Model checking the basic modalities of CTL with Description
Logic

Shoham Ben-David Richard Trefler Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

Abstract. Model checking is a fully automated technique for determining whether the behav-
iour of a finite-state reactive system satisfies a temporal logic specification. Despite the fact that
model checking may require analyzing the entire reachable state space of a protocol under analy-
sis, model checkers are routinely used in the computer industry. To allow for the analysis of large
systems, different approaches to model checking have been developed, each approach allowing for
a different class of systems to be analyzed. For instance, some model checkers represent program
state spaces and transitions explicitly, others express these concepts implicitly. The determination
of which flavour best suits a particular model must often be left to experimentation. Description
Logic (DL) reasoners are capable of performing subsumption checks on large terminologies. In
this paper, we show how to perform explicit state model checking with a DL reasoner. We formu-
late the check that a reactive system satisfies a temporal specification as a consistency check on a
terminology in the DLALC and demonstrate our method on an example.

1 Introduction

Model checking [4] (cf. [5]) is a fully automated technique for verifying that the behaviour of
a finite-state reactive system satisfies a temporal logic specification. As such, it is extremely
useful in verifying important aspects of safety critical reactive systems.

The main challenge in this area, known as ¢ha&te explosion problenarises because
systems may have short textual descriptions encoding exponentially larger state spaces that are
analyzed by the model checker. While model checking techniques are widely used in industry
[1, 6, 11], methods of attacking the state explosion problem and increasing the applicability
of this technique are of substantial interest.

Given a finite state model/ (a non-deterministic Kripke structure), a model checker
verifies that the behaviours @ satisfy a temporal logic specificatias typically given in
Computation Tree Logic (CTL) [4], i.eM |= . The following is a typical specification:
it is always the case that at most one of several concurrent processes has access to a shared
resource Letting ¢; indicate that processhas access to the shared resource of interest, the
specification is expressed succinctly in CTLAG—(c; A c2). Here, the basic modalithG
is composed of two temporal operatdysrepresentingll future paths andG, representing
all states on a pathFormulas of the formrAG(p), with p being a Boolean expression, are of
special importance. In our experience, over 90% of the formulas written in practice can be
converted intAAG(p) form.

To cope with the state explosion problem several different techniques have been proposed.
The different approaches work well on large classes of examples but no one technique best

! The symbol= is overloaded. We use it in this paper both in the context of model checking and in the context
of DL reasoning.

suits all models. One method describes the magiatbolicallyby representing the system
under verification by boolean functions. Two main symbolic methods are used to perform
model checking. The first, known &MV [10], was introduced by McMillan in 1992. This
method is based on Binary Decision Diagrams (BDDs) [3] for representing the state space
as well as for performing the model checking procedure. The second is known as Bounded
Model Checking [2]. Using this method, the model under verification is translated into a
Boolean formula, and a satisfiability solver is applied to it to find a satisfying assignment.
Such an assignment, if found, demonstrates a bug in the model.

Other important methods represent states and transitions explicitly. Explicit state methods
appear to be more amenable to sophisticated state space reduction technigues. In this paper
we show how to use Description Logic reasoning to perform explicit state model checking
of the basic modalities of CTL on a synchronous model of computation, with the hope of
benefiting from the powerful DL reasoners currently available [7—9].Mé&t be a model de-
scription, whose sematics is given by the Kripke struciurgp, and letp be a specification.

We formulate a terminolog¥x/p.,, over the DL dialectALC, and define a concepty;p such
that by checking if7y/p , = Cup is consistent, we can determine whethégp = ¢.

In the next section we give the necessary background and definitions. Section 3 presents
the translation of a model checking problem into a terminology o€€, and demonstrate
it through an example. Section 4 concludes the paper.

2 Background and Definitions

Definition 1 (Description Logic . ALC) LetNC andNR be sets of atomic conceftd;, As, ...}
and atomic roles{ Ry, Ro, ...}, respectively. The set abnceptsC of the description logic
ALC is the smallest set includingC that satifies the following.

- If C1,Cy € C, then so are
o (7 o C1MNCYy

—IfC € C,andR € NR, thenso is
e 1R.C

Additional concepts are defined as syntactic sugaring of those above:
o T =AL A, forsomed e VR.C =—-3R.-C
e ChLUCy = —|(—'Cl M _‘CQ)

Aninclusion dependendg an expression of the foréy, T Cs. Aterminology7Z consists
of a finite set of inclusion dependencies.

