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Abstract. Our work deals with schema or ontology matching and is
driven by the following statements: (1) Most of works only consider in-
tensional description of schemas; (2) They mostly use symmetric sim-
ilarity measures (and then they match similarity relations betwen con-
cepts); (3) Few prototypes allow an interactive and visual match process.
Therefore, we suggest an extensional and asymmetric matching method
based on the discovery of significant implication rules between concepts
described in textual documents. Our approach relies on the association
rules paradigm and use a probabilistic model of deviation from indepen-
dence, named implication intensity. Our matching method is divided into
two consecutive stages: (1) the extraction in documents of relevant terms
for each concept; (2) the discovery of significant implications between the
concepts. And finally, we enclose this matching approach into an inter-
active visualization tool in order to facilitate the analyse, the validation
and the editing of a mapping set for the knowledge engineer.

Keywords: ontology matching, extensional matching, association rules,
implication intensity, matching visualization.

1 Introduction

The hierarchical categorization of data through ontological forms as taxonomies
is widely used with the increase of electronic data and knowledge on the Internet
or in companies. Web directories such as Yahoo.com and OpenDirectory, the
Electronic Document Management, or the Semantic Web with its OWL ontology
are examples of such taxonomies.

In the literature, a lot of works deals with schema/ontology matching. The
schema or ontology matching aims at finding semantic relations (i.e. equiv-
alence, subsomption, etc) between entities (i.e. concepts, properties) of two
schemas/ontologies. These approaches use various techniques such as machine
learning [1], FCA-Analysis [2], database schema matching [3], graph matching
[4]. These approaches are commonly based on similarity measures for discovering
equivalence relations between concepts.



However, the extracted matchings can be enhanced by using asymmetric
measures, which deliver more accurate information in the form of implications
between concepts. For instance, the use of such measures enables the discovery of
equivalence relations between concepts (example : if car → auto and auto → car
then auto ↔ car), and also it can detect if a concept is more specific than another
(example : car → vehicle). In knowledge discovery in databases (KDD), asym-
metric measures, called interestingness measures, are widely used for association
rules discovery [5]. Association rules are expressions of the type ”if antecedent
then consequent” representing implicative tendencies between conjunctions of
attributes in databases.

In this paper, we evaluate the use of such asymmetric measures for matching
concepts of schemas or ontologies by using the Implication Intensity [6, 7], a
probabilistic model of deviation from statistical independence.

Our matching method is both extensional and terminological. It is designed
to be used on taxonomies of concepts associated with textual documents. The
idea underlying our approach considers that one concept is more specific than
another, if the vocabulary used in the documents associated to the first concept
tends to be included in the vocabulary of the other one.

Our method is divided into two consecutive stages: (1) The extraction of
concept-relevant terms; (2) The discovery of association rules rules between con-
cepts.

The results provided by matching algorithms are not the perfect solution to
one matching problem. Thus, the knowledge engineer (i.e. the domain expert)
must be able to analyse and edit the produced results. Nervertheless, most pro-
totypes/approaches do not offer a user-friendly interface allowing an interactive
match process [8]. We suggest to enclose our method into an anthropocentric
step of validation. In this paper, we also present an interactive graphical tool al-
lowing a domain expert to build and validate a matching set between conceptual
hierarchies populated with textual documents. For example, this tool is a good
decision helper for comparing or merging two products catalogs, two electronic
documents bases or two lightweight ontologies.

This paper is organized as follows. In a first section we give an overview
of matching approaches. Then, we introduce the Implication Intensity measure,
before describing the concept hierarchy model, and the first stage concerning the
extraction of concept-relevant terms. Next, we detail the rule extraction stage.
Finally, we present our matching visualization tool and show the results obtained
on a benchmark dataset.

