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1 Introduction

Reasoning for expressive DLs implemented in state-of-the-art systems has high
worst case complexity. The hope/claim is, however, that these systems perform
well in “realistic” applications. In practice, this means in ontology applications.
To check the validity of this claim it is necessary to test the performance of these
systems with (the widest possible range of) ontologies derived from applications.

In addition, testing is useful in order to check the correctness of implementa-
tions. In small examples, it may be easy to check the correctness of a system’s
reasoning. However, for typical real-world examples, manual checking is not fea-
sible. In these instances, the best (perhaps the only) way to check correctness is
often by checking for consistency with the reasoning of other existing systems.

Real-world ontologies vary considerably in their size and expressivity. While
they are all valuable test cases, it is still important to understand each ontology’s
properties in order to provide efficient and relevant testing.

System developers find this particularly useful, as it helps them to identify
weaknesses in their systems and to devise and test new optimisations. Finally,
testing is also useful for the developers and users of applications as they can
use benchmarking results to determine if (the performance of) a DL reasoner is
likely to satisfy their requirements, and if so which reasoner is likely to perform
best in their application.

2 Background and Related Work

For the above mentioned reasons, there is extensive existing work on bench-
marking DL (as well as modal logic) reasoners. E.g., TANCS comparisons
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and benchmark suites [10], DL comparisons and benchmark suite [1], work
on M-SPASS [8], work on FaCT and DLP [7, 6], the OWL benchmark suite
and test results, and various test results from papers describing systems such
as FaCT++ [13], Pellet (http://www.mindswap.org/2003/pellet/), Racer [5],
KAON2 (http://kaon2.semanticweb.org/), Vampire [12], etc.

Due to the fact that relatively few (large and/or interesting) ontologies were
available, earlier tests often used artificially generated test data. The Lehigh
University Benchmark [4], for example, used a synthetic ontology and randomly
generated data to test the capabilities of knowledge base systems using specific
weightings to compare systems on characteristics of interest. Results from such
tests are, however, of doubtful relevance when gauging performance on ontolo-
gies. The popularity of OWL has meant that many more ontologies are now
available, and recent benchmarking work has focused on testing performance
with such ontologies.

One such example [11] involved benchmarking a number of reasoners against
a broad range of realistic ontologies. However, not all reasoners used in that
comparison supports OWL as an input language, so quantitative comparison of
performance would have been difficult/un-justified. From the other hand, the
DIG interface [2] is recognised as a preferred choice by application developers
and thus is implemented into a wide range of DL Reasoners.

Our work builds on these earlier efforts, taking advantage of the DIG stan-
dard to provide a generic benchmarking suite that allows the automatic quan-
titative testing and comparison of DL Reasoners on real-world examples with
relevant properties. We aim to make the testing process as autonomous as possi-
ble, taking care, for example, of (re)starting and stopping reasoners as necessary,
and the analysis of results be as flexible as possible, by allowing for arbitrary
SQL queries against the collected data. We also aim to provide, as a publicly
available resource, a library of test ontologies where each ontology has been
checked for expressivity and syntactic conformance, translated into DIG syntax
(which is much easier to work with that OWL’s RDF/XML syntax), and in-
cludes (where possible) results (such as the concept hierarchy) that can be used
for testing the correctness of reasoning systems.

3 Methodology

The system has two main functions. The first is to process ontologies and add
them to the library, and the second is to benchmark one or more reasoners using
the ontology library.

When processing ontologies, the system takes as input a list of OWL-ontology
URI’s. Before they can be used in testing, some preprocessing of these ontologies
is required. The process involves generating valuable meta-data about each
ontology, as well as converting each of the OWL-ontologies to DIG.



The meta-data is generated by code written for SWOOP [9], and provides
the details of the expressivity (i.e. the constructs present in the ontology) to-
gether with the number of classes, object properties, data properties, individ-
uals, class axioms, property axioms and individual axioms present. This is
invaluable information in helping to understand the meaning of any results ob-
tained through testing, in finding, for example, strengths and weaknesses of
particular systems. The OWL-to-DIG conversion uses the OWL-API (http:
//sourceforge.net/projects/owlapi). This process is far from trivial as
OWL’s RDF syntax is extremely complex, and it is easy to (inadvertently) cause
ontologies to be outside of OWL DL, e.g., by simply forgetting to explicitly type
every object. Moreover, the DIG interface supports only the most basic of data
types, such as Strings and Integers. The result is that many of the available
OWL Ontologies we found could not be successfully converted to DIG.

