
Description logic reasoning using the PTTP
approach

Zsolt Nagy, Gergely Lukácsy, Péter Szeredi
Budapest University of Technology and Economics

Department of Computer Science and Information Theory
{zsnagy, lukacsy, szeredi}@cs.bme.hu

Abstract

The goal of this paper is to present how the Prolog Technology The-
orem Proving (PTTP) approach can be used for ABox-reasoning. This
work presents an inference algorithm over the language ALC, and eval-
uates its performance highlighting the advantages and drawbacks of this
method.

1 Introduction and motivation

Work reported in this paper is being carried out in the Sintagma1 project, which
aims at the development of a knowledge management tool-set for the integra-
tion of heterogenous information sources. This is an extension of the Silk2 [2]
technology, for retrieving information spanning over several data sources stored
in the model warehouse of the system. The model warehouse contains UML
models as well as models given using description logics (DL) [1].

Currently we are working on extending the capabilities of the Sintagma
tool-set by designing and implementing description logic inference methods used
for querying information sources containing large amounts of data. The first step
of this research process resulted in a resolution-based transformation of ABox-
reasoning problems to Prolog [10]. This algorithm is able to answer instance-
check and instance-retrieval queries over the DL language ALC and an empty
TBox. In this paper, we examine how ABox-reasoning services can be provided
with respect to a non-empty TBox using Prolog technology.

This paper is structured as follows: Section 2 presents related work on ABox-
inference in description logics. Section 3 details the method how ABox-reasoning

1Semantic INtegration Technology Applied in Grid-based Model-driven Architectures
2Semantic Integration via Logic and Knowledge



is performed in our framework. Section 4 evaluates the performance of our
technique, highlighting its strong points and weaknesses. Finally, Section 5
concludes this work and addresses future research challenges.

2 Related Work

Traditional tableau-based Description Logic reasoners such Racer are slow
when performing ABox-reasoning on large amounts of instances [4]. The work
[7] describes a resolution-based inference algorithm, which is not as sensitive to
the increase of the ABox size as a tableau-based method. The system Kaon2
[8] implements this method and provides reasoning services over the description
logic language SHIQ.

The work [5] discusses how a first order theorem prover such as Vampire
can be modified and optimized for reasoning over description logic knowledge
bases.

Paper [3] describes a direct transformation ofALC description logic axioms to
Horn-clauses. Although [3] restricts the expressive power of ALC by disallowing
constructs that result in non-Horn clauses, the main advantage of the approach
is that the transformed clauses can be supplemented with other non-DL Horn-
clauses.

Both the modified Vampire and Kaon2 aim to provide inference services
over knowledge bases defined using the expressive power of the DL language in
question plus the expressive power of a restricted fragment of first order logic.
In case of Kaon2, the restrictions involving FOL components are such that the
inference algorithm remains to be a decision procedure. It has been proved in
[9] that query-answering over a knowledge base containing SHOIN axioms and
so-called DL-safe rules is decidable. However in practice, this decision procedure
has been shown to be highly inefficient due to don’t know nondeterminism (back-
track search). For efficiency reasons, only a subset of the SHOIN description
logic language is used in Kaon2.

In our previous work [10], we have provided a possible resolution-based al-
ternative to ABox reasoning over the language ALC with respect to an empty
TBox. In that approach, a query-plan was derived before the first ABox-access
and the query-plan was executed using Prolog. This solution could be viewed
as a two-phase proof of an ABox-query: first, the ABox-independent part of
the proof is constructed, resulting in the query-plan as a Prolog program, and
second, the query-plan is executed on the ABox.

Our current work deals with ALC ABox-reasoning in the presence of non-
empty TBoxes, with some restrictions on the form of the TBox-axioms. How-
ever, we do allow full negation and disjunction on each side of the DL axioms,
generalizing the transformation of [3]. In contrast with the earlier approach, we
delegate the whole reasoning process to Prolog, building on the Prolog Technology



Theorem Proving (PTTP) approach [13].
Paper [6] introduces a fragment of the SHIQ language that can be trans-

formed into Horn-clauses. The Horn-SHIQ language presented there allows
more concept constructors than our restricted ALC framework. On the other
hand, our approach poses less restrictions on use of disjunctions.

3 Transforming DL axioms to Prolog clauses

In this section, we describe the transformation of ALC TBox-axioms into ex-
ecutable Horn-clauses. The aim of this transformation is to provide concept-
instance check and concept-instance retrieval services over an ALC knowledge-
base containing both ABox- and TBox-axioms.