2 Related works

Many surveys about ontology and schema matching have been proposed in liter-
ature [9], [10], [11]. The two last ones propose a classification and a comparative
study of matching approaches. The survey [10] focuses on the database schema
matching approaches, while [11] reuses this classification for ontology matching.
From these surveys we can distinguish: the extensional approaches (or element-



based), and the intentional approaches (or only-schema-based). The matching
approaches can be also discriminated regarding the kind of relations that they
are based on. Some consider symmetric (equivalence) relations, while other ones
also use asymmetric relations such as the subsumption or implication.

The main part of these works propose to process the concept name by using
string-similarities (Anchor-PROMPT [12], Cupid [3], Coma [8], S-MATCH [13])
or/and external oracles such as Wordnet (H-MATCH [14], [13]). They can also
use the schema or ontology structure (Similarity Flooding [4], Artemis [15], [8],
[12], [3], [14]).

Most of these approaches are intensional and symmetric. None of them are
both asymmetric and extensional. Among extensional approaches, we can cite
GLUE [16]. This symmetric approach uses Bayesian learners in order to classify
instances of the first ontology into the other and vice-versa in order to estimate
the joint probability distribution and then predict concept similarities.

We can also notice that there is only one intensional method distinguishing
asymmetric relations. The method S-MATCH [13] search equivalence (=) rela-
tion between concepts but also the more general (w), less general (v), mistmatch
(⊥) and overlapping (u) relations. This method use a lot of single matchers: 13
linguistic-based matchers and 3 logic-based matchers.

3 The definition of the Implication Intensity

Let us now consider a finite set T of n individuals described by a set I of p
items. Each transaction t can be considered as an itemset so that t ⊆ I. We
denote by A = {t ∈ T ; a ⊆ t} the extension of itemset a and we denote by
B = T − {t′ ∈ T ; b ⊆ t′} the complementary of the extension of b (i.e. the
extension of b). Then, we introduce the quantities na = card(A), nb = card(B)
and na∧b = card(A ∩B).

An association rule [5] is an implication of the form a → b, where a and b are
disjoined itemsets. In practice, it is quite common to observe a few transactions
which contain a and not b without having the general trend to have b when a
is present contested. Therefore, the number na∧b of counter-examples must be
taken into account to statistically accept to retain or not the rule a → b.

More precisely, we compare the observed number of counter-examples na∧b
to a probabilistic model noted Na∧b. Let us assume that we randomly draw two
subsets X and Y in T which respectively contain na and nb transactions, i.e.
Na∧b = card(X ∪ Y ).

The implication intensity of the association rule a → b is defined by:

ϕ(a → b) = 1− Pr(Na∧b ≤ na∧b) (1)

The distribution of the random variable Na∧b depends on the drawing mode
[6]. Here, we use a Poisson distribution with λ = nanb/n.



4 The concept hierarchy model and the extraction of
concept-relevant terms

Our approach (figure 1) is designed for conceptual hierarchies of concepts orga-
nized by a partial order relation, connected to a set of textual documents.

We define a conceptual hierarchy H as a quadruplet:

H = (C,≤, D, σ0) (2)

where C is a set of concepts, ≤ represents the partial order, D is the set of
documents, and σ0 is the relation which associates a set of documents to each
concept (i.e. for a concept c ∈ C, σ0(c) represents the documents associated to
c). From the partial order ≤, we extend the relation σ0 to σ, where:

σ(c) =
⋃

c′≤c

σ0(c′) (3)

In a first stage, we transform the hierarchy H defined on documents in a
hierarchy H′ defined on terms as follows:

H′ = (C,≤, T, γ0) (4)

where T is the set of relevant terms extracted from D, and γ0 ⊆ C×T is the
relation associating terms to concepts (i.e. γ0(c) represents the set of relevant
terms selected for the concept c). From σ and the relation δ linking terms to
documents (i.e. δ(t) is the set of documents in which the term t appears), we can
deduce the relation γ0. Technically, this is done by evaluating association rules
t → c (between a term t and a concept c) with the implication intensity measure.
A such rule means that the term t tends to appear in documents associated the
concept c. The relevant term set of the concept c, noted γ0(c), is defined as
follows:

