model defining the new system.
The relation with a priori and a posteriori solutions in the decisional model is
quite straightforward. Indeed, if the point of reference is the building process of
a new system, according to circumstances, one may either solve problems before
building the system (in that case, the solution will act on models used to define
the new system), or after the system has been built (in this case, the solution
acts on the system itself, most often by inserting a new resource).

If models are used to define new systems, they can also be defined by other
models. The representation of the model is important in our context as this
corresponds to their materialization. Indeed, model representations are systems
themselves constituted by a composition of symbols. This will be of particular
importance when discussing syntax issues in interoperability.

2.4 The interoperability model

From the three fundamental models we have presented, we can now define more
precisely the interoperability. As stated in the definition we adopted, interoper-
ability is viewed as a problem, and is thus logically implemented as a subclass
of the concept of problem. Such problems are related to the composition of
resources, whatever the kind of relations between these resources. As resource
composition is strongly connected with the concept of system, interoperability
problems occur in and between systems. Since it is a problem, interoperability
also bears a condition of existence, which pertains to the domain of resource



heterogeneity. Resource heterogeneity arises at the levels of models in the sys-
temic part, or at the level of interfaces in the resource composition part. Models
are the origin of heterogeneity when the different resources and systems to built
have been made from different models. In the resource composition, the source
of heterogeneity is concentrated on the interfaces. Indeed, if interfaces are ho-
mogeneous, there is no interoperability problem whatever the internal structure
of the inter-related resources. An interoperability problem can obviously appear
at one or both levels. Interface compatibility check when putting resources in
relation will detect ‘surface’ apparent interoperability problems (for instance,
the diameter of the screw is different from the diameter of the nut, or method
signature of a library are not compatible with the calling program). Differently,
if one wishes to identify more ‘internal’ possible incompatibilities (for instance
when nut and screw are made of plastic and steel), one has to go back to the
models, if they are available.

Solutions pertaining to the interoperability problem are of two kinds. A pri-
ori interoperability solutions are of the homogenization type, while a posteriori
solutions are of the bridging type. As they are important concepts for interop-
erability, we derived two dedicated models, which we describe here.

An homogenization solution requires two basic applicability conditions to be
effective: first, the modification of the system must be possible, and second, one
must have a sufficient knowledge about the systems and resources to homogenize.
Such knowledge is in fact contained in the models that have been used to build
the systems. If homogenization is generally the preferred solution to ensure a
good validation of the resulting system, this solution is often hardly feasible due
to lack of control on the legacy system preventing one from modifying it and/or
lack of models. Homogenization is an a priori solution that acts on models. Fun-
damentally, its objective is to transform the models defining the systems and
resources that are put in relation so that the heterogeneity is removed and a new
homogeneous system is re-built.Homogenization requires transformations, which
can be either syntax transformations (for instance transforming RDF triples from
their XML syntax to the N3 notation) or more intricate semantic transforma-
tions (transforming a UML class diagram in a Relational diagram involves the
consideration of semantic aspects). Transformation are always made using a uni-
fied model, which can be of several kinds. Indeed, one can use a unified language
to achieve homogenization (for instance, re-write all software components in a
package using the same programming language, or deciding that everybody will
speak English in a meeting to solve the communication behavioral relation prob-
lem), a unified meta-model (or ontology) to reduce semantic heterogeneity, or a
unified interface (as e.g. in the universal plugs and sockets).

Homogenization introduces a series of problems. One of the most prominent
one is certainly the validation or the unified model and the verification of trans-
formations. Obviously, modifying an existing resource or system is a new source
of error which may generate problems that have been solved in the original sys-
tems. In addition, performance issues due to uniqueness of resource may also
arise.



When homogenization is not possible (no modification and/or no information
about the legacy system is available) or when it creates more problems than it
can solve, bridging is the alternative. Bridging consists in adding a new resource
in the system capable of eliminating the heterogeneity. This resource is called
an adapter and uses a translation protocol. These ones can act at different sys-
temic levels and on different relation types. Indeed, a plug adapter between e.g.
DIN and US standards acts on a structural relation at the level of the system’s
resources, while MOM (Message-Oriented Middleware) acts at the level of the
model representation carried out by the message.

Bridging solutions induce a series of problems related to performance and
integrity. Performance problems are mainly due to the translation process that
take place in the bridging solution. This translation is resource consuming and
requires a careful verification of requirements in terms of performance and re-
sponse time for the whole system. Moreover, the new added component may
introduce alterations of the robustness, the security or the safety of the system.

