
Finding Subsumers for

Natural Language Presentation

Chris Mellish and Jeff Z. Pan

Department of Computing Science
University of Aberdeen

Abstract

This work is motivated by the task of describing in natural language a concept de-
fined in an OWL DL ontology. However, rather than focussing on linguistic issues, we
address the question of how to support natural language presentation with inference.
We introduce a new non-standard DL reasoning problem, that of finding subsumers
of a concept that are suitable for natural language presentation. We present a so-
lution that works by enumerating successively more complex concepts in the limited
language ALEN . Although the search space is formidable, specific optimisations that
take into account characteristics of natural language enable it to be tamed. Our initial
experiments show that the approach may be quite feasible in practice.

1 Introduction

Knowledge engineers, domain experts and also casual users need better ways to understand
ontologies. As the logical structure of ontologies becomes richer, it becomes harder to devise
appropriate graphical means of presentation that do not require special training on the part
of the users. In this scenario, presentation in natural language is becoming increasingly
attractive. Natural language has developed good ways of conveying some complex logical
structures and requires no special training.

The work described in this paper takes as its starting point the task of answering
in natural language a question What is A?, where A (the target) is an atomic concept
mentioned in some given OWL DL ontology. This may take place as a part of a longer
dialogue between person and machine where, for instance, subsequently the person asks
What is B?, for some atomic B mentioned in the answer to the first question. Rather than
considering detailed linguistic aspects of this task, however, we focus on how to support it
with appropriate reasoning.

A first attempt at the task of answering What is A? might somehow render in natural
language the set of ontology axioms that mention A. However, an ontology axiom is not
necessarily of appropriate complexity to be expressed as a natural language sentence. Also,
it could be misleading to present true, but incomplete information. Finally, important
information about the target may arise from logical consequences of the axioms, not only

from explicitly stated axioms. Elsewhere we have used these arguments to argue the need
for new kinds of inference, natural language directed inference (NLDI), which are capable
of deriving those logical consequences suitable for natural language presentation [8].

DL-based Ontologies have available powerful reasoning services, such as classification,
subsumption and satisfiability checking. Standard reasoning services, however, require
detailed specification of the reasoning goals (e.g. the subsumption service needs to be told
exactly which two concepts are to be tested). Since NLDI is a kind of data-driven reasoning
with goals that cannot be stated precisely in logical terms, standard DL reasoning services
cannot be used immediately to implement NLDI. The challenge is to exploit these efficiently
implemented services in more complex ways to make NLDI possible.

What kind of information is needed to answer a question What is A? McKeown [7]
discusses a number of kinds of facts present in human descriptions of a target A, which
include identification: An aircraft carrier is a surface ship, attributive: A torpedo has an
underwater target location, and equivalent: Wines described as ‘great’ are fine wines from
an especially good village. In DL terms, these correspond to concept subsumptions A v C

w.r.t. a TBox T , with A (A= AircraftCarrier, Torpedo, GreatWine) being the subsumee.
Unfortunately, not all (or even any) of these concept descriptions C need necessarily appear
explicitly directly in axioms of the form “A v C” in the ontology.

In this paper we present a procedure for discovering subsumers C of a concept A that
might be worth presenting in natural language. Although we allow the ontology T to be
expressed in full OWL DL, nevertheless the subsumers C are in the more limited language
ALEN . In a sense, therefore, our real goal is to produce the most specific ALEN subsumer,
which contains all the information known about the target. In general, however, this will
be a conjunction, within which the conjuncts could be generated in many possible orders.
Instead of generating the single conjunction, therefore, we generate a set of most specific
non-conjunctive subsumers, which could then be combined together by conjunction if this
was wished. We require these individual conjuncts to be the sort of things that could be
presented in individual natural language sentences.

The closest related work is that on non-standard inferences in DLs. On the one hand,
our task could be characterised as looking for a least subsumer (other than A itself) of A

using a less expressive DL [3]. On the other hand, the task can be regarded as a “matching”
problem, “A v?P”, where P is a concept pattern [2]. Unfortunately, existing approaches
to both computing least subsumers and matching only apply to less expressive DLs and
assume TBoxes to be unfoldable. In this work, apart from assuming the existence of
standard reasoning services, we do not assume unfoldability of the axioms.