γ0(c) = {t ∈ T0|ϕ(t → c) > ϕt} (5)

where T0 represents the set of the binary terms (terms composed of two
meaningful words) and of the verbs contained in the documents. Binary terms
have the advantage to be more informative and less ambiguous than simple
words: they permits to avoid the problem of polysemy. The acquisition of binary
terms is performed with the software program ACABIT [17] on previously POS-
tagged and stemmed textual documents. ϕt is the implication intensity threshold
value and ϕ(t → c) is the implication intensity value of the rule t → c defined
by:

ϕ(t → c) = 1− Pr (Nt∧c ≤ nt∧c) (6)

where nt∧c = card(δ(t) − σ(c)) is the observed number of counter-examples,
that is to say documents which contain the term t and which are not associated
with the concept c. And Nt∧c is the expected number of counter-examples under
independence hypothesis.

From the partial order ≤, we extend the relation γ0 to γ, where:



γ(c) =
⋃

c′≤c

γ0(c′) (7)

The common term set of two hierarchies H′
1 = (C1,≤1, T1, γ1) and H′

2 =
(C2,≤2, T2, γ2) is noted T1∩2 = T1 ∩ T2. Next, we define the relation γ1∩2 which
associates a subset of T1∩2 for each concept c ∈ C1 ∪ C2:

γ1∩2(c) =
{γ1(c) ∩ T2 if c ∈ C1

γ2(c) ∩ T1 if c ∈ C2
(8)

An implicative match set between two hierarchies H′
1 and H′

2 is a set of
implicative rules. A rule a → b between the concepts a ∈ C1 and b ∈ C2

represents a quasi-implication (i.e. an implication tendancy) from the set of
terms γ1∩2(a) to the set of terms γ1∩2(b).
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Fig. 1. Methodology scheme

5 Discovery of significant rules between concepts

5.1 Selection criteria of significant rules

In section 4, we have defined a match result as a set of implication rules between
concepts issued from two hierarchies H1 and H2. Nevertheless, a lot of rules
can be discovered. In this section, we define the implication intensity of a rule
between concepts, and then we give two criteria defining the notion of significant
rule.
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Fig. 2. Evaluation of significant rules

The implication intensity of a rule a → b (with a ∈ C1 and b ∈ C2) is defined
by:

ϕ(a → b) = 1− Pr
(
Na∧b ≤ na∧b

)
(9)

where na∧b = card(γ1∩2(a) − γ1∩2(b)) is the number of relevant terms for
concept a which are not relevant for concept b. Na∧b is the expected number of
relevant terms for concept a which are not relevant for concept b. On figure 2,
the rule A2 → B4 has nA2∧B4 = 1 counter-examples. Its implication intensity
value is:

ϕ(A2 → B4) =
n

A2∧B4∑
k=0

e−λ.
λk

k!
= 0, 97

where λ = nA2.nB4/n = 6.(30− 8)/30 (see figure 2).
Thus, the two criteria defining a significant rule are, first, its implication

intensity value and, second, the specificity of its consequent combined with the
generality of its antecedent. A rule a → b (with a ∈ C1 and b ∈ C2) will be
significant if:

ϕ(a → b) ≤ ϕr (10)

and ∀x ≥ a, ∀y ≤ b, ϕ(x → y) ≤ ϕ(a → b) (11)

The second criterion (equation 11) selects only generative rules and then
permits to reduce redundancy in the extracted rules set. Indeed, from the rule
a → b, we can deduce all the rules of the form x → y because at the term
level: γ1∩2(b) ⊆ γ1∩2(y) and γ1∩2(x) ⊆ γ1∩2(b). We say that the rule a → b is



generative of the rules set x → y. For example (figure 2), the rule A2 → B4 is
generative of the rules set {A2 → B1, A4 → B4, A5 → B4, A4 → B1, A5 → B1}.

5.2 Algorithms for rule extraction

During the rule extraction step, we can reduce the computation time with the
help of the partial order. A top-down search phase enables us to avoid the evalu-
ation of rules having too specific antecedents. This section presents our selection
strategy divided into two algorithms.