In order to avoid the appearance of Skolem-functions in the transformed
Horn-clauses, some restrictions are posed on the DL-axioms. We exclude sub-
sumption axioms C v D where ∀R.E is a subconcept of the negational normal
form of C or ∃R.E is a subconcept of the negational normal form of D. Although
the method described below can cope with ABox-inference on some TBoxes con-
taining such axioms, allowing them in general may lead to non-termination when
transformed to Prolog. The problem of termination for transformed clauses con-
taining Skolem-functions may be addressed by reverting to a two-phase trans-
formation process (as in [10]) and using ordered resolution [7] in the first phase,
or by applying a proper meta-level cycle-detection technique.

The goal of this section is to show that an arbitrary DL knowledge-base
obeying the above restriction can be transformed into a set of executable Prolog-
clauses. There are three types of clauses: the TBox-clauses, ABox-facts and the
clauses belonging to the instance-check and instance-retrieval queries. Currently,
we use an interpreter written in Prolog for executing these Prolog clauses, in
order to ease the development process and experimentation. However, it is fairly
easy to transform these clauses further to code directly executable on a Prolog
system.

Description of the transformation. Let an ABox A and a TBox T be
given, where T consists of axioms C v D, where C and D are in negational
normal form, and C does not contain subconcepts of form ∀R.E, while D does
not have a subconcept ∃R.E. The axioms of the TBox are transformed into
Prolog clauses using the transformation steps below.

1. Based on the well-known mapping described e.g. in [1], we transform the
description logic axioms into first order logic formulas.

2. The formulas corresponding to the TBox-axioms are then transformed into
clausal form [12]. According to the properties of clause transformation, the
generated clauses have the following properties:



• clauses are disjunctions of possibly negated literals;

• all variables in the clauses are universally quantified.

Due to our restrictions posed, no Skolem functions appear in the clausal
form of the concepts. The general form of a transformed TBox-clause is
thus the following:

∨
m

Cm(xim) ∨∨
n

¬Dn(xjn) ∨∨
p

¬Rp(xkp , xlp), (1)

where the literals Cm and Dn correspond to atomic concepts, and literals
Rp correspond to role names, while x-es denote variables. Note that while
both positive and negative unary literals can appear in the clauses, binary
literals are only negative. Positive binary literals do not appear in any
clause, since this would correspond to a role negation in the corresponding
DL axiom.

3. Each TBox-clause
L1 ∨ L2 ∨ . . . ∨ Ln (2)

is transformed into n clauses of the following form (i = 1, . . . , n)

Li ← Lneg
1 ∧ Lneg

2 ∧ . . . ∧ Lneg
i−1 ∧ Lneg

i+1 ∧ . . . ∧ Lneg
n , (3)

where Li is the head of the clause, and all other literals are body literals.
Lneg is equal to ¬L if L is a positive literal, and Lneg = T if L = ¬T . A
clause of form (3) is called a contrapositive of the clause (2).

Execution in Prolog. The resulting contrapositives are then transformed to
Prolog syntax and are executed by our interpreter. The transformation and
interpretation techniques as well as the usage of contrapositives have been bor-
rowed from PTTP (Prolog Technology Theorem Prover) [13]. We briefly describe
how we handle these issues:

• Occurence of positive and negative literals : To transform an arbitrary
clause to Prolog format we introduce new predicate names. For each
concept-name C (i.e. one of Cm or Dn of Formula (1)) we add a new
predicate name nonC, and replace all occurrences of ¬C(X) by nonC(X)
both in the head and in the body. The link between the separate predicates
C and nonC is created by ancestor resolution, see below.

• Ancestor resolution: open predicate calls3 are collected in an ancestor list.
If the ancestor list contains a literal which can be unified with the first

3I.e. calls which were entered or re-entered, but have not been exited yet, according to the
Procedure-Box model of Prolog execution. [11]



literal of the goal, then the call corresponding to the goal literal succeeds.
Program execution is divided into two branches: one reflecting the mod-
ifications caused by the ancestor resolution step, and one without using
ancestor resolution.

• Loop elimination: if the first literal of the goal can be found in the ancestor
list, we stop the given branch with a failure. The term ’can be found’
is interpreted by the == Prolog built-in predicate, which succeeds if its
operands are identical.

Prolog execution uses SLD-resolution [11], which is a linear resolution strat-
egy always resolving the first literal of the goal with the head of a corresponding
definite-clause in the Prolog-program. When all n contrapositives of a clause (2)
are available, the goal can be resolved with any literal Li of the clause. Thus,
any linear refutation can be simulated in Prolog at the expense of introducing
multiple variants of the clauses.

Soundness, completeness, termination. Soundness and completeness of
this approach is based on the properties of the PTTP technique [13], since
PTTP is a sound and complete first order theorem prover. A DL ABox-inference
problem is handled with these theorem-proving techniques by resolving the set of
produced TBox-, ABox- and query-clauses in a PTTP framework using Prolog.

