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Abstract

When reasoning with description logic (DL) knowledge bases (KBs),
performance is of critical concern in real applications, especially when
these KBs contain a large number of axioms. To improve the perfor-
mance, axiom absorption has been proven to be one of the most effective
optimization techniques. The well-known algorithms for axiom absorp-
tion, however, still heavily depend on the order and the format of the
axioms occurring in KBs. In addition, in many cases, there exist some re-
strictions in these algorithms which prevent axioms from being absorbed.
The design of absorption algorithms for optimal reasoning is still an open
problem. In this paper, we propose some new algorithms to absorb axioms
in a KB to improve the reasoning performance. The experimental tests we
conducted are mostly based on synthetic benchmarks derived from com-
mon cases found in real KBs. The experimental evaluation demonstrates
a significant runtime improvement.

1 Motivation

When reasoning with description logic (DL) knowledge bases (KBs) which con-
tain a large number of axioms, performance is the key concern in real appli-
cation. To improve the reasoning performance, many optimization algorithms
and techniques are employed in most of the modern reasoners such as RACER
and FaCT++. Among the optimization algorithms, lazy unfolding is proven to
be one of the most effective techniques [7]. Unfortunately, lazy unfolding does
not work well for KBs containing a significant number of nonabsorbable GCIs
(General Concept Inclusions). A GCI is called nonabsorbable if it cannot be
rewritten into a rule axiom. We use the term rule axiom to represent axioms
of the form of A ⇒ C where A ∈ NC and C is an arbitrary concept, while
the form C v D represents a GCI where C and D are arbitrary concepts. The
difference between A ⇒ C and A v C is that A ⇒ C represents only “if A then



C”, while A v C represents both “if A then C” and “if ¬C then ¬A” during
reasoning. To convert a GCI into rule axiom(s), a technique called absorption
is employed. Although preliminary absorption algorithms have been discussed
in [6], there is little concern about the “best” absorption for optimal reasoning.
The known algorithms also still heavily depend on the order and the format of
axioms found in the KB of interest. In addition, in many cases, some restrictions
in these algorithms prevent axioms from being absorbed [3].

2 Tableau Algorithm and Lazy Unfolding

Reasoning about a DL based KB is usually reduced to concept reasoning w.r.t.
a TBox. For such kind of reasoning, a sound and complete tableau reasoning
algorithm is usually employed. The basic idea behind a tableau algorithm is to
take an input concept C w.r.t. a TBox T , and try to prove the satisfiability of C
w.r.t. T by constructing a model I of C w.r.t. T . This is done by syntactically
decomposing C so as to derive constraints on the structure of such a model. For
example, any model of C must, by definition, contain some individual x such
that x is an element of CI , and if C is of the form ∃R.D, then the model must
also contain an individual y such that 〈x, y〉 ∈ RI and y is an element of DI ;
if D is non-atomic, then continuing with the decomposition of D would lead
to additional constraints. The construction fails if the constraints include an
obvious contradiction, e.g., if some individual z must be an element of both C
and ¬C for some concept C [2, 5].

The decomposition and construction are usually carried out by applying so-
called tableau expansion rules as described in [2]. During the tableau expansion,
disjunctions are added to the label of each node of the tableaux for each GCI
(one disjunction is added for axioms of the form C1 v C2; two disjunctions are
added for axioms of the form C1 ≡ C2 [5]). This leads to an exponential increase
in the search space as the number of nodes and axioms increases [4].

An intuitive optimization technique is lazy unfolding — it only unfolds con-
cepts if required during the expansion process [1]. It has been described by the
additional tableau rules in [5].

Lazy unfolding cannot be applied to an arbitrary axiom in a TBox due to
the atomic concept restriction on the left-hand side of the axiom. However, we
can still divide an arbitrary TBox T into two parts: the unfoldable part Tu, to
which we can apply lazy unfolding directly, and the general part Tg, in which we
have to perform reasoning by general tableau expansion [5]. Therefore, there is
an intuitive optimization technique to be considered: converting general axioms
from Tg to Tu while keeping the semantics of TBox unchanged. This is the
original idea of an “absorption”.



3 Standard Absorption

Let us first consider an absorption example. Suppose we have two TBoxes T
and T ′.

T = Tu ∪ Tg and Tu = ∅; Tg = {A v C; ¬A v D};
T ′ = T ′

u ∪ T ′
g and T ′

u = {A ⇒ C; ¬A ⇒ D}; T ′
g = ∅.

An obvious question is whether T ′ ≡ T ?
According to the definition of a correct absorption proposed in [6], T ′ is a

correct absorption of T . Unfortunately, T ′ 6= T since T ′ |= T does not hold.
To evaluate the correctness of an absorption, we introduce the notion of a valid
absorption.

Definition 3.1 (valid absorption) Let T be a TBox, and T ′ be an absorption
of T . If T ′ |= T and T |= T ′, then T ′ is called a valid absorption of T .

Based on the above definitions, the following absorptions are all valid ab-
sorptions, provided that A is an atomic concept and C, D and E are arbitrary
concepts, and T is an acyclic TBox [2].

