
Interoperability in the ProM Framework

H.M.W. Verbeek1, B.F. van Dongen1, J. Mendling2, and W.M.P. van der
Aalst1

1 Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{h.m.w.verbeek,b.f.v.dongen,w.m.p.v.d.aalst}@tm.tue.nl
2 Vienna University of Economics and Business Administration

Augasse 2-6, 1090 Vienna, Austria
jan.mendling@wu-wien.ac.at

Abstract. Originally the ProM framework was developed as a design
artifact for the process mining domain, i.e., extracting process models
from event logs. However, in recent years the scope of the framework
has become broader and now includes process verification, social network
analysis, conformance checking, verification based on temporal logic, etc.
Moreover, the framework supports a wide variety of process models, e.g.,
Petri nets, Event-driven Process Chains (EPCs), Heuristics nets, YAWL
models, and is plug-able, i.e., people can add plug-ins without changing
the framework itself. This makes the ProM framework an interesting en-
vironment for model interoperability. For example, people can take trans-
action log from IBM’s WebSphere, discover a process model in terms of a
heuristics net, convert the heuristics net to a Petri net for analysis, load
an EPC defined using the ARIS toolset, verify the EPC and convert it
to a Petri net, determine the fitness of the ARIS model given the trans-
action log from WebSphere, and finally convert both models to a YAWL
specification that is exported. Such application scenarios are supported
by ProM and demonstrate true model interoperability. In this paper, we
present ProM’s interoperability capabilities using a running example.

1 Introduction

Information technology has changed business processes within and between en-
terprises. More and more, work processes are being conducted under the super-
vision of information systems that are driven by process models [10]. Examples
are: workflow management systems such as Staffware, enterprise resource plan-
ning systems such as SAP and Baan, and recently also web services composition
languages such as BPEL4WS and BPML. Unfortunately, there is little consen-
sus on the language to be used. Existing languages are typically vendor or tool
specific and do not have formal and/or executable semantics. This has resulted
in the “Tower of Babel of process languages”: A plethora of similar but subtly
different languages inhibiting effective process support. Despite the many results
in concurrency theory, it is not realistic to assume that the situation will improve

in the near future [16]. Hence there is a need to be able to convert models from
one notation to another.

Moreover, even within one organization there may be many models in differ-
ent languages. For example, an organization may have process models developed
using ARIS, simulation models developed using Arena, and Staffware models to
configure the workflow system. Even if these models describe the same process,
they focus on different aspects and use different notations. Therefore, it is useful
to convert models from one notation into the other.

Given the existence of a wide variety of process modeling languages and the
fact that within organizations models in different languages (e.g., for simulation,
for decision making, for enactment, etc.) are being made for the same process,
(process) model interoperability is a relevant topic.

In this paper, the focus is on interoperability in the context of the ProM
(Process Mining) framework [7]. ProM has been developed as a design artifact
[15] for the process mining domain. Process mining aims at extracting infor-
mation from event logs to capture the business process as it is being executed.
Process mining is particularly useful in situations where events are recorded but
there is no system enforcing people to work in a particular way. Consider for
example a hospital where the diagnosis and treatment activities are recorded in
the hospital information system, but where health-care professionals determine
the “careflow”. Many process mining algorithms have developed [3–6, 11–14] and
currently a variety of these techniques are supported by ProM.

Although the initial focus of ProM was on process mining, over time the func-
tionality of ProM was extended to include other types of analysis, model con-
versions, model comparison, etc. This was enabled by the plug-able architecture
of ProM (it is possible to add new functionality without changing the frame-
work itself) and the fact that ProM supported multiple modeling formalisms
right from the start. By applying ProM in several case studies, we got a lot of
practical experiences with model interoperability. This paper reports on these
experiences using the running example depicted in Figure 1. This example will
be used to provide a guided tour of the ProM framework.

