
Optimizations for Answering Conjunctive ABox
Queries: First Results

Evren Sirin and Bijan Parsia
Maryland Information and Network Dynamics Lab,

8400 Baltimore Avenue, College Park, MD, 20740 USA
evren@cs.umd.edu , bparsia@isr.umd.edu

1 Introduction

Conjunctive query answering is an important task for many applications on Semantic
Web. It is important to efficiently answer queries over knowledge bases with large
ABoxes. Although answering conjunctive queries has been studied from a theoretical
point of view, until very recently, there was no reasoner supporting such function-
ality. As a result, there is not enough implementation experience and optimization
techniques developed far answering conjunctive queries.

In this paper, we address the problem of answering conjunctive ABox queries
efficiently without compromising soundness and completeness. Our focus is on an-
swering queries asked against a very large ABox. We consider queries with only
distinguished variables. We focus on the case of distinguished variables because such
queries can be answered more efficiently and such queries occur more frequently in
realistic scenarios.

We start with the discussion of answering atomic ABox queries and then describe
a sound and complete conjunctive query answering algorithm. We then present op-
timization methods to improve the query evaluation analogous to the optimization
methods developed and studied in the context of relational databases. We discuss how
the ordering of query evaluation can affect performance, describe some simple yet ef-
fective metrics of evaluating the cost of a given ordering and present some heuristics
to find (near-)optimal orderings. In the end, we show that the cost model we described
provides a sufficiently accurate approximation to the actual query answering time.

2 Answering Atomic ABox Queries

Retrieving Instances The ground queryC(a), so-calledinstance check, is answered
by adding the negated statement¬C(a) to the ABox and checking for (in)consistency.

Pseudo model merging technique [2] can be used to test if the pseudo-model of the
individual can be merged with pseudo-model of the negated concept¬C to detect
obvious non-instances without doing a consistency test.

The naive way to answer the unground atomic queryC(x), so-calledinstance re-
trieval, is to iterate over all the individuals in the ABox and do a consistency check
when the above methods fail to detect an obvious instance or non-instance. Generally,
most of the remaining individuals are non-instances and would not cause an incon-
sistency when the negated statement is added to the KB.Binary instance retrieval
technique presented in [1] exploits this characteristic and combines many instance
checks in one ABox consistency test. If there is no inconsistency all candidates are
proven to be non-instances, otherwise the method splits the set of candidates into two
sets and continues.

The effectiveness of binary instance retrieval is maximized if obvious instances
are found upfront and not put into the candidate list. Model merging technique can be
used to detectobvious instancesby caching dependency set information in the pseudo
models. Model merging technique checks for possible interactions between models
but finding a clash between models does not mean these models are not mergable
because the clash might depend on a non-deterministic choice in tableau completion.
There might be other completions of the ABox without the clash. Using the cached
dependency set information in pseudo models distinguish a deterministic clash form
others and identifies where the modelscannotbe combined in any possible comple-
tion meaning that the the individual is necessarily an instance of the concept.

One case where finding obvious instances fails is the case ofdefined concepts.
Suppose a conceptC is defined asC ≡ D u ∃p.A. Any instance ofD that is related
to anA instance with ap role is also an instance ofC. Unfortunately, above methods
would fail to detect such a case. If we are trying to find the instances of a defined
concept then breaking up the concept description and applying the above method
would help us to find an instance without doing a consistency check. This technique
has proved to be very effective in our experiments.

Retrieving Role Fillers In OWL-DL, the role constructors are much less expres-
sive compared to concept constructors. Therefore, verifyingp(a, b) holds only if in
the original ABox it is asserted thata andb is related byp or one of its subroles.
The interactions between the role hierarchy and number restrictions invalidate this
assumption, e.g. a super role assertion combined with cardinality restrictions may
cause the relation to hold. Transitive roles complicate the situation even more, now
a path between individuals is enough for the relation to hold. Having nominals in
the KB completely makes things even more complicated as nominals might relate
individuals from disconnected parts of the ABox.

Even if asserted facts in the ABox does not help to find identify all the role asser-
tions between individuals, the completion graph generated for the ABox consistency
test can be used to find obvious relations and non-relations. There might be a rela-

tion between disconnected individuals only if such a relation occurs in every model.
This suggests by examining the completion graph we can still detect non-relations
because if two individuals are disconnected in a completion graph then there is at
least one model they are not related and the entailment does not hold. The details of
this approach can be found in [4] where we have described this technique in detail for
detecting non-subsumptions between concepts.

After finding all obvious relations and non-relations, one might still be left with
some possible candidates that might or might not be related. At this point, we can
reduce the queryp(x, a) (resp. p(a, x)) to an instance retrieval query for concept
∃p.{a} (resp.∃p−.{a}). If both arguments in the query are unground as inp(x, y),
then we first need to generate all candidates forx and then use the above techniques
to find correspondingy values.