Proposition 3.1 Let T = Tu ∪ Tg, Tu = ∅ and Tg = {A v D}, A ∈ NC, and
T ′ = T ′

u ∪ T ′
g ; T ′

u = {A ⇒ D} and T ′
g = ∅. Then T ′ is a valid absorption of T .

Proposition 3.2 Let T = Tu ∪ Tg, Tu = ∅ and Tg = {A ≡ D}, A ∈ NC, and
T ′ = T ′

u ∪ T ′
g , T ′

u = {A ⇒ D;¬A ⇒ ¬D} and T ′
g = ∅. Then T ′ is a valid

absorption of T .

Proposition 3.3 Let T = Tu ∪ Tg.
(1) If T ′ is an arbitrary TBox, then (Tu, Tg ∪ T ′) is a valid absorption of

T ∪ T ′.
(2) If T ′ is a TBox that consists entirely of axioms in the form of A v D,

where A ∈ NC and neither A nor ¬A occur on the left-hand side in Tu, then
(Tu ∪ {A ⇒ D}, Tg) is a valid absorption of T ∪ T ′.

A question rises from Proposition 3.3 whether it is possible to absorb an
axiom into Tu if either A or ¬A occur on the left-hand side of Tu.
Lemma 3.1 Let (Tu, Tg) be a valid absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms in the form of A v D, where A ∈ NC and A already
has a rule definition in Tu, say A ⇒ C, if ¬A does not appear on the left-hand
side of Tu, then (Tu ∪ {A ⇒ (D u C)}, Tg) is a valid absorption of T ∪ T ′.
Lemma 3.2 Let (Tu, Tg) be a valid absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms of the form A v D, where A ∈ NC and ¬A already
has a rule definition in Tu, say ¬A ⇒ C, if A does not appear on the left-hand
side of Tu, then (Tu ∪ {A ⇒ D}, Tg ∪ {> v C t D}) is a valid absorption of
T ∪ T ′.
Lemma 3.3 Let (Tu, Tg) be a valid absorption of a TBox T , if T ′ is a TBox
that consists entirely of axioms of the form A v E, where A ∈ NC. If both A



and ¬A have a rule definition in Tu, say A ⇒ C and ¬A ⇒ D, then (Tu∪{A ⇒
(C u E)}, Tg ∪ {> v D t E}) is a valid absorption of T ∪ T ′.

The above mentioned propositions and lemmas also hold for a cyclic TBox
as long as no right-hand side concept in Tu directly uses [2] an atomic concept
(regardless of a negation sign) occurring in the left-hand side of the same axiom.

4 Heuristic Absorption

Experimental experience suggests that reasoning efficiency is improved by either
reducing the number of axioms in Tg or reducing the number of axioms in Tu.
Thus, we propose the “best” absorption is the one which can absorb a maximal
number of axioms from Tg and keep only a minimal number of axioms in Tu.

A first possible way of reducing axioms in Tg and Tu is to convert a primitive
definition into a complete definition, i.e., selecting a concept definition instead
of a concept inclusion by checking all axioms in the specified TBox. This can
be achieved as follows.

Given an arbitrary TBox T . Suppose A is an atomic concept.

1. Simplify [8] and normalize T . After normalization, Tu = ∅ and Tg contains
a set of axioms in the form > v C tD where C and D are either atomic
concepts or role concepts. Then each axiom in Tg can be expressed as a
set. For example, the set G = {C, D} represents the axiom in the form
> v CtD. As a consequence, ¬G represents a set containing the concept
¬C u ¬D. Therefore, each axiom in Tg only contains A or ¬A or none
of them. We also need a function con which returns for a given set G its
represented concept, e.g., if G = {C, D}, then con(G) returns C tD.

2. Initialize two sets Tg1, Tg2 to be empty and consider A the chosen (fixed)
atomic concept.

3. For any set G, if A ∈ G, then remove G from Tg and add an item
¬(G\{A}) to Tg1; if ¬A ∈ G, then remove G from Tg and add an item
G\{¬A} to Tg2; otherwise, keep G in Tg.

4. For each item G2 in Tg2, if G2 also appears in Tg1,

(a) remove G2 from both Tg1 and Tg2;

(b) add the axiom {A ⇒ con(G2)} and {¬A ⇒ con(¬G2)} to Tu.

5. For each item set G′
1 left in Tg1, create a new set ¬G′

1 ∪ {A} and put it
back into Tg; for each item set G′

2 in Tg2, create a new set G′
2 ∪{¬A} and

put it back into Tg.



The above algorithm can be further improved in step (4) by checking more than
one item set in G2. For more general KBs, the following heuristic absorption
procedure could be applied.

Given an arbitrary TBox T = Tu ∪ Tg. Tu contains a set of axioms of the
form C ≡ D or C ⇒ D. Tg contains a set of axioms of the form > v C.

1. Simplify and normalize T as described above.

2. Suppose cp is the total number of appearance of A in Tg; and cn is the
total number of appearance of ¬A in Tg. Among all cps and cns, select the
greatest value and absorb the accordingly atomic concept to Tu.

3. Repeat step (2) until no concept can be absorbed anymore.

In fact, the above mentioned two algorithms can be combined to achieve a
better performance.