Figure 1 shows an EPC (Event-driven Process Chain) [18, 20] describing a
review process. In principle each paper should be reviewed by three people. How-
ever, reviewers may be tardy resulting in time-outs. After a while the reviews
are collected and based on the result: a paper is rejected, a paper is accepted,
or an additional reviewer is invited. In the EPC each activity is represented by
a function (shown as a rectangle), states in-between activities are events (shown
as hexagons), and to model the splitting and joining of flows connectors are
used (shown as circles). Events and functions alternate (even in the presence of
connectors). Connectors may be split or join connectors and we distinguish be-
tween XOR, OR, and AND connectors. For example, in Figure 1 the connector
following function “Invite reviewers” is an OR-split connector. The last connec-
tor joining two flows after “accept paper” and “reject paper” is an XOR-join
connector.

Fig. 1. The example review process model.

The EPC shown in Figure 1 could have been imported into ProM from ARIS
[23], ARIS PPM [17], or EPC Tools [19]. (Note that each of these tools uses
a different format.) Moreover, the EPC could have been discovered using some
process mining plug-in or be the result of some conversion (e.g., translating
Petri nets into EPCs). Once a model such as the EPC shown in Figure 1 is in
the ProM framework, it can be used as a starting point for analysis and model
conversion. For example, the EPC could be translated to a Petri net for analysis
or to a YAWL diagram for enactment. In this paper, we show that such model
interoperability is possible. Clearly, information can be lost in the conversions.
However, it is definitely possible to support mature forms of interoperability by
following the rather pragmatic approach used in ProM.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the ProM framework. For a more detailed introduction we refer to [7].
Section 3 shows an example of a process discovery, i.e., based on a log file a
Petri net model is constructed. Section 4 takes this Petri net, and analyses to
what extent another log corresponds to it. Section 5 converts the Petri net to
both an EPC and a YAWL model. Section 6 exports the resulting YAWL model
to a YAWL engine files, and shows that we can upload this file into a running
YAWL engine where the process can be enacted. Section 7 concludes the paper.

2 The ProM Framework

Figure 2 shows an overview of the functionality the ProM framework. The figure
shows that ProM can interact with a variety of existing systems, e.g., work-

External
tools

Models

Mining plug-ins

Import plug-ins

Export plug-ins Conversion plug-ins

Analysis plug-insMXML logs

Staff-

ware
SAP

In-
Concert

FLOW-
er

Model files

EPC
Petri

net

YAWL

model

Heur.

net

Visualizations

EPC

Tools

CPN
Tools

ARIS

Net-

miner

Staff-
ware

SAP

In-
concert

FLOW-

er

Event

Task
t

p

Function

ProM

ProM

import

Petri

nets
EPCs

YAWL
models

Heur.
nets

Fig. 2. Overview of the ProM framework.

flow management systems such as Staffware, Oracle BPEL, Eastman Workflow,
WebSphere, InConcert, FLOWer, Caramba, and YAWL, simulation tools such
as ARIS, EPC Tools, Yasper, and CPN Tools, ERP systems like PeopleSoft and
SAP, analysis tools such as AGNA, NetMiner, Viscovery, AlphaMiner, and ARIS
PPM. We have used more than 20 systems to exchange process models and/or
event logs with ProM. As Figure 2 shows there are ways to directly import or
export models or to load logs.

Although ProM is open source and people can change or extend the code, in
addition we offer the so-called “plug-in” concept. Plug-ins allow for the addition
of new functionality by adding a plug-in rather than modifying the source code.
Without knowing all details of the framework, external parties can create (and
have created) their own plug-ins with ease. Currently there are more than 70
plug-ins. ProM supports five kinds of plug-ins:

Mining plug-ins typically take a log and produce a model,
Import plug-ins typically import a model from file, and possibly use a log to

identify the relevant objects in the model,
Export plug-ins typically export a model to file,
Conversion plug-ins typically convert one model into another, and
Analysis plug-ins typically analyse a model, eventually in combination with

a log.

In the paper, we cannot show each of the more than 70 plug-ins in detail. Instead
we focus on our running example of the review process and related mining,
analysis, conversion, import and export plug-ins.

reject

complete

get review X

complete

time-out X

complete

invite additional reviewer

complete

decide

complete

collect reviews

complete

time-out 3

complete

time-out 1

complete

get review 2

complete

invite reviewers

complete

get review 1

complete
accept

complete

time-out 2

complete

get review 3

complete

Fig. 3. The Petri net resulting from applying the α-algorithm on some mxml log.