2 Discovering Subsumers

Answering questions about an ontology is a form of communication, and formal theories
of communication standardly make reference to models of belief [1]. Here we need to
distinguish between two different sets of beliefs – the system’s beliefs and the user’s beliefs
(as in the system’s user model). The first of these is represented by the original ontology
T , whilst the second requires a separate user knowledge base U . The user KB is likely to be
different from the system KB because otherwise the user would not have sought information

about the target. Hence two notions of subsumption arise:1

1. C1 system-subsumes C2 iff T |= C2 v C1;

2. C1 user-subsumes C2 iff U |= C2 v C1.

We make the assumption that the user KB has the same vocabulary as the system KB and
is an approximation to the system KB:

For all C1, C2, if U |= C1 v C2 then T |= C1 v C2.

I.e. everything the user knows is also known by the system. Our framework allows for
any U satisfying the above constraints; in particular, one could have U = T (ignoring this
particular distinction) or have U be something that is built up over the dialogue as a result
of the information that the user is told. Our current implementation considers just the first
question of a dialogue, where the user has no initial domain knowledge, i.e. U = φ.

We can now present the task more formally:2

The natural language subsumer enumeration problem: Given a
system-satisfiable target named concept A, find the most specific (w.r.t. user-
subsumption) non-conjunctive concepts C which system-subsume A, do not
user-subsume A and are appropriate for natural language presentation.

Here we use the user KB to decide which of these are worth presenting, because the extra
knowledge of the system may obscure certain user-relevant distinctions. For example, con-
sider an ontology T which includes the axiom C1 ≡ C2 not in U . Given this knowledge, if
C1 subsumes a target A, so does C2. As C1 and C2 are system-equivalent, from the system’s
point of view the choice of which to present is arbitrary. From the point of view of the user
who is not in possession of all the knowledge in T , however, the descriptions C1 and C2

provide distinct information, and so it is worth considering presenting both of them.
Our approach is to enumerate concepts C subsuming A via a search through all possible

concepts in ALEN . At each stage we can test whether an enumerated concept C system-
subsumes A using the subsumption reasoning service. Some such concepts are returned as
candidates which may be user-least non-conjunctive subsumers of A. The set of candidates
is then further filtered, in order to obtain a set, no element of which user-subsumes another
element or user-subsumes the target (exactly one of a set of user-equivalent concepts is
returned). In practice, the enumeration of candidates is organised in such a way as to avoid
many candidates that would otherwise be filtered out by the second step.

3 The Refinement Relation

The search space is expressed in terms of a refinement relation ↘, where C1 ↘ C2 indicates
that C2 results from a minimal change to C1 that makes it more syntactically complex. The

1In the following, we will also sometimes mention corresponding varients of other logical tests (e.g.
system- vs user-equivalence).

2We consider extra requirements for natural language presentation in Section 5.

search starts from the most general concept >, working to candidates C1 such that > ↘
C1, then to candidates C2 such that C1 ↘ C2, and so on. Thus we are exploring the set of
concepts α such that > ↘∗ α, where ↘∗ is the transitive closure of ↘.

To limit the amount of redundancy in the search space, concepts are assumed to be in a
normal form, so that conjunctions are only allowed inside ∃ constructs, and conjunctive in-
formation at the top level or just inside ∀ constructs must be expanded out to yield multiple
candidates. Nested conjunctions are flattened. Within conjunctions, conjuncts (if present)
occur in the following order: negations (in lexicographic order) before role restrictions (with
properties in a fixed order) before atomic concepts (in lexicographic order). Within the role
restrictions, all the restrictions for a given role occur together, in the order: number restric-
tions before ∀ before ∃. For any role P , there are at most two number restrictions: either
a single = restriction or at most one of each of ≤ and ≥, in this order. For any role P , at
most one ∀P restriction can occur within any allowed conjunction.

The following exhaustive definition can also be read as the basis of an algorithm for
enumerating, for a given concept α, the concepts β such that α ↘ β. This gives us the
original theoretical search space. In the actual implementation, we make a number of
optimisations compared to using the basic refinement relation, as detailed below.

