
SHIN ABox Reduction

Achille Fokoue, Aaron Kershenbaum, Li Ma,
Edith Schonberg, Kavitha Srinivas, Rose Williams

IBM Research, Hawthorne, NY 10532
achille, aaronk, malli, ediths, ksrinivs, rosemw@us.ibm.com

May 12, 2006

Abstract

We propose a technique to make consistency detection scal-
able for large Aboxes in secondary storage. We use static
analysis of knowledge representation with summarization tech-
niques to produce a dramatically reduced proxy Abox. We show
that the proxy Abox is consistent only if the original Abox is
also consistent. We also show that, in practice, our techniques
dramatically reduce the time and space requirements for con-
sistency detection.

1 Introduction

All common reasoning tasks in expressive DL ontologies reduce to consistency
detection, which is well known to be intractable in the worst-case [2]. Given that
the size of an Abox may be in the order of millions of assertions, this complexity
poses a serious challenge for the practical use of DL ontologies.

We propose new techniques that make consistency detection scalable for
SHIN Aboxes with millions of assertions. Ontology Aboxes often reside in trans-
actional databases, so we do not assume that an Abox will fit into memory. With
these new techniques, we are able to efficiently extract a small set of assertions
from the database that represents the entire Abox, and reason over this small
set in memory.

We first use static analysis to isolate a subportion of the Abox that captures
all the global effects that can occur in reasoning, henceforth referred to as the
global-effects Abox. By global effects, we mean effects that propagate through
the Abox to affect an individual’s membership in a given concept. In practice,
isolating global effects results in substantial reductions in the size of the Abox,
because most roles participate in local rather than global effects.

1

Once we’ve isolated global effects in the Abox, we use summarization tech-
niques to dramatically reduce this subportion of the Abox further to produce a
proxy Abox. For example, in the largest of the 4 ontologies that we studied, we
reduced an Abox of 874K individuals and 3.5 million assertions to a proxy Abox
with 18 individuals and 49 role assertions.

The power of creating such a proxy is that we can replace the consistency
check on the global-effects Abox A′ with a consistency check on a dramatically
reduced proxy. Specifically, if the proxy is consistent, we are guaranteed that A′

is consistent. If the proxy is inconsistent, it can still be used to partition A′.

Our key contributions in this paper are as follows: (a) We present a technique
to use static analysis of knowledge representation to isolate a portion of the
Abox where global effects are possible. (b) We construct a dramatically reduced
proxy of this portion using summarization techniques. (c) We present a method
to further identify local effects in the global-effects Abox, based on the proxy
Abox, to handle cases where the summarization may have been too conservative
in building the proxy. (d) We show the efficiency of these techniques applied to
4 real ontologies.

2 Local/Global Effect Partitioning

We present several criteria for safely removing role assertions from an Abox A.
The reduced Abox is consistent iff A is consistent. In practice, applying these
criteria results in both significantly shrinking the Abox and in partitioning it
into many disconnected Aboxes, many of which consist of a single individual,
which can be checked for consistency using concept satisfiability.

Our criteria for role assertion removal is based on the assumption that
any concept in the clos(A) can reach the concept set of any individual in A
from the application of tableau expansion rules for SHIN. We define clos(A) as⋃

a:C∈A
clos(C) where clos(C) is a set that contains C and all its sub-concepts

(where C is in NNF). Note that our formal definition of clos(A) differs from [6]
in that we do not include ¬C in clos(C), due to lesser expressiveness of SHIN
compared to SHIQ.