3 Relations to other models related to Interoperability

To our knowledge, our attempt to define a formal model of what Interoper-
ability is, is the first one. However some models dealing with Interoperability
already exist. In the INTEROP NoE, another initiative to define more precisely
interoperability conducted to the Glossary [9]. We briefly present it here. In the
second part of this section, we discuss some of these models, related in a study
conducted for the US Department of Defence (DoD) in 2004 [8], and compare
them to our proposition. Finally, we suggest how they could be used with the
OoI and show that they should be describable using the OoI. The third part of
this section presents the Model Morphisms Ontology (MoMo) which deals also
with interoperability but in the domain of models and might be used with our
ontology as a solution for interoperability problems between models.

3.1 The Glossary

Work on ontologies of interoperability is still very scarce. However, one effort in
this area has been undertaken within the INTEROP NoE, where a task group
has developed a glossary for interoperability concepts [9]. In contrast to the
OoI, the starting point for this work has been the actual use of interoperability
terminology among researchers and practitioners. The Glossary aims at recording
terms frequently used in the area and structuring them in a hierarchy. Thus, the
glossary does not provide complex relationships among interoperability concepts
but only a taxonomy. It is therefore provided as a textual document targeting
to provide definitions that can be read by human beings. In opposition to this,
the OoI does not target to provide a readable definition but a formal ontology
that may be interpreted by e.g. a special software.

However, it can still be useful to compare the Glossary efforts with the OoI.
A preliminary comparison that has been undertaken shows many interrelation-
ships. One finding is that the OoI contains more specialized concepts than those



of the Glossary which suggests further refinements of the Glossary. The Glos-
sary on the other hand can enrich the OoI by supplying established terms in the
interoperability domain.

3.2 Models for Interoperability

There exist a few models of Interoperability. Among them, a widely recognized
one seems to be the LISI (Level of Information Systems Interoperability) model
[4], which as been used in 2003 to adapt the reference model used by NATO:
NC3TA [8]-pp8. Recently another model called Systems Of Systems Interoper-
ability (SOSI) [8] has been proposed as a result of a US Department Of Defence
project. The final report summarizes some other models, among which LISI,
dealing with interoperability at different levels: while LISI deals with technical
level only, other models address other aspects like organizational, environmen-
tal, or operational ones. SOSI in itself, proposes a model based on three types of
interoperability, namely: operational (between systems), constructive (between
organizations handling the system build and maintenance) and programmatic
(between different program offices). A summary of models of interest is given in
figure 2.

Fig. 2. Interoperability maturity models. The Levels of Information System Interop-
erability (LISI) model defines technical aspects; The Organizational Interoperability
Maturity Model (OIM) [2] is an equivalent from an organizational point of view; and
the Levels of Conceptual Interoperability Model (LCIM) [13], at the conceptual level,
focuses on data and how they are made accessible through documentations and inter-
faces. For more details, refer to the SOSI report [8] or to the referenced papers.

From this report and previous models, it is clear that interoperability is
not specific to the technical layer. Human-related layers play also a role and a
part of them like e.g. business needs are even at the origin of interoperability
problem [10]. As for the moment we deal mainly with technical aspects, though
using a conceptual vision and pursuing a goal of generality, we will not push the
discussion further. Concerning these models, a number of interesting facts can
be derived:



– Interoperability is seen as a requirement a system needs to fulfill. It is not
seen primarily as a problem, though the objective of interoperability induces
directly problems.

– All the models specify different maturity levels, defining which degree of
interoperability an existing system may have, or what kind of relationship
between systems should exist to make a system of systems reach a given
degree. In this way, they are models for interoperability rather than models
of it.

– As with the older NATO NC3TA model, Interoperability seems to be reduced
to data or information transmission or sharing between systems. Interoper-
ability is then always linked to communication and the models do not take
into account the need for structural contact, which we define as an inter-
operability problem and relates simply to interface compatibility and not
necessarily communication (see the electrical plug example in [11]).

While we try to achieve a quasi-formal description of what Interoperability
is, so that it can be used to find and solve interoperability problems in systems,
the maturity models we cited provide descriptions of how systems should be
structured to get a given level of interoperability between their components.
The goals are different, and are in fact complementary. From the point of view
of our ontology, maturity models could be associated to specific sets of solutions
to identified interoperability problems. Once all (or a sufficient number of) the
solutions of such a set are used in a system, this one would then be stamped as
being interoperability level-X compliant according to a chosen maturity model.
With LISI, this could be achieved using the interoperability profiles defined
with the PAID method [4], as solutions in the form of Procedures, Applications,
Infrastructure, and Data related recommendations or requirements.