> ↘ Ai if Ai is a named concept
> ↘ ¬Ai if Ai is a named concept
> ↘ (∃P.>) if P is a role name
> ↘ (∀P.α) if P is a role name and > ↘ α

> ↘ (≥ nP) if P is a simple role and 0 ≤ n ≤ π, where π a large number (1000000)
> ↘ (≤ nP) if (0 ≤ n ≤ π), and P is a simple role
> ↘ (= nP) if (0 ≤ n ≤ π), and P is a simple role
(∃P.α) ↘ (∃P.β) if α ↘ β

(∀P.α) ↘ (∀P.β) if α ↘ β

α ↘ (β u α) where α is not a conjunction, > ↘ β, this is within the scope of an ∃ and
β is of a type allowed before α by the conjunction ordering rules.

α1 u α2 u . . . αn ↘ β u α2 u . . . αn if α1 ↘ β

α1 u α2 u . . . αn ↘ β u α1 u α2 u . . . αn if > ↘ β and β is of a type allowed before the αi

by the conjunction ordering rules.

The above relation ↘ has the following properties. These can be shown by induction
on the number of symbols (other than >) occurring in C1.

Lemma 1. If C1 is a satisfiable concept in ALEN expressed in terms of the vocabulary of
the ontology then > ↘∗ β for some concept β logically equivalent to C1.

Lemma 2. If C1 ↘ C2 then C2 is strictly more syntactically complex then C1 (for a range
of possible complexity metrics)

Lemma 3. If C1 ↘ C2 then C1 subsumes C2 (hence C1 system- and user-subsumes C2)

The first of these means that we can reach all possible concepts through ↘ (notice that
we do not need to allow ⊥ in formulae, because of equivalences such as (∀P.⊥) ≡ (= 0P)).
Because of Lemmas 2 and 3, a search following the transitive closure of ↘ is both a search
in terms of increasing syntactic complexity and also a (perhaps rather slow) search in terms
of increasing logical specificity.

4 The Search Strategy

The search algorithm works with a derived relation ↘↘, defined in terms of ↘, which
produces results strictly user-subsumed by the original concept. Again, this definition can
be thought of as an algorithm to enumerate the relevant refinements:

C1 ↘↘ C2 iff C1 ↘ C2 and C2 does not user-subsume C1

or ∃C3.C1 ↘ C3, C3 user-subsumes C1 and C3 ↘↘ C2

Our search is organised in a depth-first manner. If a point in the tree is reached where
the concept Ci does not system-subsume the target, there is no point in considering further
refinements of this concept. By Lemma 3, such further refinements will be subsumed,
and hence also system-subsumed, by Ci. One of these cannot system-subsume the target,
because if so then, by transitivity of system-subsumption, Ci would have to as well. If
such a Ci is reached, search down that path of the tree is terminated. Lemma 2 means
that we can achieve termination by terminating the search path when it reaches a concept
with a complexity equal to or exceeding a preset limit. A generated concept is returned
as a candidate exactly when none of the first ↘↘ descendents both are of acceptable size
(see Section 5) and also system-subsume the target. This tends to lead to only user-least
solutions being returned.

The above properties guarantee that the above search is complete, in that all user-least
non-conjunctive concepts (or concepts logically equivalent to them) that system-subsume
the target and have a size below the limit are enumerated (as well as possibly some other con-
cepts). Logically equivalent solutions could, however, be generated many times. The search
is partially correct, in that all candidates system-subsume the target. User-minimality (and
so the rest of correctness) is then ensured by the subsequent filtering process.

Apart from the natural language based optimisations discussed in the next section,
space does not permit us to describe in detail a number of other optimisations used to
enhance the basic search approach. Firstly, the relevance filter of [9] is used to limit the
vocabulary of atomic concept and role names used in the enumerated concepts. Secondly,
we disallow the addition of elements to conjunctions which are either user-subsumed by
or user-subsume existing conjuncts. Thirdly, a focussed search is used to ensure that any
introduced number restriction is in fact the most specific such restriction such that the
candidate with this restriction in it subsumes the target.