Thesemanticof expressions is defined with respect to a strucure (AZ,-Z), where
A7 is a non-empty set, and is a function mapping every concept to a subsenéfand
every role to a subset ak? x A’ such that the following conditions are satisfied.

o (-C)YE =AT\CT o (C1NCy)t=0CENCE
e IRC ={rec AT |y e ATst.(x,y) € RT ANy € CF}

A structuresatisfies an inclusion dependen€y C Cs if Cf C C%. Theconsistency
problem for ALC asks if7 |= C holds; that is, if there exist& such thatC? is non-empty
and such thaC? C €7 holds for eachC; C Cyin 7.

Definition 2 (Kripke Structure) LetV be a set of Boolean variables.Kipke structureM/
overV is a four tupleM = (S, I, R, L) where

1. Sis afinite set of states.
2. I C Sis the set of initial states.
3. R C S x Sis atransition relation that must be total, that is, for every state S there
is a states’ € S such thatR(s, s).
4. L : S — 2V is afunction that labels each state with the set of variables true in that state.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a model is
given as a set of Boolean variablés= {vy, ..., v, }, their initial values and their next-state
assignments. The definition we give below is an abstraction of the input langu&lye4i.0].

Definition 3 (Model Description) Let V' = {vy,...,ux} be a set of Boolean variables. A
Model Descriptionover V' is a tuple MD = (Iup, [(c1,¢}), .., (ck, ¢})]), wherelyp =
{vi =b1,...,v, = bi}, by € {0, 1}, andc;, ¢; are Boolean expressions ovEt

The semantics of a model description is a Kripke structutgp = (5, Iy, R, L), where
S=2" L(s)=sforse S, Iy ={Iyp}andR = {(s,8') : V1 <i < k, s |= c; implies
s' = (vi = 0) ands = ¢, A —¢; impliess’ = (v; = 1)}.

Intuitively, a pair(c;, ¢;) defines the next-state assignment of variabla terms of the
current values of vy, ..., v }. That is,

0 if C;
next;) =< 1 if C; N —¢;
{0,1} otherwise

where the assignmert), 1} indicates that for every possible next-state value of variables
V1, ..Vi—1, Vit1, ---, Uy, there must exist a next-state with= 1, and a next-state with; = 0.

We give the definition of Basic CTL formulas below. Our definition differs from full CTL
in that temporal operators cannot be nested. Note though, that most of the formulas written in
practice can be converted int(p) form, which is included in Basic CTL.

Definition 4 (Basic CTL formulas [4]) — The formula ¢ = 1) is an atomic CTL formula
— If p andq are atomic CTL formulas, then so are
*p epAgq
— If p andq are atomic CTL formulas then the following are Basic CTL formulas:
e EXp eAXp eFE[pVq e A]pVq]
— If p is a Basic CTL formula then so &—.
Additional operators are defined as syntactic sugaring of those above:
e E[pUq] = ~A[-pV—q] e ApUq| = ~E[-pV—q] e AFp = Altrue Up|
e EFp = E[true Up] e AGp = -FEF-p e EGp=—-AF-p

The semantics of a CTL formula is defined with respect to a Kripke structire-
(S,1,R, L) over a set of variable¥ = {vy,...,v;}. A path in M is an infinite sequence
of stateq sy, s1, ...) such that each successive pair of stétess; 1) is an element oR. The
notationlM, s = ¢, means that the formula is true in states of the model)/.

- M,s = (v=1)Iiff v e L(s)

- M,sEpAqiff M,s=pandM,s | q
- M,s=-piff M,s £

- M, sy = AXp iff for all paths(sg, s1,...), M,s1 = p

— M, 5o = EXpiff for some path(sg, s1,...), M,s1 Ep

— M, sy | AlpV ¢ iff for all paths(sy, s1, ...), either for alli > 0, M, s; |= q or there exists
n > 0 such thatM, s,, Epandforall0 <i <n,M,s; = q

— M, s = E[pVq] iff for some path(so, s1,...), either for alli > 0, M, s; = q or there
existsn > 0 such thatV/, s,, = pandforall0 <i <n,M,s; = ¢

We say that a Kripke structut®l = (S, I, R, L) satisfies a Basic CTL formula (M =
p)ifforall s; € I, M, s; = .