Regarding termination, consider the following example: if we transform the
axiom C v ∀R.C4 into clausal form, we get the clause ¬C(x)∨¬R(x, y)∨C(y).
Executing an instance-retrieval query on concept C may lead to an infinite loop
if the literals in the contrapositives are not ordered properly. Whenever we call
the contrapositive

C(Y) :- C(X), R(X, Y).

we introduce a new variable inside the literal C, which is not detected by the loop
elimination technique. This example shows that without further provisions, the
termination of the Prolog program is not guaranteed.

Conjecture: The execution of the resulting clauses of the above described
transformation always terminates if all role literals in the body of the clauses
are moved before concept literals. This rearrangement ensures that at the time
of a concept-predicate call the variable in the call either (a) occurs in a role
literal previously called or (b) is equal to the head-argument of the clause. Role
literals can only be resolved with ABox-facts, so all variables occurring in a role
literal are unified with ABox-instances. In case (a), the variable in the concept-
predicate call is instantiated due to the previous role-predicate call. In case
(b), the head-argument of the clause is either instantiated, or is identical to an

4Suppose that C is an atomic concept.



older head argument. By induction, this means that any uninstantiated concept
argument must be identical to the parameter of the instance-retrieval query.
The number of clauses and instances is finite and only one variable, namely the
parameter of the query may occur in a predicate call. Therefore, for a set of
clauses, only a finite number of different predicate calls is possible. Since loop
elimination ensures that the same predicate call never executes twice, execution
always terminates.

Optimizations. Note that not all contrapositives of the clauses are needed for
acquiring a complete decision procedure. Contrapositives containing a role literal
in the head can be omitted, since they cannot be called within the execution
of an instance-check or an instance-retrieval query. Although these clauses are
never called by the program, the size of the program gets smaller, reducing
administration overhead.

It is often the case that a concept predicate is called with a ground argument.
In the presence of disjunctions, such a Prolog goal could be executed in multiple
ways. Obviously, once the goal exited successfully, there is no point in exploring
alternative branches within this goal. Therefore we modified the interpreter to
perform a Prolog cut operation (!) after a successful exit from a ground goal.
This optimization resulted in a measurable performance boost.

Composite queries. The outcome of the transformation is a set of Prolog-
clauses, which are usable for instance-check or instance-retrieval queries on pos-
sibly negated atomic concepts. For allowing ABox-inference queries containing
a composite query-concept Q, an atomic concept-name A has to be introduced
for the query-concept with the axiom A ≡ Q. The equivalence-axiom A ≡ Q
can be written in form A v Q and Q v A. From these two subsumption axioms,
only the second one has to be added to the TBox for answering the ABox query.
This axiom is transformed to Prolog clauses in the same way as the other axioms
in the TBox.

Note that directly transforming the composite query-concept Q to a Prolog
query is not sufficient, because all the contrapositives of the query-clause Q v A
may be needed for handling case-analysis. This technique is an alternative for
passing the parameter of the instance-check and the instance-retrieval queries
when handling case-analysis, as detailed in [10].

4 Performance evaluation

We have carried out the preliminary performance-evaluation of our approach
and compared it with the available state-of-the-art description logic reasoners,
such as Racer and Kaon2. Since the capabilities and usage of these systems



are different, the goal of this comparison is to analyze the behavior of these
approaches for different reasoning tasks and not to declare a winner among these
systems. It is important to note that these inference engines provide reasoning
services over different description logic languages, so the comparison has to be
evaluated with care.

The tests were run on an AMD Athlon CPU running at 1.81GHz with 1GB
RAM and Windows XP operating system with Service Pack 2. After a test
had been performed, Racer5, Kaon26 and our Prolog interpreter7 were always
reinitialized.

We show the results for two instance-retrieval test cases. The first test (the
first five-line block of Table 1) summarizes the results of a test-case over a
TBox containing TBox-axioms with no disjunctions. The second test was run
on a TBox containing complex TBox-axioms with disjunctions and composite
concepts. The last line belongs to the second test case indicating a special case
explained below. The ABox of the tests was randomly generated using a Prolog
program.

KB # #role #concept Racer Kaon2 SICStus
characteristics instances assertions assertions
simple 500 1269 337 1.1s 0.203s 0.000s
TBox 1000 2499 688 3.1s 0.531s 0.000s
axioms 2000 2133 1333 13.2s 0.515s 0.016s

5000 12599 3300 91.4s 0.468s 0.016s
10000 25036 6627 >300s 0.891s 0.031s

complex 500 261 323 0.0s 0.078s 0.890s
TBox 1000 503 635 0.7s 0.375s 1.953s
axioms 2000 972 1392 1.5s 1.062s 7.875s

5000 2493 3367 7.1s 5.156s 44.265s
Special complex 5000 2493 3367 7.0s 3.579s 0.813s

Table 1: Test results

The first block shows that the resolution-based approaches are not as sensi-
tive to the increase of the size of the ABox as the tableau-based Racer, when
not many disjunctions are present8. When comparing execution times of Kaon2
and our interpreter, one should note that Kaon2 provides inference services over
a description logic language with higher expressive power.