3 Mining

Mining plug-ins like the alpha algorithm [4] and social network analyzer [2]
extract models from even logs. Extracting these event-logs from different opera-
tional systems is an interoperability issue in itself, which has been dealt with in
[8], where the mapping from these systems to our MXML format is described.

Most mining plug-ins discover process models represented in terms of Petri
nets, EPCs, etc. However, some mining plug-ins also address other perspectives
such as the data or organizational perspective.

Starting point for our running example is a log containing events related
to the reviewing of papers. Based on such events we can automatically create
a process model as shown in Figure 3. This model has been created using the
α-algorithm [4]. Using the same log, we can also construct and analyze a social
network as shown in Figure 4.

Fig. 4. A social network derived by ProM (smaller windows export into NetMiner)

4 Analysis

After obtaining a process model using process mining or by simply loading the
model from another tool, we can analyse it using one of the available analysis
plug-ins for this model type. Because the process model is a Petri net, we can
only start a Petri-net analysis plug-in. The framework is capable of determining
at runtime which plug-ins can handle the current model, and it will only offer
plug-ins that can handle the current model to the user. In addition to classical
analysis tools such as a verification tool, ProM also offer a conformance checker
and an LTL checker as described below.

4.1 Conformance Checker

As an example, and to show how versatile ProM is, we can analyze to what
extent another log fits the mined review process model. For this reason, we open
another log, and start a conformance checker [22] plug-in with the combination
of the process model and the log as input (note that ProM automatically offers
this combination to the conformance plug-in in the analysis menu). Figure 5
shows a snippet of the results. From these results, we learn that (for example):

– The log does not fit the model entirely, as the fitness ≈ 0.89 (if the log would
fit the model, the fitness would be 1).

– In 65 out of 100 cases, the process ended just before the “decide” task.
– In 29 out of the remaining 35 cases, the “decide” task was executed success-

fully.
– In the remaining 6 cases, an execution of the “decide” task had to be inserted

to allow logged successors (like “accept” and “reject”) to execute.

4.2 LTL Checker

Another interesting analysis plug-in is the LTL-checker [1], that can check logical
expressions that involve time on a log. Using this plug-in, we can for example
check whether in all cases the ‘four-eyes principle’ was satisfied, using the fol-
lowing LTL expressions:

Fig. 5. A snippet of the results of the conformance checker.

Fig. 6. A violation of four-eyes principle is discovered using the ProM LTL checker.

subformula execute(p : person, a : activity) :=

{Is a specific activity executed by a specific person?}

<> ((activity == a /\ person == p)) ;

formula four_eyes_principle(a1:activity,a2:activity) :=

{Two specific activities should not be executed by the same person.}

forall[p:person |(!(execute(p,a1)) \/ !(execute(p,a2)))];

Figure 6 shows that this is not the case for the tasks “get review 2” and “get
review 3”: “John” has done both reviews.

5 Conversion

After we have analyzed the process model (a Petri net), we can convert it into
other process models. For example, we can convert it into an EPC or a YAWL
model. However, before doing so, we declare the four “time-out” transitions in
Figure 3 to be invisible. Figure 7 shows the result. The four “time-out” transi-
tions did not correspond to any real activities in the process, i.e., they were only
there for routing purposes (to bypass the “get review” tasks). When converting
one model to another we can use such information.

5.1 From a Petri Net to an EPC

First, we convert the Petri net shown in Figure 7 into an EPC. The general idea of
this conversion is to map transitions to EPC functions, to derive connectors from
splits and joins in the Petri Net, and to add events in order to conform with the
EPC definition. The resulting EPC has the same structure as the one in Figure 1.
Of course, after converting the Petri net to an EPC, different plug-ins may be
applied to the process model. For example, we could check the correctness of the
resulting EPC using the plug-ins described in [9]. Figure 8 shows the result: The
EPC is trivially correct.

reject

complete

get review X

complete

invite additional reviewer

complete

decide

complete

collect reviews

complete

get review 2

complete

invite reviewers

complete
get review 1

complete

accept

complete

get review 3

complete

Fig. 7. The Petri net with the “time-out” transition made invisible.