Definition 5 (Formula type) Lety be a Basic CTL formula, expressed in term#&df, AX,
E[pVq] or A[pVq|. We say thap is of Type A if the outermost path quantifier is A, and Type
E otherwise. We say that is a negatedormula if its path quantifier is preceded by an odd
number of negations.

3 Model Checking Using Description Logic Reasoning

We give a linear reduction of a model checking problem into a consistency checlkdayer
Let MD = (I, [{c1,c}), ..., {cx, ¢}.)]) be amodel description for the modely,p = (S, I, R, L),
overV = {v1,...v}. Lety be a Basic CTL formula. We generate a terminol@@yp ., lin-
ear in the size o/D and constant in the size ¢f and a conceptnit, such that by checking
if Tup,, = Init is consistent, we can determine whethérp = .

We construcyp ,, as the union of three terminologieByp , = 7 UT,#5° U T, where
7T depends only on the numbgrof variables inV/, the terminolognywyge depends on the
model description as well as on thge of the formulay (with typebeingA or E), and7,,
depends only on the formula

We start by describing the primitive concepts and roles which are used in all of the termi-
nologies, and then provide the construction for each of the three terminologies. We conclude
this section with a proposition that relates the consistency of the cofrépivith respect to
Tup,, 1o the satisfaction ap in the modelM yp.

Concepts and RolesWe introduce one primitive rol& corresponding to the transition rela-
tion of the model. For each variable € V' we introduce three primitive concepfg;, V; N
andV;T. The concep¥; corresponds to the variable, whereV; denotesy; = 1 and—V;
denotes); = 0. The concepV; N corresponds in a similar way to the next-state valu;of
The concepV;T is needed to encode an execution step of the model as a sequence tRrough
as will be explained in the sequel. Finally, one primitive concgpts introduced to assist the
encoding of the specificatiop. Depending orp, this concept is not always needed. In total,
for a setV with k variables, the terminology’y, , will consist of 3k + 1 primitive concepts
and one role.

Constructing 7 For a transition{, s')e R in the modelM,,p, the states may differ from

s in the values of some or all of the variableg ...,v,. That is, in one transition, many
variables may simultaneously change their values. To achieve this with our single, noke
encode every transition of the mod#l,,;p as a series of “micro-transitions” throudt) each

of which determines the next-state value of one variable only. To ensure that every variable

makes a move only on its turn, we use the conc®pts We allow exactly one o¥1 T, ..., Vi, T
to hold on each state, and in the correct order, by introducing the following concept inclusions.

- ViT E(VR.V;uaT) =V;T C (VR.-V;;1T) for1 <i < kand
VT C (VR.VT) =ViT C (VR.-WT)

The actual model states correspond to where conEgptholds, after a cycle where each
of the variables has taken a turn. Thus, we have to make sure to propaget®y’ values
appropriately, by introducing the following inclusions fb i < k.

— WhenV4 T holds,V; should assume its next value that has been stor&gdVn
WMTNV:N)CV, (WTT(=ViN)) C (=Vi)

— Propagaté/; at every step in the cycle, except the last one.
(=VeT) Vi) E (VR.V;) ((0VT) 11(=V5) E (VR.(=V))

— Propagaté/; N, unlessV;T holds, (in which case a new value is computed).
(CVINV;N)) E (VR.V;N) ((-ViT) 1 (=V;N)) E (VR.(=ViN))

In total, for k variables,7; will consist of 8k concept inclusions, each of them of constant
size.

Constructing T]\t}ﬁ’e We now translate the model descriptitfD = (I, [(c1,c}), ..., (ck, ¢},)])-
Let] = {v; = by, ..., = bi}, b; € {0,1}. To encode the initial condition of the model, we
introduce the concept inclusion

— Init C (D1M, ...,ND NV T N =VaTT, ..., -V, T)

WhereD; = V; if (v; = 1)e I, andD; = =V} if (v; = 0)€ I. TheV;T's are needed to ensure
the initial condition corresponds to a real model statgl{), and that onlyi; is allowed to
make a move-(V;T).