We assume that a and b are named individuals in the original A, x is a new
unnamed individual introduced as a result of tableau expansion rules, C is a
concept in clos(A), and R is a role. Let L be a mapping from each individual in
A to a set of concepts in clos(A), such that a :C ∈ A iff C ∈ L(a). L(a) is the
concept set of a. An individual b is said to be an R-neighbor of a iff there is an
assertion Q(a, b) or Q−(b, a) in A where Q ∈ R (where R = { Q| Q v∗ R} and
v∗ is the reflexive transitive closure of the sub-role relation). The SHIN tableau
expansion rules can merge individuals, add membership assertions of the form
a :C where C ∈ clos(A), add unnamed individuals, and add new role assertions

of the form R(a, x) or R(a, b) to A.
We say that an expansion rule has a global effect if it uses an existing role

assertion to add new assertions to A or to detect a clash. For example, a concept
C will be propagated to the concept set L(b) of a named individual b if a : ∀R.C
and R(a, b) ∈ A. The ∀-rule, ≤-rule, and ∀+-rule can have global effects. In
contrast, the ∃-rule and ≥-rule do not use any existing role assertions to alter
the Abox, and are hence local effect rules; but these rules can generate new role
assertions, so we call concepts of the form (∃R.C) and (≥ nR) R-generators.

A role assertion R(a, b) is said to be a global-effect role assertion iff there is at
least one execution of the tableau algorithm in which it is used by a global-effect
rule, or it is part of an explicit clash involving both a and b. Otherwise, it is a
local-effect role assertion and cannot affect the outcome of a consistency check.
Our criteria are designed to detect and remove local effect role assertions.

2.1 Role-based Local Effect Detection

We make the simple observation that if roles R and R− are never used in any
universal or maximum cardinality restrictions, then a role assertion R(a, b) can
never be used in a global-effect rule, so it can safely be ignored.
Definition 1: A role R is part of a universal restriction ∀P.C iff R ∈ P .
(Similarly for maximum cardinality restriction). A role R is part of the universal
restrictions of an Abox A iff there is a universal restriction ∀P.C ∈ clos(A) such
that R ∈ P . (Similarly for maximum cardinality restrictions).
Theorem 2: A role assertion R(a, b) can safely be removed from an Abox A
if neither R nor its inverse R− is part of the universal restrictions or maximum
cardinality restrictions of A.
Proof(sketch): Direct consequence of more the general Theorem 9.

2.2 Assertion-based Local Effect Detection

We specify criteria for local-effect role assertion removal even in the presence
of universal and maximum cardinality restrictions. The criteria for ∀-rule and
∀+-rule is as follows: Let role R be part of a universal restriction ∀P.C. A role
assertion R(a, b) is removable with respect to ∀P.C iff b : C ∈ A and R has no
transitive superroles. R(a, b) is removable with respect to universal restrictions
in an Abox A iff it is removable with respect to all universal restrictions ∀P.C,
where R or R− is part of ∀P.C.

Next, we note that for the ≤-rule to have a global effect from merging there
must be a maximum cardinality restriction (≤ nP) in clos(A), and an indi-
vidual a with more than n P -neighbors. To ensure that an individual a has
no more than n P -neighbors, we need to be able to compute an upper bound
on P -neighbors of a safely. In particular, when counting a′s P -neighbors, it is

Figure 1: Effect of mergers on a’s neighbors

important to include named individuals and unnamed individuals that can be-
come P -neighbors through P -generators and mergers. One example of a merger
is shown in Figure 1, where c can be merged with a because P− is attracted
to T− through a shared super role Q which is part of a maximum cardinality
restriction. We define the conditions under which the upper bound of a′s P -
neighbors can be computed safely and efficiently below. First, we introduce the
notion of an an attractant for P , to prevent new P -neighbors from mergers as
shown in Figure 1:

Definition 3: For a given role P , we define attractant(P) as follows: T ∈
attractant(P) iff there is a role Q such that P v∗ Q, T v∗ Q,≤ nQ ∈ clos(A).

We say that P is safe in A iff one of the following conditions is satisfied for
the role P:

(a) the attractant(P) ⊆ {P} and attractant(P−) ⊆ {P−}, or
(b) for all roles R such that either R or R− is in P , there are no

R-generators in clos(A).
Definition 4: An individual a in A is mergeable iff at some step of any execution
of the tableau algorithm on A, a is merged with a named individual b.