Local copies are stored of both the OWL Ontology and the DIG version.
This is not only for efficiency during the testing, but also to ensure consistency
(as online ontologies rarely remain static). Moreover, this allows us to fix trivial
errors in the OWL ontologies so that they can be used for testing purposes. The
locations of these files, together with their properties/meta-data, are stored as
database entries for easy access and manipulation.

The main function of the benchmark suite itself is timing the classification
of each ontology by each Reasoner. To promote fairness, each Reasoner is ter-
minated and then restarted for every ontology.

A problem with trying to compare different Reasoners is that they may
perform tasks in different ways. For example, they may vary in the way in
which they perform each part of the reasoning: some may take an “eager”
approach, fully classifying the whole ontology and caching the results as soon
as it is received; others may take a “lazy” approach, only performing reasoning
tasks as required in order to answer queries. To try to get around this problem,
we use a five step test, for each ontology, that forces every reasoners to fully
classify that ontology. The steps are as follows:

1. TELL the reasoner the full ontology
2. ASK for all the concepts in the ontology
3. ASK for the satisfiability of the TOP concept
4. ASK for the satisfiability of all the concepts in the ontology
5. ASK for the ontology taxonomy (parents and children of all concepts)

Each of these individual steps are timed, providing interesting information about
when different reasoners do most their work. It is, however, the total time for
this complete (classification) test that we are most interested in.

Each test will end in one of three ways. It will either complete successfully,
fail due to lack of time or fail for some other reasons. The latter may include
failure due to lack of run-time memory, failure because the reasoner could not
parse the ontology successfully, etc.

The benchmark suite is fully automatic, dealing with most errors autonomously,



meaning that the testing can be left to run over-night or over a week-end (which
may be necessary when using a large time-out). All data is recorded in a MySQL
database, making it easy for the user to view and analyse the data in a variety
of ways.

As discussed in Section 1, in order to get a clearer indication of how DL
Reasoners perform in the real world, we aim to build a large library of OWL
ontologies from those that are publicly available. Currently, our library contains
a little over 300 OWL-RDF Ontologies, but only 172 of these could successfully
be converted to DIG. This has, however, provided us with a total of just under
72,000 classes and over 30,000 individuals in a DIG format. Only 18% of the
ontologies were at least ALC, which suggests that the majority of real-world
ontologies aren’t in fact very complex, but it also means we have a comfortable
number of “interesting” examples too.

4 Testing

Our system is currently fully automatic and runs the classification tests success-
fully through our whole library. It does not, however, at this stage verify the
correctness of each Reasoner’s answers to the queries (from steps 2-5) and how
they compare to the answers given by other Reasoners. This means that our
measure of success is, for now, merely an indication that the Reasoner received
and parsed the DIG successfully and returned a valid DIG response. This is
generally a good indication, but should only be considered a preliminary result.

We have performed some tests on our system, as it stands, and we provide
here some examples of the kinds of information that our system can produce.

FaCT++ v1.1.3, KAON2, Pellet v1.3 and RacerPro v1.8.1 are four of the
most widely used OWL/DIG reasoners, and we therefore decided to use these to
test the current capabilities of our system. The tests were performed using an
Intel Pentium-M Processor 1.60 GHz and 1Gb of main memory on Windows XP.
The time-out period was set to 10 minutes (in real time). Pellet and KAON2
are java applications, and for these tests were run with a maximum heap space
of 200Mb. RacerPro and FaCT++ were left to run on their default settings. Our
system does not try to optimise the performance of the Reasoners for particular
ontologies, as we believe this is the job of the Reasoners themselves, not the
application user.

Table 1 shows how the individual Reasoners performed firstly on all our
ontologies and then on Ontologies which have particular characteristics. Finally,
it shows their performance on OWL-Lite ontologies, which includes all those with
expressivity up to SHIF.

In order to determine which were the most “challenging” ontologies (w.r.t.
reasoning), we tried to order ontologies according to the difficulty of reasoning
with them. To do this, we used all the ontologies that were successfully classified
by at least two Reasoners and then ordered these by their average classification



Type Status FaCT++ KAON2 Pellet RacerPro

All Success 138 45 152 110
All Failed 29 124 18 62
All TimedOut 5 3 2 0
Nominals Success 7 3 9 7
Nominals Failed 4 9 3 5
Nominals TimedOut 1 0 0 0
TransRoles Success 15 9 18 13
TransRoles Failed 4 11 3 9
TransRoles TimedOut 3 2 1 0
Datatypes Success 102 12 114 75
Datatypes Failed 23 15 13 52
Datatypes TimedOut 2 0 0 0
OWL-Lite Success 33 31 33 34
OWL-Lite Failed 5 6 5 6
OWL-Lite TimedOut 2 3 2 0