5 Natural Language Direction

Natural language easily expresses conjunctive information and often produces scope am-
biguities in complex examples involving disjunction and negation. ALEN allows no dis-
junctions or complex negations and thus is a natural DL to act as the target for natural
language based approximation.

The following summarises other ways in which we incorporate natural language direction
into the algorithm, sometimes at the expense of logical completeness.

Concept Complexity. Because there is a limit to the complexity of a concept that can be
presented in a sentence, we impose a size limit on concepts. Each negation or conjunction
in a concept counts 1 towards the “size” of a formula, and each quantifier counts n + 1
towards the calculation, where n is the number of enclosing quantifiers. A complexity limit
of around 4 or 5 seems roughly plausible for what can give rise to a comprehensible natural
language sentence.

Specificity and Complexity. Because we use ↘↘, rather than ↘ in the algorithm,
refinements of a concept that are user-equivalent to it are not returned. Given that these
refinements are more complex than the original, the effect is that (apart from where equiv-
alent concepts are reached by different paths through the search space) only one of the
smallest of a set of user-equivalent concepts is ever returned. The consequence is that,
roughly speaking, the simplest way of saying some particular content is chosen (c.f. Grice’s
principle of brevity [4]).

Introducing new Terminology. Since we are interested in finding just the most specific
concepts that subsume the target, whenever > is refined to a named concept it can be re-
fined to a most user-specific named concept such that the whole candidate, with this concept
substituted, system-subsumes the target. Similarly, when a concept ¬Ai is introduced, it
can be done with a most user-general Ai such that the candidate still system-subsumes the
target. Unfortunately, if U = φ, then there are no non-trivial user-subsumption relation-
ships between named concepts, and so this measure has no effect. As a result, for instance,
if a target is system-subsumed by (∃hasPet.Poodle) then concepts like (∃hasPet.Animate)
will also appear as candidates (none of these is user-subsumed by any other). All of these
convey new information to the imagined user, but they are not all equally good for natural
language presentation. Given that the user has the opportunity in the dialogue to ask
followup questions about mentioned atomic concepts, it is actually complete in a dialogue
sense simply to return just the concept including the system most specific concepts in these
cases. In contrast, if all the above concepts are presented then the impression may be given
that there are no noteworthy system-subsumption relationships between them.

Negations. In natural languages, negation is used primarily to deny an explicitly or
implicitly available proposition. This means that (in the absence of some specific context)
it would be strange to answer the question What is a mammal? with something like Every
mammal is not a mushroom. Our interpretation of this requirement is the condition that
a negation ¬α can only be generated if it is within a conjunction where there is another
conjunct (which must be a positive atomic concept) β such that αuβ is satisfiable. This is
a kind of “β but not α” negation. For instance, it is perfectly reasonable to say “... a pizza
but not a vegetarian dish”, because it is possible to be both a pizza and a vegetarian dish.

Trivial Universals. If instances of a given concept cannot possibly have values for a role
P then all ∀ restrictions on this role trivially subsume the concept. Such restrictions are
however not appropriate to be expressed. This means that it would be strange to answer
the question What is a SpicyTopping? with something like A SpicyTopping can only have

a pizza as a topping. In this example, pizza toppings cannot themselves have toppings.
This means that, for instance, ∀topping.P izza system-subsumes SpicyTopping. In this
situation, any concept of the form (∀P.α) system-subsumes the target. Although logically
each of these is a subsumer, in natural language terms each of them is trivial and not worth
expressing. The same problem can arise at any nesting within a candidate. Our solution to
this problem is that if at any point we are planning to insert the concept (∀P.>) at some
point in a candidate then first of all we look to see whether the concept with (∀P.⊥) in
this position system-subsumes the target. If so, then we judge that any universal would be
trivial and refrain from introducing one.

6 Discussion

Our prototype considers just the first question of a question answering dialogue, where U
= ∅. It is implemented in SWI Prolog (version 5.4.7), using a DIG interface for Prolog
[5]. RacerPro (version 1.9.0) is used via DIG to provide all reasoning services w.r.t. the
system KB (e.g. system-subsumption) and results are cached. As U =φ, the checking of
user-subsumption is implemented structurally in Prolog with simple subset of the algorithm
of [6], to avoid overheads introduced by using the DIG interface.