Let the pair(c;, ¢;) describe the next state behavior of the variabléhat is,

0 If C;
next;) =< 1 if C; N —¢;
{0,1} otherwise

wherec;, ¢; are Boolean expressions owg, ..., v, and{0, 1} is a non-deterministic assign-
ment, allowingy; to assume both and1 in the next state. Lef’; be the concept generated by
replacing every; in ¢; with the concep¥;, andA with M. Let C! be the concept correspond-

ing to ¢} in the same way. We introduce the following concept inclusions.

(VT C;) C3RAV;N

(ViTn=C;nCl) C 3R.V;N

The encoding of the non-deterministic assignment as a concept inclusion, has two flavors,
depending on the/peof the formulagp.

— If pis of type A, we call the terminolog)?’](}D, and introduce the inclusion:
(VT n—=C; n=Cf) C (3R.V;N M 3IR.=V,;N).

— If pis of type E, we call the terminolog{ 7, and introduce the inclusion:
(ViTn=C; M =C}) C (3R.V;N U3R.-V;N).

In total, TA%“ will consist of one conceptinit, of size 2k, and 3 concept inclusions of
constant size.

Constructing 7, Lety be the formulato be verified, written in termsiBX p, AXp,E[pV q]

or A[pVq]. Let be the formula derived fromp by peeling off all negations preceding the
outermost path quantifier, as well as the path quantifier itself. (elpV q] becomespVq]).

¥ can be one of two formulas onlyXp or [pV¢|, wherep, ¢ are Boolean combinations of
variablesy;. Let P, () be the translation g, ¢ using the corresponding concepts

— If ¢ = Xp, we introduce one concept inclusionZg :
Init CVRYVR..VR.P
———

We need a slfequence btransitions since one transition in the modé},,p is translated
into k& micro-transition in our terminology.

— If ¥ = [pV¢q] we use the auxiliary concept,, introduced for this purpose. Intuitively,
[pVq] means) releases;”. That is, ¢ must hold along an execution path, unlesap-
pears at one stage, in which casis releasedand does not have to hold any longer. We
introduce the following concept inclusionsT0.

(C,M—-P) E VR.C,
(C,MP) E VRAC,
-C, C VR.-C,
T C (=C,UQ)

The first three concept inclusions above record the behavior of the caAceptholds in

a state if and only if? has never held on the path leading to this state. The forth inclusion
guarantees that on all the ‘real’ execution states (whgféholds), if P has not appeared
until the previous state{C,) then) must hold.

In total, 7, will consist of at most 4 concept inclusions, with one of them possibly of/size
and the rest of constant sizByp , = 7, U T,/5° U T, is therefore of size linear ih.

The following proposition relates the consistency of the condeypt with respect to
Tup,, 1o the satisfaction op in the model)M p. Its proof will be given in a full version of
the paper.

Proposition 6. Let MD denote a model description for a moddl,;p, and lety be a Basic
CTL specification. Then each of the following holds.

1. If ¢ is of typeA andnot negatedthenM yp = ¢ iff 7 U T, U T, |= init consistent.
2. If pis of typeF andnot negatedthenMyp = ¢ iff 7, U 7,5, U 7, [=init consistent.
3. If ¢ is of typeA andnegatedthenMyp = ¢ iff 7, U Tj\g‘D U 7, F~init consistent.
4. If o is of typeE andnegatedthenM yp |= iff T, U T, U 7, Finit consistent.

3.1 AnExample

We illustrate our method by an example. Consider the model description
MD = (I, [{v1 Az, v3), (-v2,v1 A =v1), (-1, v1)])

overV = {v1,v9,v3} with I = {v; = 0,v9 = 1,v3 = 0}. Figure 1 draws the states and
transitions of the Kripke structur&l,;p described byl/ D. Let the formula to be verified be

Fig. 1. A Kripke structure forMD

v = AG(—w; V —v9 V —w3). Note thatM p = ¢, as can be seen in Figure 1, since the state
(1,1,1) can never be reached from the initial state. The terminolBgy, derived fromM D
and e will use the primitive concept§Vy, Vo, Vs, VIN, Vo N, Vs N, ViT, Vo1, V3T'} and the
primitive role R. By the construction given in section 3, the set of concept inclusions will be
the following.