Table 1: Sample of Overall Performance

Figure 1: Comparison of Reasoners on the Top 10 Most Challenging Ontologies



Ontology Expressivity nClass nIndiv URL

1 DL-Lite 27652 0 http://...logy/nciOncology.owl
2 SHF 3097 0 http://...ibrary/not-galen.owl
3 ALR+ 20526 0 http://archive.godatabase.org/
4 SHF 2749 0 http://...Ontologies/galen.owl
5 RDFS(DL) 1108 3635 http://...world-fact-book.daml
6 RDFS(DL) 1514 0 http://...logy/data/center.owl
7 ALCF(D) 87 0 http://...a/pizza/20041007.owl
8 SHIF 37 0 http://...s/DOLCE-Lite/397.owl
9 RDFS(DL) 4 1899 http://...nt/AirportCodes.daml

10 ALR+HI(D) 5 2744 http://...ogicUnits/2003/09/hu

Table 2: Properties of Top 10 Most Time-consuming Ontologies

Reasoner Tells ConceptList SatOfTop SatOfClasses Hierarchy

FaCT++ 23% 35% 11% 9% 21%
KAON2 47% 45% 0% 3% 5%
Pellet 70% 20% 1% 2% 6%
RacerPro 58% 11% 4% 9% 19%

Table 3: Average Division of Task Time

time. Figure 1 shows the amount of time each Reasoner took to classify the
10 most challenging ontologies according to this measure (where negative time
represents a failure to classify). Table 2 then shows some of the interesting
information that is available on these “Top 10” Ontologies.

This table is useful in helping us understand what makes these particular
Ontologies so time-consuming to reason over. In the case of the NCI and Gene
Ontology’s (1st and 3rd), it can be clearly seen that it is their shear size that
provides the challenge. The 5th, 9th and 10th (world-fact-book, AirportCodes
and Hydrolic Units) make up for their number of classes with an extensive array
of individuals. Whereas Galen (2nd and 4th) simply uses some very complicated
constructs and deep role hierarchy.

Our final table, Table 3, shows the average proportion of each classification
test that each Reasoner spent on the separate tasks. This shows, for example,
that Pellet performs a lot of caching on receiving the Ontology (TELLS), while
FaCT++ does relatively little until the first ASK query.

5 Discussion

As we mentioned in the introduction, testing is useful for reasoner and tool
developers as well as for users. Building on existing work, we have developed



a system for testing reasoners with available ontologies. The benefits of our
approach include autonomous testing, flexible analysis of results and the devel-
opment of a test library that should be a valuable resource for both the DL
and ontology community. We will continue to extend the library, and will add
classification results from tested reasoners so that correctness testing can also
be performed.

While there are an increasingly large array of OWL-Ontologies available for
public use, other Ontology formats (e.g. OBO: the Open Biomedical Ontologies,
http://obo.sourceforge.net) are still widely in use and would make for valu-
able test examples. It is also the case, as describe in [3], that a large proportion
of the available OWL-Full Ontologies, could in fact be validated as OWL-DL,
just by adding a few extra clarifying statements. This means that of the 162
Ontologies that we had to throw away, many could be useful examples with a
little work. In the future we hope to use these observations, together with any
external contributions, to considerably increase the size of our ontology library.

The results produced by our tests provide an interesting insight into the vari-
ety and depth of information that can be extracted from such testing/benchmarking.
However, for the system and its results to become a valuable resource, we need
to test their correctness. We are currently assuming that both the OWL-to-DIG
conversions and the Reasoner’s responses are all valid and correct.

With regard to the OWL-API’s conversions, this was the utility built along-
side the original DIG specification. We therefore argue that this is the best
conversion available and that our assumption is justified.

Regarding the responses, as discussed earlier, they can be almost impossible
to check for correctness. Our best option is therefore to analyse the difference in
responses received from different reasoners, and this route is thus one we aim to
explore further. It will be interesting to see if reasoners (that should, in theory,
all produce the same inferences to the same problems) will actually agree on the
test ontologies.

So far we have focused on testing Tbox reasoning (classification). Although
the use of nominals in SHOIQ blurs the separation between Tbox and Abox,
it would still be useful to explicitly test Abox reasoning, e.g., by asking for
the instances of some query class. This functionality will be added in a future
version of the system.

Apart from the future work described above, there are a number of exten-
sions to our benchmarking system that would enhance its utility. Allowing users
to define their own customised test, rather than the 5 step classification we are
using, is one example that would allow Reasoner developers to test specific op-
timisations and implementations as they are developed. Other relevant tests
would include testing how multiple concurrent tests on a Reasoner affects per-
formance, as well as simply not restarting a Reasoner between tests.

We intend for the whole system, including the ontology library, to be available
for open-source use in the near future.
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