5.2 From a Petri Net to a YAWL Model

Figure 9 shows the result from converting the Petri net into a YAWL model. Note
that, in this case, the conversion plug-in is able to remove all routers (i.e., the
invisible transitions in Figure 7) from the resulting process model. Removing the
invisible transitions introduces an OR-join and an OR-split, moreover conditions
(corresponding to Petri net places) are only introduced when needed. Clearly,
such a “smart” translation is far from trivial, since the splits and joins have to be
derived from blocks of several places and transitions in the Petri net. Similarly,
there are innovative conversions from EPCs to YAWL and conversions from
heuristics nets (used for genetic mining) to Petri nets.

6 Export

Of course, we can also export any model to file. For example, we can export the
converted YAWL model to a YAWL engine file, which can be uploaded right-
away by a YAWL engine. Figure 10 shows the result after we’ve uploaded the file:
a YAWL model with ID “WFNet28922354” has been uploaded. Note that most
fields (specification ID, specification name, documentation, . . .) are generated by
ProM. Figure 10 also shows a work list for the uploaded process. Currently, three
work items are available in the work list: One for the task “invite reviewers”,
one for “decide”, and one for “collect reviews”.

Fig. 8. A snippet of the verification result of the EPC of Figure 1

get review 1

complete

Task
accept

complete

Task

get review 3

complete

Task
reject

complete

Task

get review X

complete

Task

invite additional reviewer

complete

Task

decide

complete

Task

collect reviews

complete

Task

get review 2

complete

Task

invite reviewers

complete

Task
p7

true [0]

[default]

true [0]

true [0]

[default]

true [1]

Fig. 9. The mined review process model converted to a YAWL model.

Note that sometimes a model type in ProM (e.g., Petri net or EPC) can
have multiple export and import formats. For example, ProM supports three
EPC formats: the ARIS Markup Language (AML) used by the ARIS toolset,
the ARIS graph format used by ARIS PPM, and the EPC Markup Language
(EPML) used by EPC Tools. For a detailed analysis of the heterogeneities and
the different scope of these EPC formats refer to [21]. For Petri nets four different
formats are supported: PNML, TPN, PNK, and CPN Tools.

7 Conclusions

This paper described the many models types and associated plug-ins that exist
inside the ProM framework. Although the initial focus of ProM was on process
mining, the current functionality of the tool makes ProM also interesting from
a model interoperability point of view. To demonstrate this, we have used a
running example.

Figure 11 provides an overview of the different ways we have used ProM
regarding this example. The numbers on the edges refer to the sections where
the edges were used. Prior to the paper, we used CPN Tools to generate both logs
(the one we used for the mining and the one we used for the analysis), and we

Fig. 10. The YAWL model uploaded to a YAWL server, and a worklist thereof.

used ProMimport to convert the generated logs to the common MXML format.
After having mined one log for the review process model and its social network
(see Section 3), we analyzed the mined process in combination with the second
log (see Section 4) to check (i) to what extent the process model and the other
log fit (conformance checker) and (ii) whether the log adheres to some additional
properties one would want to hold for the review process (LTL checker). Next,
we converted the discovered Petri net into an EPC (which was used in Section 1)
and a YAWL model (see Section 5). Finally, we exported the YAWL model (see
Section 6) and uploaded the resulting YAWL engine file into a running YAWL
engine.

It is important to note that in the process described Figure 11 we only
partially used the broad functionality of ProM. At the moment, ProM contains
10 import plug-ins, 13 mining plug-ins, 19 analysis plug-ins, 9 conversion plug-
ins, and 19 export plug-ins. Although we could only show a fraction of the model
interoperability offered by ProM, Figure 11 nicely demonstrates how versatile
the ProM framework is, and how it can link different external tools together.