As the description of each level defines solutions pertaining to interoperability
problems, it should be formalized using the OoI. We illustrate this with the LISI
model, on its level 0. LISI level 0 describes interoperability between isolated
systems. Each system can be considered as being a resource, part of a bigger
system. These resources need to transmit data. At design time, interoperability
problems are solved a priori, using adequate interfaces and bridging solutions:
e.g. a disk is a bridge, linked to the physical disk controller of computer systems.
But this is only the visible part of the iceberg. Pushing further, as soon as we
use the disk as solution, we enable data transmission between systems, but other
induced interoperability problems need also to be solved: file system compatibility,
vocabulary used in the data, the semantics, etc. Hence it can easily be seen that
we can follow the reasoning described in the OoI to express the simplest level
of the LISI maturity model. Other levels can be expressed as well, however the
more complex the system, the more layers of problems-solutions and induced
problems there will be. This complexity, which is inherent to interoperability,
induces logically the need to have a more complete as possible formalization if
we want to automate the finding and resolution of interoperability problems.



3.3 The Model Morphisms ontology (MoMo)

Modeling is used in almost all areas of (business) information systems today.
Models help to keep an overview about complex scenarios and they abstract
from the reality. Today, there are plenty of formats and approaches for per-
forming modelling within all major areas. For example, in the database design,
Entity-Relationship models (ER) are very popular. When developing software
architectures, UML has become a major standard for modelling.

One can distinguish between different types of models as presented in [3]:
diagrammatic (e.g. EPC, UML, E-R, CG), logic-based (e.g. F-Logic, Situation
Calc, FOL, DL, Prolog, Datalog), functional (e.g. KIF, OntoLingua, PIF, PSL),
XML-based (e.g. XMLS, OWL, XMI), and algebraic(e.g. Z++, Obj, Pi-calc).
Most of these models can be applied using tools that support their usage such
as, e.g. Together5. However, the main problem in this area is that most models
are incompatible since they are developed independently. Furthermore, many of
them are overlapping or could be used for similar tasks. In order to address those
problems, the task group MoMo of the INTEROP NoE conducts researches aim-
ing at providing a toolbox that helps to select a modelling language for specific
needs. The main research area of MoMo is the connection of multiple models by
using morphisms: especially model transformation, model matching/mapping,
and model merging.

In order to achieve its goal, MoMo starts with the creation of a so called
Model Morphisms (MoMo) ontology that represents models and their relation-
ships. This ontology aims at helping a user to select a modelling language ac-
cording to his specific needs. This makes it necessary to analyse the relationships
between different modelling languages and hence, it is necessary to analyse their
interoperability issues. The link between MoMo and the OoI, proposed in the
next section consists in the application of MoMo as one specific use case that
can be described by the ontology of interoperability. We created instances in
our ontology model that expresses the problem of selecting specific techniques
of the model morphism domain. Afterward we added the MoMo framework as a
possible solution to this task.

4 Illustrative use case

This section illustrates how the OoI could be used for representing the inter-
operability problems covered by the Model Morphisms ontology. The MoMo
ontology itself tries to solve a part of the interoperability problem: interoper-
ability between models. Hence, the OoI can be used to model an interoperability
problem between two modelling standards and the MoMo can be linked with it
as one possible solution to this problem. In order to realize this, we started from
two modelling standards: EPC [7] and BPEL [1], for which we wanted to find
mappings to solve interoperability issues.

5 http://www.borland.com/de/products/together



The Event-driven Process Chains (EPC) model has been developed within
the ARIS framework [12] in order to model, analyse and redesign business
processes. It has been developed from a graphical view point allowing human
beings to easily deal with business process chains up to a certain degree. The
Business Process Execution Language (BPEL) is closely related to Web Services
and allows to build business processes by defining a number of Web Service or-
chestration concepts (see e.g. [1]). BPEL and EPC are closely related. Compared
to EPC, BPEL is more technical oriented and was not necessarily developed for
graphical modelling. Of course it might be possible to convert business processes
from e.g. EPC to BPEL but there are of course a number of interoperability
problems. For example, both standards use a different syntax for expressing
business processes and also a completely different semantics.