5 Experimental Results

To check the effectiveness of the newly developed algorithms, we compare them
with the ones currently employed by RACER. Firstly, we developed a customized
RACER version by disabling its absorption module. After that, we developed
a new external absorption module (as a stand-alone program) by implementing
the algorithms described above. Each of our test KBs is processed by the exter-
nal absorption module. Its output is used as input to the customized RACER
version. We also process each original test KB with the standard RACER ver-
sion. In our graphs we compare for each test KB the TBox classification time
of the customized RACER version (denoted as “enhanced”) with the standard
version of RACER (denoted as “normal”).

5.1 Primitive Definition to Complete Definition

Suppose A, B, C,D are all atomic concepts in the following example:

TBox T = Tu ∪ Tg;
Tu = {A ⇒ B; C ⇒ B; B ⇒ A t C} and Tg = {> v A t C t ∃R.D}

After normalization and simplification, the above TBox can be easily absorbed
into the following TBox T ′ by heuristically creating these concept definitions:

T ′
u = {B ≡ (A t C);¬A ⇒ C t ∃R.D}
T ′

g = ∅
The classification times for a KB where we replicated this pattern of axiom

pairs are shown in the left graph in Figure 1.
From the graph one can see that the CPU time for reasoning with the algo-

rithms currently employed by RACER is exponential. However, the performance
based on the newly developed absorption algorithm is roughly linear.
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Figure 1: Classification times (seconds) for pattern “primitive to complete defi-
nition” (left graph) and for pattern “enhanced absorption” (right graph).

5.2 Enhanced Absorption Algorithm

Based on Lemma 3.2 and 3.3, we were able to develop an absorption algorithm
by allowing both positive or negative atomic concepts to occur on the left-hand
side of Tu. Consider the following example (A, B ∈ NC):

T = Tu ∪ Tg;

Tu = {A v B}; Tg = {> v A t ∃R.K}
By applying Lemma 3.3, we are able to completely absorb it as the following:

Tu = {A ⇒ B;¬A ⇒ ∃R.K;¬B ⇒ ∃R.K}; Tg = ∅
The test result is shown in the right graph in Figure 1. They show that the
new absorption algorithm is much more effective than the classical absorption
algorithm due to the elimination of absorption restrictions.

5.3 Heuristic Absorption

Suppose we have the following TBox T which consists of the following general
axioms:

{¬AtB; ¬Ct¬Dt∃R1.C1t∃R2.C2; ¬DtK; ¬MtN ; CtDt∃R1.C1tMtA}
To absorb T , we follow the procedure described in Section 4:

Step 1: List the statistics of Tg for each atomic concept. The result is as follows.
(The format is A(cp, cn), where cp gives the number of positive (unnegated)
occurrences and cn the number of negative (negated) occurrences, and we ignore
the atomic concepts occurring in the qualifications of existential and universal
restrictions.)

A(0,1); B(1,0);C(1,1);D(1,2);M(1,1); N(1,0); K(1,0);C2(0, 0); C1(0, 0)

We divide the atomic concepts into two groups by selecting the concepts where
one of cp or cn values is zero and discarding the concepts that have both cp and
cn values equal to zero. We obtain the following:
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Figure 2: Classification times (seconds) for pattern “heuristic absorption”.

Group 1: B(1,0); N(1,0); K(1,0)
Group 2: A(1,1); C(1,1);D(1,2);M(1,1)

Step 2: We give the concepts in the first group a higher priority. Then, the
concepts B, N, K have the same priority. Suppose we absorb B first. We have
Tu and Tg as the following:

Tu: {¬B ⇒ ¬A}
Tg: {¬C t¬Dt∃R1.C1 tR2.C2; ¬DtK; ¬M tN ; C tDt∃R1.C1 tM tA }
Statistics group:

Group 1: A(1,0); N(1,0); K(1,0)
Group 2: C(1,1);D(1,2);M(1,1)

We repeat step 1 and step 2 until Tg is empty. At the end, Tu contains the
following axioms:

¬B ⇒ ¬A
¬A ⇒ C tD t ∃R1.C1 tM
D ⇒ K u (¬C t ∃R1.C1 tR2.C2)
M ⇒ N

and Tg = ∅
The test results using the above absorption scheme are shown in Figure 2. The
improvement of the heuristic absorption algorithm is significant compared with
the one currently employed by RACER.

6 Conclusion

We proposed criteria for the “best” absorption based on experimental expe-
rience. Then, we introduced novel heuristic absorption algorithms. We have
demonstrated how these algorithms are working, and how they affect the rea-
soning performance. In addition, we have shown that some restrictions applied
in the absorption algorithms of RACER could be eliminated. Therefore, the



absorption algorithms can be effectively applied to more general axioms.
We have also implemented the heuristic algorithm by incorporating the op-

timizations known from the RACER reasoner. We have illustrated their effec-
tiveness by analyzing the reasoning performance of RACER when classifying
benchmark KBs. The analysis shows that, not only are the new techniques
highly effective, but also the reasoning performance is not significantly affected
by the order and format of the axioms occurring in a KB.
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