The Construction of 7,

— Concept inclusions ensuring control over the turn to make a move
T C(VRVL,T) —-WTC (VR.-VLT)
VoT T (YRV3T) =VoT T (VR.-V5T)
VsT C (VRWT) —-V3T C (VR.-VT)

— Concept inclusions to propagate the value¥of

(~VaT)NMWA) T (YRVD) ((-VAT) M (=) C (VR.(<1A))
(~V3T)MV2) T (VRV2) ((~V3T) M (<V2)) T (VR.(~12))
(=VBT)1V5) E (VR.V3) ((=V3T) M (=V3)) E (VR.(-V3))
— Concept inclusions to propagate the value¥ gy
((ViT)MVAN) E (YRVAN) ((-WAT) 1 (=ViN)) £ (YR.(-ViN))
(<VaT)MVaN) C (YRVeN) ((~VaT) 1 (<VeN)) C (YR.(<VaN))
(~V3T)MV3N) E (YRV5N) ((~VaT) 1 (<V5N)) E (YR.(<V3N))
— Concept inclusions to movg equal toV; N whenevel/; T holds

(ATn VlN) CWV (ATn (—|V1N)) C (—|V1)
WTNVN)CV, (MWT'T(=VaN)) E (=V2)
WNTNVaN)C Vs (ViTT(=V3N)) E (—V3)

The Construction of T]\%e We need to determine thigpe of ¢. Note thatAG(p) =
Alfalse Vp|, thuse can be written agp = A[false V(—v; V —wa V —w3)]. The type of
¢ is thenA. We proceed to build}:

— The initial condition
INIT C (ﬁvl Vo=V VAT M1 =VoT M ﬁV3T)

— Computation ofi;

(WMTnVvinV,) E(3R.(=ViIN))

W1 (—\(Vi M V2>) M Vg) C (HvaN)

(T 1 (=(Vi M V) M (=V3)) C ((3R.V1N) M (3R.(-V1N)))
— Computation ofi,

(VoT M V) E ((3R.VoN) M (3R.(-VaN)))

(2T 1 (=V2)) E (3R.(=VaN))
— Computation ofi’;

(VTN V) C (3RV3N) (T 1 (-W1)) £ (3R.(-V3N))

The Construction of 7., Sincey = A[false V(—v1 V —wy V —w3)], then according to the
translation in section 3, we need to introduce a concgptin order to record the behavior of
L (the translation ofalse. However, the behavior of cannot change along the execution
path, and we get thatC,, is always false. Thus we can omit the concéptaltogether, and
add only the concept inclusioii T T (=V; U =V, U —V3).

By Proposition 6 we get that/y;p = ¢ if and only if 7,U T, U 7, = Init consistent.

4 Summary

In this paper we have shown that model checking the basic modalities of CTL can be per-
formed using DL reasoning. First experiments using the DL reasoner “Racer” [7] were con-
ducted, with reassuring results. In the future, we plan to test our method on real models from
the hardware industry. Several other related directions seem interesting for further investiga-
tion. Firstly, it seems possible, using additional calls to “Racer”, to handle full CTL model
checking. Secondly, we are interested in implementing symbolic model checking algorithms
in ALC and applying these different model checking approaches to available test beds.

Acknowledgements

The authors gratefully acknowledge the support for this result provided by Nortel networks
Ltd. and by NSERC Canada.

References

1. S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking at |IBlgkmal Methods in System
Design 22(2):101-108, 2003.
2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bddSADAS’99 1999.
3. R. Bryant. Graph-based algorithms for boolean function manipulatidm. IEEE Transactions on Comput-
ers, volume c-35 no. 8.
4. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching time temporal
logic. InProc. Workshop on Logics of ProgramNCS 131, pages 52—-71. Springer-Verlag, 1981.
5. E. M. Clarke, O. Grumberg, and D. Pelddodel CheckingThe MIT Press, 2000.
6. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi. Benefits of bounded
model checking at an industrial setting. @A\V’01, july 2001.
7. V. Haarslev and R. Moller. Racer system description. International Joint Conference on Automated
Reasoning (IJCAR’2001yolume 2083.
8. |. Horrocks. The FaCT system. pages 307-312, 1998.
9. I. Horrocks and U. Sattler. Decidability S5fHZ Q with complex role inclusion axiomgirtificial Intelligence
160(1-2):79-104, Dec. 2004.
10. K. McMillan. Symbolic model checking, 1993.
11. K. Yorayv, S. Katz, and R. Kiper. Reproducing synchronization bugs with model checkil@HARME
2001.