Inputs :
A : a concept of H1.
Bcurrent : a set of concepts taking from H2.

Procedure specializeAntecedent(A, B)
Begin

ForEach Bx ∈ Bcurrent Do
specializeConsequent(A, Bx,Bcurrent, 0.0)

End Do
ForEach child ∈ children(A) do
B′current := Bcurrent

specializeAntecedent(child,B′current)
End Do

End

Fig. 3. Algorithm specializing the antecedent

Our first algorithm (figure 3) takes in a concept a from the hierarchy H1 and
a set of concepts Bcurrent ⊂ C2 fromH2. For each concept of Bcurrent, the second
algorithm (figure 4) searches and selects valid consequents. It also updates the set
Bcurrent. And then, this first procedure is recursively launched over the children
of a and with a copy of the set Bcurrent. The set Bcurrent contains the subtrees
of H2 with concepts that were selected during the previous recursion steps.

The second algorithm (figure 4) searches a set of valid consequents for the
current antecedent a. The search is performed over the set candidate consequents
{Bx|Bx ≤2 B}. A consequent bs will be selected if the rule a → bs satisfies the
two criteria 10 and 11.

This algorithm provides a top-down search of rules in H2, and then explores
all branches of the hierarchy. We choose to stop the descent in a branch if
∀b′x ≤2 bx, ϕ(a → b′x) < ϕr. For a rule x → y , a property of implication
intensity defines x ∪ y as the best specialization of the consequent. We exploit
this property in order to avoid the evaluation of all rules a → b′x.

The describing search method does not consider the roots of hierarchies be-
cause all selected terms are associated to root-concepts. The implication intensity
value of such rules (i.e. rules which contain root-concepts) is either undefined or
equal to 0.



Global variable :
ϕr : The Implication Intensity threshold

Inputs :
A : a concept of H1.
B : a concept of H2.
ϕmax : The best value φ(A → Bp) with B ≤ Bp

Input/Output variables :
Bcurrent : the list of ”current” concepts taking from H2.
ruleList : the list of selected rules.

return value :
The value ϕ of the best rule A → Bx with Bx ≤ B

Function specializeConsequent(A, B, Bcurrent,ϕmax)
Begin

bestChild := FALSE
ϕcurrent := ϕ(A, B)
returnV al := ϕcurrent

If (ϕcurrent < ϕr) then
ϕ′ := ϕ(A, A ∩ B)
If (ϕ′ < ϕr) then

return ϕcurrent

EndIf
EndIf
ForEach child ∈ children(B) do

ϕchild := specializeConsequent(A, child,Bcurrent)
If (ϕchild ≥ ϕcurrent) then

bestChild := TRUE
Bcurrent := Bcurrent − {B}
If (returnV al < ϕchild) then

returnV al := ϕchild
EndIf

EndIf
If (ϕcurrent > ϕr) and e(bestChild) and (ϕcurrent ≥ ϕmax) then

ruleList := ruleList ∪ (A → B)
Bcurrent := Bcurrent ∪ {B}
ϕmax := ϕcurrent

EndIf
EndDo
return returnV al

End

Fig. 4. Algorithm specializing consequent



6 Experiments and interactive visualization

6.1 The analysed data

We experimented our algorithms and our interactive visualization tool on a
benchmark proposed in [1]. The benchmark ”Course catalog” describes courses
which are proposed at the Cornell and Washington universities. The courses
descriptions are hierarchically organised. These two hierarchies contain respec-
tively 166 and 176 concepts to which are associated 4360 and 6957 textual course
descriptions.

6.2 Visualization of the mapping set and interaction

Our maching algorithms are enclosed into a decision helper system which en-
ables the visualization of a matching. This tool aims to help a domain expert
to study, edit and validate a matching set pairs between hierarchies. The tool
provides a visual metaphor based on graphs: it represents the two hierarchies
by trees where nodes are concepts and edges represent the partial-order rela-
tions. The implicative matching pair set is represented by directed edges valued
by the implication intensity value. Therefore, the global view of the matching
graph is intricate and confused. From this general view, the user can intuit the
general structure of the matching and find concepts having a lot of implications
connected to.