3 Answering Conjunctive Queries

In this section, we consider answering arbitrary conjunctive queries. W.l.o.g. we
assume the query graph is connected. For queries with disconnected components,
we can answer each component separately and then take the Cartesian product of
generated solutions.

3.1 Query Answering Algorithm

The pseudo-code of the conjunctive query answering algorithm is given in Figure 1.
The algorithm simply iterates through all the atoms in the query and either generates
bindings for a variable or tests if the previous bindings satisfy the query atom. Gen-
erating bindings are done by invoking the instance retrieval functionretrieve which
in turn might perform several consistency checks as described earlier. Theoretically,
testing the satisfaction of a query atom might also require a consistency check. How-
ever, as explained in the previous section, most of these tests can be answered without
doing a consistency test. Especially, the retrieval operations regarding the role asser-
tions, e.g.retrieve(∃p.{u}), do not typically require any consistency check.

Initially the algorithm is invoked byAnswerQuery(K, A, ∅, ∅) whereA is an
ordering of the atoms in the query. The correctness of this algorithm is quite clear as
the satisfaction of every binding is reduced to KB entailment. Thus, this is a sound
and complete procedure for answering conjunctive queries.

The efficiency of this algorithm depends very much on the order query atoms
are processed. For example, in the queryC(x) ∧ p(x, y) ∧ D(y), supposeC has
100 instances, each instance has onep value andD has 10.000 instances. The or-
dering[C(x), p(x, y), D(y)] would be much more efficient compared to the ordering
[D(x), p(x, y), C(y)]. We would do one instance retrieval operation to get 100 in-
stances, find the correspondingp values and test whether these areD instances. The

function AnswerQuery(K, A, B, Sol)
input K is the input KB,A is a list of query atoms,B is the binding

built so far,Sol is the set of all bindings that satisfy the query

if A = [] then return Sol ∪ {B}
Let a = first(A) andR = rest(A)
Substitute the variables ina based on the bindings inB
if a = C(v) andK |= C(v) then return AnswerQuery(K, R, B, Sol)
if a = C(x) then

for eachv ∈ retrieve(C) do
Let Sol = AnswerQuery(R,B ∪ {x← v}, Sol)

if a = p(v , u) andK |= p(v , u) then return AnswerQuery(K, R, B, Sol)
if a = p(x, v) (resp.p(v , x)) then

for eachu ∈ retrieve(∃p.{v}) (resp.u ∈ retrieve(∃p−.{v})) do
Let Sol = AnswerQuery(K, R, B ∪ {x← u}, Sol)

if a = p(x, y) then
for eachv ∈ retrieve(∃p.>) do

for eachu retrieve(∃p.{v}) do
Let Sol = AnswerQuery(R,B ∪ {x← u} ∪ {y ← u}, Sol)

return Sol

Figure 1: Pseudo-code for the conjunctive query answering algorithm

second ordering, on the other hand, requires us to iterate over 10.000 individuals and
check for ap− value that does not exists for mostd instances.

3.2 Cost-based Query Reordering

There are several important challenges to finding an optimal query reordering. In
query optimization for relational databases, the main objective is to find an optimal
join order and generally the bottleneck is reading data from disk. In a DL reasoner,
the most costly operation is consistency checking so we should try to minimize the
number of consistency checks performed.

There are two parameters that will help us to estimate the cost of answering a
query. First we need to estimate how costly an atomic query is, e.g. for an instance
retrieval query, estimate how long it will take to find all the instances, and then esti-
mate the size of results, e.g. how many instances a concept has. These two parameters
are interdependent to some degree. For example, ifC has100.000 instances andD
has only10 instances, retrievingC instances can be more costly. However, this is
not always true because all the100.000 individuals might be considered as possible
D instances (if the methods described in Section 2 fail) and force us to do expensive
consistency tests. For this reason, there is no easy way of estimating these parame-
ters that would work for different ontologies. In the implementation section, we will
briefly describe some preliminary methods we devised to compute these parameters.

For now, we will assume that for each atomic query type there are cost functions
Cir(C), Cic(C), Crr(r) andCrc(r) that returns the cost of instance retrieval for concept

C, the cost of a single instance checking for conceptC, the cost of role filler retrieval
for role r and the cost of verifying a role filler for roler, respectively. Note that, we
are assuming the cost of instance checking for a concept is same for all the different
individuals in the KB. This assumption may not be very accurate but considering that
we will typically deal with large number of individuals, it is not practical to compute
estimates for every individual.