5version 1.7.6
6version released on 8th December 2005
7running under SICStus Prolog version 3.12.2
8Note that in special cases as shown in [10], Kaon2 fails to scale.



The second test case highlights that our interpreter does not handle disjunc-
tions efficiently enough, due to the many introduced contrapositives that often
make the program explore irrelevant parts of the search space. For instance, if
we know that some TBox-axioms are not needed for answering a simple query,
the clauses belonging to the axioms not needed can be left out, reducing execu-
tion time below one second for even the ABox with size 5000. This phenomenon
is described as a special test case in the last row of Table 1. Here the ax-
ioms not needed for answering the instance-retrieval query are omitted from the
TBox. Note that for TBoxes containing less disjunctions, the execution time
was only reduced by a small constant factor when omitting irrelevant axioms.
Kaon2 seems to handle disjunctions fairly well. Although Racer was faster
than Kaon2 for the first test case, execution times increased with the overhead
of examining all the instances of larger ABoxes.

A possible reason why our approach does not handle disjunctions well enough
is that – as opposed to our previous work [10] – no preprocessing is made on
the transformed PTTP-clauses. We believe that the current approach can be
optimized by cutting the search space at compile time.

5 Conclusion and future work

This paper has described an ABox-reasoning technique for the DL languageALC
which is able to handle TBoxes obeying certain restrictions. We have written
an interpreter which executes the resolution-based proof belonging to instance-
check and instance-retrieval queries and have also evaluated the performance of
this approach, pointing out its advantages and disadvantages.

In the future, our plan is to examine how the services provided by the in-
terpreter can be included in the Prolog-program serving as the query-plan. Our
other aim is to apply optimizations guiding the Prolog execution of the refuta-
tion. By combining this approach with the approach seen in our previous work,
we believe that the performance of this reasoning technique can be largely en-
hanced. A method handling all forms of refutation involving Skolem-functions
and DL-constructs not addressed in this paper is also subject of future research.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003.

[2] Tamás Benkő, Gergely Lukácsy, Attila Fokt, Péter Szeredi, Imre
Kilián, and Péter Krauth. Information integration through rea-
soning on meta-data. In Proceedings of the Workshop “AI Moves



to IA”, IJCAI’03, Acapulco, Mexico, pages 65–77, August 2003.
http://www.dimi.uniud.it/workshop/ai2ia/cameraready/benko.pdf.

[3] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription Logic Programs: Combining Logic Programs with Description
Logics. In Proc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 48–57. ACM, 2003.

[4] V. Haarslev and R. Möller. Optimization techniques for retrieving resources
described in OWL/RDF documents: First results. In Ninth International
Conference on the Principles of Knowledge Representation and Reasoning,
KR 2004, Whistler, BC, Canada, June 2-5, pages 163–173, 2004.

[5] Ian Horrocks and Andrei Voronkov. Reasoning support for expressive on-
tology languages using a theorem prover. In FoIKS, volume 3861 of Lecture
Notes in Computer Science, pages 201–218. Springer, 2006.

[6] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reason-
ing in very expressive description logics. In Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2005), pages
466–471. International Joint Conferences on Artificial Intelligence, 2005.

[7] U. Hustadt, B. Motik, and U. Sattler. Reasoning for description logics
around SHIQ in a resolution framework. Technical Report 3-8-04/04,
FZI, Karlsruhe, Germany, June 2004.

[8] KAON2: Ontology management tool for the semantic web.
http://kaon2.semanticweb.org/.

[9] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-
DL with rules. Journal of Web Semantics: Science, Services and Agents
on the World Wide Web, 3(1):41–60, July 2005.

[10] Zsolt Nagy, Gergely Lukácsy, and Péter Szeredi. Translating description
logic queries to Prolog. In PADL, volume 3819 of Lecture Notes in Computer
Science, pages 168–182, 2006.

[11] U. Nilsson and J. Maluszynski, editors. Logic, Programming and Prolog.
John Wiley and Sons Ltd., 1990.

[12] S.J. Russel and P. Norvig, editors. Artificial intelligence: a modern ap-
proach. Prentice Hall, 1994.

[13] M. Stickel. A Prolog technology theorem prover: A new exposition and
implementation in Prolog, Technical Note 464, SRI international, 1989.