The development and practical applications of ProM and experiences in the
BABEL project [16] helped us to get a deeper understanding of model interop-
erability. One of the important lessons is that it is fairly easy to convert one
model into another model if one is willing to accept some loss of information
or precision. For example, there exist many interpretations of the semantics of
EPCs (cf. the “Vicious Circle” discussion in [20]). Nevertheless, rough trans-
lations from EPCs to YAWL and Petri nets can be very useful because they

External
tools

Models

Mining plug-ins

Import plug-ins

Export
plug-ins

Conversion
plug-ins

Analysis plug-ins
MXML logs

CPN

Tools

3

3 4.1

Model files

YAWL

model
6

Visualizations

6

CPN

Tools

Event

Task
t

p

Function

ProM

ProM-
import

4.2

4.1

4.2

5.2

5.2

5.1

5.1

6

YAWL
engine

1
3-6

5.1

EPC

verifr

Net-
Miner

file

Net-

Miner
3 3

3

3

3

soc.

netw.

Net-

Miner

Petri

nets

social

netwrks

YAWL
models

EPCs

alg.

YAWL
PN 2

YAWL

PN 2
EPC

ltl
chckr

conf.

chckr

Fig. 11. An overview of the way we used ProM in this paper.

are correct in most practical cases. Moreover, operations such as EPC reduction
and verification can be applied without selecting one particular semantical in-
terpretation [9]. Therefore, we advocate a pragmatic approach which is based on
simply testing model interoperability by implementing this in an environment
like the ProM framework and by applying it to a wide variety of real-life models.
For example, at this point in time we are converting all EPCs in the SAP R/3
reference model (approximately 600 process models) to YAWL for the purpose
of verification.

Acknowledgements and relation to INTEROP

We thank INTEROP for supporting this work that has been conducted in the
context of the INTEROP work package “Domain Ontologies for Interoperabil-
ity” and the INTEROP-SIG “Contract and Webservices Execution Monitoring
through Conformance Testing”. We also thank EIT, STW, and NWO for sup-
porting the development of the ProM framework, cf. www.processmining.org.
The authors would also like to thank Ton Weijters, Ana Karla Alves de Medeiros,
Anne Rozinat, Christian Günter, Minseok Song, Lijie Wen, Laura Maruster,
Huub de Beer, Peter van den Brand, Andriy Nikolov, et al. for developing parts
of ProM.

References

1. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and
Verification of Properties: An Approach based on Temporal Logic. In R. Meers-
man and Z. Tari et al., editors, On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Computer Sci-
ence, pages 130–147. Springer-Verlag, Berlin, 2005.

2. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005.

3. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

5. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

6. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

7. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

8. B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining
Data. In J. Casto and E. Teniente, editors, Proceedings of the CAiSE’05 Workshops
(EMOI-INTEROP Workshop), volume 2, pages 309–320. FEUP, Porto, Portugal,
2005.

9. B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek. Verification of
EPCs: Using Reduction Rules and Petri Nets. In O. Pastor and J. Falcao e Cunha,
editors, Proceedings of the 17th Conference on Advanced Information Systems En-
gineering (CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages
372–386. Springer-Verlag, Berlin, 2005.

10. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

11. W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional Be-
havior from Event-Based Log. In R. Meersman, Z. Tari, W.M.P. van der Aalst,
C. Bussler, and A. Gal et al., editors, On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 3–18, 2004.

12. G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining and Reasoning on Workflows.
IEEE Transaction on Knowledge and Data Engineering, 17(4):519–534, 2005.

13. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321–343, 2004.

14. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

15. A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in information
systems research. MIS Quarterly, 28(1):75–105, 2004.

16. A.H.M. ter Hofstede, M. Dumas, and W.M.P. van der Aalst. Unraveling
the Babel of Process Support: On the expressiveness and exchange of busi-
ness process execution languages (BABEL). Project Proposal ARC Discovery,
http://www.bpm.fit.qut.edu.au/projects/babel/, 2003.

17. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Ana-
lyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer,
Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

18. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

19. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

20. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering, 56(1):23–40, 2006.

21. J. Mendling and M. Nüttgens. Transformation of ARIS Markup Language to
EPML. In Proceedings of the 3rd GI Workshop on Business Process Management
with Event-Driven Process Chains (EPK 2004), pages 27–38, 2004.

22. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al.,
editor, BPM 2005 Workshops (BPI Workshop), volume 3812 of Lecture Notes in
Computer Science, pages 163–176. Springer-Verlag, Berlin, 2006.

23. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.

