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1 Introduction

Although description logics (DLs) are becoming more and more expressive, our experience
has been that it is only for some tasks that the expressivity of description logics really comes
into play; for many applications, it is necessary to be able to deal with largely deterministic
knowledge very effectively (scalability problem). In the literature, the scalability problem has
been tackled from different perspectives. We see two main approaches, the layered approach
and the integrated approach. In the former approach the goal is to use databases for storing
and accessing data, and exploit description logic ontologies for convenient query formulation.
The main idea is to support ontology-based query expansion and optimization. See, e.g., [9, 4]
(DLDB), [1] (Instance Store), or [2] (DL-Lite). We acknowlede the interesting progress of these
approaches, but we note that the corresponding techniques only applicable if reduced expres-
sivity does not matter. Despite the most appealing argument of reusing database technology
(in particular services for persistent data), at the current state of the art it is not clear how
expressivity can be increased to, e.g., SHIQ without losing the advantage of fast runtimes.
Therefore, in this paper, we pursue the integrated approach that considers query answering
with a description logic system. For the time being we ignore the problems associated with
persistency and investigate specific knowledge bases (see below).

Continuing our work in [5], in this paper we investigate the constraints imposed on the
architecture of description logic reasoning systems, and we investigate the assumptions un-
derlying the heuristics used in instance retrieval algorithms. The contribution presents and
analyzes the main results we have found about how to solve the scalability problem with
tableau-based prover systems given large sets of data descriptions for a large number of in-
dividuals. Note that we do not discuss query answering speed of a particular system but
investigate the effect of optimization techniques that could be exploited by any (tableau-
based) DL inference system that already exists or might be built. We assume the reader is
familiar with DLs in general and tableau-based decision procedures in particular.

2 Lehigh University Benchmark

In order to investigate the scalability problem, we use the Lehigh University BenchMark
(LUBM, [3, 4]). LUBM data descriptions are automatically generated, but we do not exploit
this in this paper (e.g., by tailoring optimization techniques to regular patterns stemming from
generator peculiarities). The LUBM queries are formalized as conjunctive queries referencing
concept, role, and individual names from the Tbox. A query language tailored to description
logic applications that can express these queries is described in [8] (the language is called
nRQL). Variables are only bound to individuals mentioned in the Abox. In the notation
of nRQL queries used in this paper we assume that different variables may have the same
bindings. In addition, variables that do not occur in the head of a query are assumed to
be existentially quantified and are are also only bound to individual names mentioned in the



Abox.
Below, LUBM queries 9 and 12 are shown in order to present a flavor of the kind of query an-

swering problems – note that ′www.University0.edu′ is an individual and subOrganizationOf
is a transitive role. Please refer to [3, 4] for more information about the LUBM queries.

Q9 : ans(x, y, z)← Student(x), Faculty(y), Course(z),
advisor(x, y), takesCourse(x, z), teacherOf(y, z)

Q12 : ans(x, y)← Chair(x), Department(y),memberOf(x, y),
subOrganizationOf(y,′ www.University0.edu′)

In order to investigate the scalability problem, we used a TBox for LUBM with inverse
and transitive roles as well as domain and range restrictions but no number restrictions,
value restrictions or disjunctions. Among other axioms, the LUBM TBox contains axioms
that express necessary and sufficient conditions on Chair. For instance, there is an axiom
Chair

.= Person u ∃headOf.Department. For evaluating optimization techinques for query
answering we consider runtimes for a whole query set (queries 1 to 14 in the LUBM case).

3 Optimization Techniques

If the queries mentioned in the previous section are answered in a naive way by evaluat-
ing subqueries in the sequence of syntactic notation, acceptable answering times cannot be
achieved. Determining all bindings for a variable (with a so-called generator) is much more
costly than verifying a particular binding (with a tester). Treating the one-place predicates
Student, Faculty, and Course as generators for bindings for corresponding variables results
in combinatorial explosion (cross product computation). Optimization techniques are required
that provide for efficient query answering in the average case. For the discussion of optimiza-
tion techniques, we assume that for transitive and inverse roles, the Abox is extended in the
obvious way such that implicit role assertions are made explicit. In addition, the conclusions
from domain and range restrictions are made explicit in the Abox as well.

3.1 Query Optimization

The optimization techniques that we investigated are inspired by database join optimizations,
and exploit the fact that there are few Faculties but many Students in the data descriptions.
For instance, in case of query Q9 from LUBM, the idea is to use Faculty as a generator for
bindings for y and then generate the bindings for z following the role teacherOf . The heuristic
applied here is that the average cardinality of a set of role fillers is rather small. For the given
z bindings we apply the predicate Course as a tester (rather than as a generator as in the
naive approach). Given the remaining bindings for z, bindings for x can be established via
the inverse of takesCourse. These x bindings are then filtered with the tester Student.