Lemma 5: Let P be a role that is safe in A. During an execution of the tableau
algorithm on A the following holds: if there is a unnamed individual x such that
P or P− is in the L(< parent(x), x >), then |L(< parent(x), x >)| = 1, where
parent(x) denotes the parent node of x in the completion forest.

Proof: Proved by induction [3] on the iterations of the tableau algorithm.

Theorem 6: An individual a in A is not mergeable in A if, for any role P and
any individual b in A, the following conditions hold:

(1) if a is a P -neighbor of b there is no concept (≤ nP) in clos(A), and
(2) if b is a P -neighbor of a then P is safe in A.

Proof sketch: By induction using Lemma 5 [3].

Definition 7: Let role R be part of a maximum cardinality restriction (≤ nP) ∈
clos(A). A role assertion R(a, b) is removable with respect to (≤ nP) iff

(1) if a is a Q-neighbor of a named individual c, there is no concept of
the form (≤ nQ) in clos(A), and

(2) if a named individual c is a Q-neighbor of a then Q is safe in A, and
(3) P is safe in A and its only mininum cardinality is of the form ≥ 1P

(∃P.>), and
(4) |P (a)| + |Some(P, a)| ≤ n, where Some(P, a) = {∃P.C ∈ clos(A) |

there is no P -neighbor c of a such that c : C ∈ A}.

R(a, b) is removable with respect to maximum cardinality restrictions in an Abox
A iff it is removable with respect to all maximum cardinality restrictions ≤ nR,
where R or R− is part of ≤ nR. Note that, by Theorem 6, (1) and (2) imply
that a is not mergeable in A.

Definition 8: A role assertion R(a, b) is removable with respect to maximum
cardinality restrictions in an Abox A iff the following holds: if R (resp. R−) is
part of a maximum cardinality restriction (≤ nP) ∈ clos(A), then R(a, b) (resp.
R−(b, a)) is removable with respect to (≤ nP). R(a, b) is removable with respect
to maximum cardinality restrictions in an Abox A iff it is removable with respect
to all maximum cardinality restrictions ≤ nP , where R or R− is part of ≤ nP .

Theorem 9: A role assertion R(a, b) can safely be removed from an Abox A if
it is removable with respect to universal restrictions and removable with respect
to maximum cardinality restrictions.

Proof Sketch: Let R(a, b) be a role assertion removable w.r.t. maximum
cardinality and universal restrictions in an Abox A. Let A′ be the Abox defined
as A′ = A − {R(a, b), R−(b, a)}. If A is consistent, A′ is obviously consistent.
We show that if A′ is consistent, a model of A can be constructed by applying
the tableau algorithm rules in a particular way. 1

First, for a root node c in the completion forest F , the root node α(c) is
defined as follows: if L(c) 6= ∅ then α(c) = c; otherwise, α(c) = d, where d is the
unique root node in F with L(d) 6= ∅ and d=̇c. Since A′ is consistent, we can
apply the tableau expansion rules on A′ without creating a clash in such a way
that: (1) ∃-rule is never triggered to satisfy a constraint ∃P.C ∈ L(α(a)) (resp.
L(α(b))) where ≤ nP ∈ clos(A), R (resp. R−) is part of ≤ nP , and b : C ∈ A
(resp. a : C ∈ A), and (2) ≥-rule is never triggered to satisfy a constraint
≥ nP ∈ L(α(a)) (resp. L(α(b))) where ≤ nP ∈ clos(A), R (resp. R−) is part
of ≤ nP , and, in the Abox A, b (resp. a) is one of the n R-neighbors of a (resp.
R−-neighbors of b) explicitly asserted to be distinct.

Such a rule application yields a clash-free completion forest F , and the only
nodes on which expansion rules may be applicable are α(a) and α(b) (the only
applicable rules are ∃-rule and ≥-rule). Next, we modify F to create a comple-
tion forest F ′ by adding to F the edge < α(a), α(b) > if it was not already in
F , and by adding R to L(< α(a), α(b) >), if it was not already there. We show
that F ′ is complete (i.e. no rules are applicable) and clash-free.