In addition, we need to estimate the number of instances of a concept and how
many role fillers exist for a given individual and a role. Assuming the size estimates
are computed at a preprocessing step, we will use|C| to denote the number ofC
instances and|p| to denote the total number of tuples inp relation. The average
number ofp fillers for an individual is denoted byavg(p) and computed as|p|/|∃p.>|.

Given the parameters for the cost computation and the size estimates, algorithm
described in Figure 2 computes an estimate for the cost of query answering for a
certain ordering.

Cost estimation is linear in the number of query atoms, provided that size esti-
mates are already computed. However, there are exponentially many orderings to
try so an exhaustive search would still be very expensive. Again, as in relational
databases, it is possible to use some heuristics to prune the search space. The heuris-
tics we use are: 1) For each atom at positioni > 1 in the ordered list, there should be
at least one atom at positionj < i s.t. two atoms share at least one variable. 2) Atoms
of the formp(x, v) andp(v , x) should appear before other atoms involvingx. 3) An
atom of the formC(x) should come immediately after the first atom that containsx.

First rule is similar to the general query optimization rule that cross products
should be avoided. Second rule makes use of the fact that generally an individual
is related to limited number of other individuals. And the last rule is to discard the
orderings such as[C(x), p(x, y), q(y, z), D(y)]. This ordering is not desirable because
if p(x, y) finds a binding fory such thatD(y) is not satisfied, we would unnecessarily
retrieve theq fillers before realizing the failure.

function EstimateCost(A,B)

if A = [] then return 1
Let a = first(A) andR = rest(A)
if a = C(x) andx ∈ B then return Cic(C) + EstimateCost(R,B)
if a = C(x) andx 6∈ B then return Cir(C) + |C| ∗ EstimateCost(R,B ∪ {x})
if a = p(x, y) and{x, y} ⊆ B then return Crc(p) + EstimateCost(R,B)
if a = p(x, y) and{x, y} ∩B = {x} then return Crr(p) + avg(p) ∗ EstimateCost(R,B ∪ {y})
if a = p(x, y) and{x, y} ∩B = {y} then return Crr(p) + avg(p−) ∗ EstimateCost(R,B ∪ {x})
if a = p(x, y) and{x, y} ∩B = ∅ then return
Cir(∃p.>) + |p| ∗ Crr(p) ∗ EstimateCost(R,B ∪ {x, y})

Figure 2: Pseudo-code for estimating the cost of an ordering

3.3 Query Simplification

In some cases there might be redundant axioms in a query that can be safely removed
from the query without affecting the results. For example, ifC v D then the query
C(x) ∧ D(x) is logically equivalent to queryC(x). Such redundant atoms do not
cause to make additional consistency tests (methods described in Section 2 are quite
effective for these cases) but even repeating computationally cheap operations many
times causes a noticeable overhead in the end.

The idea behind query simplification is to discover redundant atoms with cheap
concept satisfiability tests. But performing too many concept satisfiability tests for
simplifications that do not occur frequently in queries is wasteful. For example, sim-
plification based on subsumption of named concepts and roles are nearly never ap-
plicable in real world queries or in the benchmarking problems for query answering.
We have pinpointed the following two common query simplifications:

• Simplify C(x) ∧ p(x, y) ∧D(y) to
– p(x, y) ∧D(y) if ∃p.> v C (Domain simplification)

– C(x) ∧ p(x, y) if C v ∀p.D (Range simplification)

Note that range simplification can also be done even if one of the atomsC(x) or
D(y) is missing since we can simply insert>(x) or >(y) as an additional atom. In
such cases global domain/range restrictions of properties can be directly used and
simplification can be done with no subsumption test.

4 Implementation and Experimental Evaluation

The optimization techniques described in this paper have been fully implemented
in OWL-DL reasoner Pellet. Right now, size estimation for concepts is done by
inspecting the completion graph generated by the initial ABox consistency test. Due
to space constraints we will only outline the size estimation algorithm w.r.t concepts
but the general idea is same for roles, too.

The size estimation algorithm iterates over a random sample of individuals in
the ABox and for each concept tries to determine if this individual is an instance of
the given concept without doing a consistency check. The techniques described in
Section 2 might returntrue , false , or unknown . A result ofunknown means
that the individual may or may not be an instance but the reasoner cannot conclude
without a consistency test. In such cases, we estimate that with probabilityκ such
individuals would indeed be instances of that concept. Thus, the total estimate for a
concept is|C| = σ ∗ (|Cknown| + κ ∗ |Cunknown|) whereσ is the sampling ratio. We
also use|Cunknown| to have an estimate aboutCir(C) andCic(C). If |Cunknown| = 0
then it means that all the individuals can be retrieved without any consistency test.
As |Cunknown| increasesCir(C) would typically increase. Of course there are other
factors affectingCir(C) but these are not yet considered in our implementation.