This example shows one specific scenario for two technologies that could be
used to solve a specific problem. Both concepts (BPEL and EPC) are used in
the same domain but they differ in their functionality and in their capabilities.
Transforming a process from one standard to the other is certainly not an easy
task and needs to consider various interoperability problems. This is where the
OoI comes in. It can be used to describe the interoperability problem in this
area and it can also model possible solutions for the interoperability problems.
For example, if we think of the problem of selecting one of those standards
(BPEL or EPC) for a specific tasks then we could for example interpret the
MoMo framework, described in the las section, as a possible solution. In order
to proof if the OoI can be used in such a scenario, we have added both EPC and
BPEL standards as separate instances of the momo:modelling language concept.
Furthermore, we created an instance of the concept ooi:solution, which repre-
sented the MoMo framework. Afterward, we finished the case study by adding
connections between EPC and MoMo as well as between BPEL and MoMo. The
outcome is a description of the interoperability problem between EPC and BPEL
in the OoI. Moreover, not only the problem was modeled but also one possible
solution, which is the MoMo framework.

5 Conclusion and perspectives

We have presented here our attempt to provide a formal model for interoper-
ability in the form of an OWL ontology; namely the Ontology of Interoperability
(OoI). The approach and concepts used have already be explained in previous
papers [10], [11], where the model was presented in the form of UML repre-
sentations. Here, we begun a comparison with existing models of maturity for
interoperability and illustrated possible connections with our ontology. In par-
ticular, we have shown that the ontology might be used to describe formally
interoperability problems in the different levels of interoperability defined by
maturity models. We suggested also that these later could be used for defining
set of solutions to interoperability problems specific to a particular level of in-
teroperability maturity, and thus instantiated using the OoI. The proposed OoI
ontology has shown a comfortable way of expressing interoperability problems.



Furthermore, we have given a practical example that shows how the problems
that arise within the MoMo framework can be represented with the OoI.

In a next step we will use our ontology to model some real-world interop-
erability problems. This will be performed by describing typical scenarios and
giving a representation in the ontology of interoperability. We also plan to in-
vestigate further maturity models and trying to formally link one of them to our
ontology. Also as we found mainly US initiatives, we would like to investigate
European equivalents. As for the moment, the OoI while being a conceptual
model, deals mainly with technical aspects, it would also be interesting to model
the multiple facets of interoperability that are rather linked to human aspects.

References

1. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana
Trickovic, and Sanjiva Weerawarana, Business process execution language for web
services, specification version 1.1, Tech. report, 2003.

2. Thea Clark and Richard Jones, Organisational interoperability maturity model for
c2, in Proc. of the 1999 Command and Control Research and Technology Sympo-
sium (U.S. Naval War College, Newport, RI, Whashington D.C.), June 29-July 1
1999.

3. Fluvio D’Antonio, Momo - task tg3.2: Roadmap, presentation, INTEROP Work-
shop, 2005.

4. C4ISR Interoperability Working Group, Levels of information systems interoper-
ability (lisi), Tech. report, US Department of Defense, Washington, DC, 1998.

5. IEEE, Ieee standard computer dictionary: A compilation of ieee standard computer
glossaries, Institute of Electrical and Electronics Engineers, 1990.

6. INTEROP, European network of excellence, 2004.
7. Gerhard Keller, Markus Nuttgens, and August-Wilhelm Scheer, Semantische

prozessmodellierung auf der grundlage ereignisgesteuerter prozessketten (epk),
Publication of the institute of business information systems, Saarbrucken, Ger-
many, vol. 089, 1991.

8. Edwin Morris, Linda Levine, Craig Meyers, Pat Place, and Dan Plakosh, System of
systems interoperability (sosi): Final report, Tech. report, Carnegie Mellon Software
Engineering Institute, Pittsburgh, USA, April 2004.

9. Raul Poler, Jose V. Toms, and Paola Velardi, Interoperability glossary, Tech. report,
Interop NoE Deliverable D10.1, http://interop-noe.org/deliv/d10.1M18, 2004.

10. Vincent Rosener, Thibaud Latour, and Eric Dubois, A model-based ontology of
the software interoperability problems: preliminary results, in proc. of CAISE04
workshops, EMOI 04, vol. 3, 2004, pp. 241–252.

11. Vincent Rosener, Yannick Naudet, and Thibaud Latour, A model proposal of the
interoperability problem, in proc. of CAISE05 workshops, EMOI 05, vol. 2, 2005,
pp. 395–400.

12. August Wilhelm Scheer, Business process engineering: Reference models for indus-
trial enterprises, Springer-Verlag Telos, 1994.

13. Andreas Tolk and James A. Muguira, The levels of conceptual interoperability
model, 2003 Fall Simulation Interoperability Workshop (Orlando, Florida, U.S.A.),
Sept. 2003.