The fact that, in F ′, R ∈ L(< α(a), α(b) >) ensures that the ∃ and ≥ rules,
which may have been applicable on α(a) or α(b) in F , are not applicable on α(a)
and α(b) in F ′. However, the same fact may now make the ∀, ∀+, ≤, and ≤r

rules applicable on α(a) or α(b) in F ′. We show that this cannot be the case.

The definition of removable w.r.t. universal restrictions obviously ensures
that ∀ and ∀+ rules are not applicable on α(a) or α(b) in F ′. It can be shown

1 A direct model-theoretic proof cannot easily provided here, see [3] for details.

[3] that ≤, and ≤r rules cannot be applicable on α(a) or α(b) in F ′ and that F ′

is still clash free. Thus, a tableau for A can be built from F ′ as in [6], which
establishes that A has a model.

3 Proxy Abox

Intuitively, the Abox contains many redundant assertions from the point of view
of consistency checking that can be collapsed to create a reduced proxy Abox.
As an example, if the Abox contains assertions of the form R(m, c) and R(j, y),
where m and j are both members of W and c and y are both members of U ,
we can replace m and j by a proxy individual w : W that is connected by a R
relation to a proxy individual u : U . Reasoning over the resulting proxy Abox
corresponds to reasoning over the original Abox, as shown formally below.
Definition 10: A proxy Abox is an Abox A′′ that is generated from any SHIN
Abox A using a mapping function f that satisfies the following constraints,
where R is the set of all roles and their inverses in an Abox:

(1) if a :C ∈ A then f(a) :C ∈ A′′ (2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′′

(3) if a 6= b ∈ A then f(a) 6= f(b) ∈ A′′

Theorem 11: If the proxy Abox A′′ obtained by applying the mapping function
f to A is consistent then A is consistent. However, the converse of Theorem
11 does not hold.
Proof : Let us assume that A′ is consistent w.r.t. T and R. Therefore there
is a model I ′ = (∆I′

, .I
′

) of A′ w.r.t. T and R. A model of A can easily be
built from I ′ by interpreting an individual a in A in the same way as f(a) is
interpreted by I ′. Formally, let I = (∆I , .I) be the interpretation of the A w.r.t.
T and R defined as follows: ∆I = ∆I′

; for a concept C ∈ T , CI = CI′

; for a
role R in R, RI = RI′

; for an individual a in A, aI = f(a)I
′

. I is a model of A
w.r.t. T and R as a direct consequence of the fact that I ′ is a model of A′ and
A′ satisfies the 3 conditions stated in definition 1 (see [3] for more details).

The mapping function f that we use to create a proxy Abox from a global-
effects Abox is defined such that if L(a) = L(b) and a 6= b /∈ A, then f(a) = f(b).
That is, all individuals in the Abox A which have the same concept set and are
not asserted to be distinct map to the same individual in the proxy Abox A′′. If
a proxy Abox A′′ is not consistent, either there is a real inconsistency in A or the
process of collapsing individuals to create A′′ caused an artificial inconsistency.
To determine whether an inconsistency is real, we consider the global-effects
Abox A′. Like A′, A′′ may consist of disconnected Aboxes and, since A′′ is
typically small, it is not expensive to identify these partitions. Furthermore, we
know from the consistency check which partitions in A′′ are inconsistent. For
each inconsistent partition Ai

′′ in A′′, we test for consistency the assertions in
A′ that map into it, which form a distinct partition Ai

′ in A′. If any partition
in A′ is inconsistent, then A is inconsistent.