The following table shows statistics about some examples. The two ontologies used are
a food ontology from http://www.w3.org/TR/owl-guide/food.rdf and a pizza ontology
from http://www.co-ode.org/ontologies/pizza/pizza 20041007.owl. For each exam-
ple, we give the complexity limit, the search space size3, the target, the number of calls
to RacerPro needed, the number of subsumers found by the initial search and the number
that this is filtered to.

Ontology Limit Search Space Target Calls Subsumers Filtered

Food 4 2.8E8 FruitCourse 2354 87 63
Food 5 1.8E10 FruitCourse 4706 124 93
Food 6 1.2E12 FruitCourse 13756 385 324
Pizza 4 2.1E8 AmericanHot 1386 80 76
Pizza 5 1.8E10 AmericanHot 2116 80 76
Pizza 6 1.5E12 AmericanHot 3970 99 95

The concepts found subsuming AmericanHot, assuming complexity limit 4, include:

¬ V egetarianP izzau NamedP izza

(∀hasTopping.¬ ArtichokeTopping u PizzaTopping)
(∀hasTopping.(≤ 1hasSpiciness))
(∃hasTopping.(∀hasSpiciness.Spiciness)u MozzarellaTopping)
(≥ 5hasTopping)

Our results so far show that it can be possible, given an appropriate search strategy and
natural language direction, to solve the natural language subsumer enumeration problem

3The size of the basic refinement search space, without any optimisations, ignoring lexicographic ordering
of conjuncts and assuming a maximum cardinality of 3. The implementation allows cardinalities up to 1
million, but using this figure in the calculation of the raw search space size would be misleading.

in spite of the huge search space involved. Actual runtimes are still somewhat problematic
(the above calculation for AmericanHot with limit 5 takes about 31 seconds elapsed time
on a 1695MHz PC), but further optimisations could be introduced if the reasoner and the
rest of the system were in the same process.

7 Acknowledgements

Thanks to Racer Systems GmbH for free use of RacerPro, Jan Wielemaker for SWI Prolog,
and Zhisheng Huang and Cees Visser for their DIG interface for Prolog. Thanks to Holger
Wache and Frank van Harmelen for useful discussions. Chris Mellish’s contribution to this
work is funded by EPSRC grant GR/S62932/01. Jeff Z. Pan’s contribution is partially
funded by the FP6 Network of Excellence EU project Knowledge Web (IST-2004-507842).

References

[1] J. Allen. Natural Language Understanding. Benjamin Cummings, 1995.

[2] F. Baader, R. Küsters, A. Borgida, and D. McGuinness. Matching in description logics.
Journal of Logic and Computation, 9(3):411–447, 1999.

[3] S. Brandt, R. Küsters, and A. Turhan. Approximation and difference in description
logics. In Proc. of the 8th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’2002), pages 203–214, 2002.

[4] H. P. Grice. Logic and conversation. In P. Cole and J. Morgan, editors, Syntax and
Semantics: Vol 3, Speech Acts. Academic Press, 1975.

[5] Zhisheng Huang and Cees Visser. An Extended DIG Description Logic Interface for
Prolog. Technical Report SEKT/2004/D3.4.1.2/v1.0, Dept of Artificial Intelligence,
Vrije Universiteit Amsterdam, 2004.

[6] R. Küsters and R. Molitor. Structural subsumption and least common subsumers in a
description logic with existential and number restrictions. Studia Logica, 81(2):227–259,
2005.

[7] K. McKeown. Text Generation: Using Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Cambridge University Press, 1985.

[8] C. Mellish and X. Sun. Natural language directed inference in the presentation of
ontologies. In Procs of the Tenth European Workshop on Natural Language Geeration,
Aberdeen, Scotland, 2005.

[9] Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using vam-
pire to reason with owl. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen, editors, Procs of the 2004 International Semantic Web Conference (ISWC
2004), pages 471–485. Springer LNCS 3298, 2004.