In order to lighten the graph display, the tool proposes a zoom and a ϕr

threshold chooser which permits to filter the displayed relations. The user can
also choose to keep only the more generative significant rules. Finally, the con-
cepts which do not match other concepts can be hidden.

Fig. 5. Lightened and zoomed representation of an interesting part of a matching graph



The user can select concepts and then visualizes its related information:
its number of documents attached, its list of significant terms, and the list of
concepts that it matches. In the same way, information about matching relations
can be displayed: the source and target concepts, the relevant terms shared by the
two concepts (examples), the relevant terms only associated with one concept
and the more specific relations that it generates. Therefore, this information
helps the user to decide if a matching relation must be kept or removed.

On the figure 5, we kept only generative rules having an intensity implica-
tion value greater than 0.7. For example, if the expert is interested by the rule
”PLANT BIOLOGY → BOTANY”, he can select this and study the underlying
terms (figure 6).

Fig. 6. Details of an implication rule

This tool can load several kind of hierarchies: OWL ontologies, filesystem di-
rectory structure with her textual contents. The matching result can be exported
into an RDF format for ontology alignment.

6.3 Experimental results

Here, we present results provided by a qualitative test of precision and recall. We
compare the results produced by our approach with a reference matching pair
set provided by [1]. However, the reference relations are symmetric while ours
are asymmetric. In order to retain only equivalence relations, we symmetrized
our results by following this rule: If a → b and b → a then a ↔ b.

Then, we varied the two thresholds ϕt and ϕr (from 0.8 to 1) and computed
the precision and the recall values according to the ”reference” matching set.
These two measures issued from information retrieval are defined as follows: let
us considers F the set of matching pairs found using our approache and R the set
of ”reference” matching pairs. The precision (precision = card(F ∩R)/card(F ))
measures the ratio of the number of good matching pairs (i.e. matching pairs that
are both in our result set and in the reference matching set) over the number of
matching pairs found by our method. The recall (recall = card(F ∩R)/card(R))
measures the ratio of good matching pairs over the number of reference matching
pairs.



Results show that the term selection threshold ϕt has a greater influence than
the rule selection threshold ϕr. We obtain good precision values (from 0.71 to
1). Nevertheless, the recall values are quite bad: the best value is equal to 0.54.
Our method seems to be too selective. These results can be firstly explained by
the the lack of textual data associated with the dataset. As [1] remarks, a lot
course descriptions contain only vacuous phrases such as ”3 credits” and then a
lot of leave-concepts do not have relevant terms selected. The second explanation
concerns the kind of relations that we use. Indeed, the symmetrization of our
results introduces a strong bias: a lot of matching pairs contained in the reference
matching set are considered as simple implications and not as equivalences.

7 Conclusion

In this paper, we propose an extensional matching method based on the discovery
of significant implication rules between concepts. Our approach takes in two
hierarchies of concepts to be matched and the textual corpus indexed to these
concepts. The matching task is divided into two stages: (1) the extraction and
selection of relevant terms for each concepts; (2) the discovery of significant rules
between concepts by using their relevant terms set. The main advantages of this
method are the consideration of semantics by using binary terms contained in
the corpus and the discovery of rules allowing to enhance the produced matching
results only regarding similarity-based matching systems. We implemented our
algorithms and an interactive visualization tool. This tool helps a domain expert
to edit and validate a matching between conceptual hierarchies populated with
textual documents. We illustrated our tool on a real conceptual hierarchy related
to university courses descriptions and we compared our results to a manual
matching reference.

Currently, we propose an extensional individual matcher. In the near future,
we will propose a schema based matcher and combine the two approaches in order
to enhance the matching task. We will also enhance the mapping visualization
by using more improved graph drawing algorithms and add more editing features
for facilitate the validation step.
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