Table 1: Characteristics of A, A’, and A”

KB Classes Roles Instances Role Assertions

A A’ A” A A’ A” A A’ A” A A’ A”

BioPax 31 14 14 40 2 2 261K 17K 39 582K 14K 106

LUBM 91 25 19 27 5 3 142K 44K 481 736K 45K 352

NIMD 19 2 2 28 1 1 1,278K 429K 2 2,000K 286K 1

ST 16 15 15 11 2 2 874K 547K 18 3,595K 580K 49

4 Computational Experience

We tested our approach on the four actual ontologies shown in Table 1. A corre-
sponds to the original Abox, A′ is the Abox obtained from A after removing local
effects, and A′′ is the proxy Abox. Biopax includes the data for 11 organisms
available at http://biocyc.org. We used a version of LUBM that was modified
to SHIN [7] . The Abox of the NIMD ontology was generated from text analysis
programs run over a large number of unstructured documents. The semantic
traceability (ST) ontology Abox was generated from a program that extracted
relationships between software artifacts of a large middleware application.

As can be seen in Table 1, in practice, A′ is significantly smaller than A, and
A′′ is a substantial reduction over A′. In most cases, A′ was sufficient for the
consistency check. For ST, a real inconsistency was detected in the local-effects
consistency check. The Biopax and NIMD ontologies were consistent in A′′. For
LUBM, we needed to check the consistency of A′. The running time for our
algorithm took from 12.6 seconds to 283 seconds, which included the time for
building the proxy and checking it for consistency.

5 Related Work and Conclusion

There are many highly optimized reasoners such as Pellet [8], Racer [4], Instance-
Store [1], and Kaon2 [10] designed for consistency checking, but only InstanceS-
tore and Kaon2 can be extended to Aboxes in secondary storage. Kaon2 applies
to deductive databases, whereas our techniques work with relational databases.
InstanceStore is limited to role-free Aboxes. In theory, Instance Store can han-
dle Aboxes with role assertions through a technique called precompletion [9],
but this may not be practical for Aboxes stored in databases. Our techniques
can be contrasted with optimization techniques such as model caching and Abox
contraction [5], but again, it is unclear how such techniques can be applied to
Aboxes in databases.

We have demonstrated a technique to scale consistency detection to large
Aboxes in secondary storage by extracting a small representative Abox. Further,

we have shown that, in practice, this technique works efficiently on four large
ontologies. Our plan is to extend this approach to apply more accurate static
analysis techniques, extend its applicability to more expressive languages, and
to apply these techniques to query processing.

References

[1] Sean Bechhofer, Ian Horrocks, and Daniele Turi. The owl instance store:
System description. Proc. of 20th Int.Conf. on Automated Deduction, pages
177–181, 2005.

[2] F. Donini. Complexity of reasoning. In F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, Description Logic
Handbook, pages 101–141. Cambridge University Press, 2002.

[3] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and
Kavitha Srinivas. Scalable reasoning:cutting ontologies down to size. In
http://www.research.ibm.com/iaaa/aaaiSubmission.ps, 2006.

[4] V. Haarslev and R. Moller. Racer system description. Conf. on Automated
Reasoning (IJCAR 2001), pages 701–705, 2001.

[5] Volker Haarslev and Ralf Moller. An empirical evaluation of optimization
strategies for abox reasoning in expressive description logics. Proc. of the
International Workshop on Description Logics, pages 115–199, 1999.

[6] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individ-
uals for the description logic SHIQ∗. Proc. of 17th Int.Conf. on Automated
Deduction, pages 482–496, 2000.

[7] Li Ma, Yang Yang, Zhaomin Qiu, Guotong Xie, and Yue Pan. Towards a
complete owl ontology benchmark. In Proc. of the third European Semantic
Web Conf.(ESWC 2006), 2006.

[8] Evren Sirin and Bijan Parsia. Pellet: An owl dl reasoner. In Description
Logics, 2004.

[9] Sergio Tessaris and Ian Horrocks. Abox satisfiability reduced to termino-
logical reasoning in expressive description logics. In LPAR, pages 435–449,
2002.

[10] U.Hustadt, B. Motik, and U. Sattler. Reducing shiq description logic to
disjunctive datalog programs. Proc. of 9th Intl. Conf. on Knowledge Rep-
resentation and Reasoning (KR2004), pages 152–162.