In our experiments, we first tested the accuracy of the size estimation. For this
purpose, have used the data from Lehigh University Benchmark (LUBM) [5] and
ontologies Vicodi and Semintec from [3]. The following tables show the number of
individuals in each dataset, the time spent for estimating the size of all the concepts in
each dataset, and the mean normalized error over all concepts in the given ontology.
For example, an error of3.6 means that if the actual number of instances for a concept
was200, the algorithm returned200±7.2. We have changed the sampling percentage
from %20 to %100.

Sampling Percentage
Dataset Size %20 %40 %60 %80 %100
LUBM 55664 3.6 6.7 9.7 11.8 15.0
Semintec 17941 0.9 1.6 2.4 3.2 3.9
Vicodi 16942 1.8 3.4 5.1 6.9 8.6

(a) Time spent in seconds

Sampling Percentage
Dataset %20 %40 %60 %80 %100
LUBM 0.7 0.3 0.6 0.4 0.0
Semintec 6.4 4.4 4.9 3.7 0.0
Vicodi 18.5 11.3 7.6 4.7 0.9

(b) The mean normalized error

As expected, error in size estimation decreases as we inspect more and more indi-
viduals. More interestingly, for these ontologies, sizes can be computed with perfect
accuracy if all the individuals are inspected. However, computation time also in-
creases. Looking at these results we decided to use a sampling ratio of%20 which
yields fairly accurate results with reasonable computation time.

Next, we looked at the effectiveness of the cost model defined in this paper. Query
ordering has a significant effect especially when there are many atoms in the query.
Therefore, we used three conjunctive queries, Q2 (6 atoms), Q8 (5 atoms), Q9 (6
atoms), from LUBM and Q2 (5 atoms) from Semintec and Q2 (3 atoms) from Vi-
codi. We generated all the possible query orderings, pruned the orderings based on
the aforementioned heuristics and computed the time to answer each query with that
ordering. Figure 3 shows the scatter plot of different query orderings where X axis is
the estimated cost and Y axis is the actual time it took to generate the answers. The
correlation factor for each query is different ranging from low (∼ 0.5) to perfect score
(= 1). More importantly, in each case, the lowest-cost query ordering found by the
estimation algorithm is very close to the optimal value.

Next table shows these results in more detail and displays query evaluation time
(in milliseconds) for the minimum cost ordering, the minimum time ordering, the

Figure 3:The correlation between the cost estimates and the actual query evaluation time. Each data
point represents a different ordering of the corresponding query. Note that, due to simplification and
heuristic pruning, number of data points is less than all possible orderings.

maximum time ordering and the median of all orderings (still excluding the heuristi-
cally pruned orderings). Although the minimum cost ordering does not always take
minimum time, we can still see that the improvement in query evaluation time com-
pared to an arbitrary ordering can be more than one order of magnitude.

LUBM Q2 LUBM Q8 LUBM Q9 Semintec Vicodi
Min Cost Ordering 20 320 227 100 81
Min Time Ordering 10 285 164 100 81
Median 1183 341 311 135 255
Max Time Ordering 1233 348 400 140 2123

5 Conclusion and Discussion

In this paper, we have described several different techniques to improve conjunctive
query answering for DL reasoners. The query answering algorithm and the optimiza-
tion techniques we describe do not compromise the soundness and completeness of
the reasoner. Furthermore, the additional memory requirement is minimal (linear in
the size of TBox but independent of the size of ABox). Our preliminary experimental
evaluation shows that the preprocessing time spent for cost estimation is quite reason-
able and Pellet can very efficiently answer conjunctive queries over large ABoxes.

There are many open issues left for future work. We are investigating how to
estimate the atomic query costs more accurately. Secondly, it is not clear to what ex-
tent the effectiveness of our techniques depend on the knowledge base and the query.
For our experiments, we picked benchmark datasets that were used in recent publi-
cations and considered to be realistic. We are now looking into the evaluation of our
techniques on datasets with different characteristics, typically with more complicated
TBox components.

References

[1] V. Haarslev and R. M̈oller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents: First results. InProc. KR 2004, 2004.

[2] V. Haarslev, R. M̈oller, and A.Y. Turhan. Exploiting pseudo models for TBox and
ABox reasoning in expressive description logics. InIJCAR 2001, Italy, 2001.

[3] B. Motik and U. Sattler. Practical DL reasoning over large ABoxes with KAON2.
In Proc. KR-2006, 2006.

[4] Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to water: Op-
timizing description logic reasoning for nominals. InProc. KR-2006, 2006.

[5] Z. Pan Y. Guo and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems.Journal of Web Semantics, 3(2):158–182, 2005.