If z was not mentioned in the set of variables for which bindings are to be computed, and
the tester Course was not used, there would be no need to generate bindings for z at all. One
could just check for the existence of a takesCourse role filler for bindings w.r.t. x.

In the second example, query Q12, the constant ′www.University0.edu′ is mentioned.
Starting from this individual the inverse of subOrganizationOf is applied as a generator for
bindings for y which are filtered with the tester Department. With the inverse of memberOf ,
bindings for x are computed which are then filtered with Chair. Since for the concept Chair
sufficient conditions are declared in the TBox, instance retrieval reasoning is required if Chair
is a generator. Thus, it is advantageous that Chair is applied as a tester (and only instance
tests are performed).

For efficiently answering queries, an ordered query execution plan must be determined.
For computing a total order relation on query atoms with respect to a given set of data
descriptions (assertions in an ABox), we need information about the number of instances of
concept and role names. An estimate for this information can be computed in a preprocessing



step by considering given data descriptions, or could be obtained by examining the result set of
previously answered queries (we assume that ABox realization is too costly, so this alternative
is ruled out).

3.2 Indexing by Exploiting Told and Taxonomical Information

In many practical applications that we encountered, data descriptions often directly indicate
of which concept an individual is an instance. Therefore, in a preprocessing step it is useful to
compute an index that maps concept names to sets of individuals which are their instances.
In a practical implementation this index might be realized with some form of hashtable.

Classifying the TBox yields the set of ancestors for each concept name, and if an individual
i is an instance of a concept name A due to explicit data descriptions, it is also an instance
of the ancestors of A. The index is organized in such a way that retrieving the instances of a
concept A or one of its ancestors requires (almost) constant time. The index is particularly
useful to provide bindings for variables if, despite all optimization attemps for deriving query
execution plans, concept names must be used as generators. In addition, the index is used to
estimate the cardinality of concept extensions. The estimates are used to compute an order
relation for query atoms. The smaller the cardinality of a concept or a set of role fillers is
assumed to be, the more priority is given to the query atom. Optimizing query Q9 using told
information yields the following query execution plan.

Q9′ : ans(x, y, z)← Faculty(y), teacherOf(y, z), Course(z),
advisor−1(y, x), Student(x), takesCourse(x, z)

Using this kind of rewriting, queries can be answered much more efficiently.
If the TBox contains only role inclusion axioms and GCIs of the form A v A1u. . .uAn, i.e.,

if the TBox forms a hierachy, the index-based retrieval discussed in this section is complete
(see [1]). However, this is not the case for LUBM. In LUBM, besides domain and range
restrictions, axioms are also of the form A

.= A1 u A2 u . . . u Ak u ∃R1.B1 u . . . u ∃Rm.Bm

(actually, m = 1). If sufficient conditions with exists restrictions are specified as in the case
of Chair, optimization is much more complex. In LUBM data descriptions, no individual
is explicitly declared as a Chair and, therefore, reasoning is required, which is known to be
rather costly. If Chair is used as a generator and not as a tester such as in the simple query
ans(x)← Chair(x), optimization is even more important.

3.3 Obvious Non-Instances: Exploiting Information from One Completion

The detection of “obvious” non-instances of a given concept C can be optimized by using
a model merging operator defined for so-called individual pseudo models (aka pmodels) as
specified in [5]. The central idea is to compute a pmodel from a completion that is derived
by the tableau prover. Note that it is important that all restrictions for a certain individual
are “reflected” in the pmodel. The idea of model merging is that there is a simple sound
but incomplete test for showing that adding the assertion i : ¬C to the ABox will not lead
to a clash (see [5] for details) and, hence, i is not an instance of C. Note that, usually, the
complete set of data structures for a particular completion is not maintained by a reasoner.
The pmodels provide for an excerpt of a completion needed to determine non-instances.

3.4 Obvious Instances: Exploiting Information from the Precompletion

A central optimization technique to ensure scalability as it is required for LUBM is to also
find “obvious” instances with minimum effort. Given an initial ABox consistency test one
can consider all deterministic restrictions, i.e., consider only those tableau structures (from
now on called constraints) for which there are no previous choice points in the tableau proof
(in other words, consider only those constraints that do not have dependency information



attached). These constraints, which are computed during the tableau proof, describe a so-
called precompletion.1 Note that in a precompletion, no restrictions are violated.

Given the precompletion constraints, for each individual an approximation of the most-
specific concept (MSC’) of an individual i is computed as follows. For all constraints repre-
senting role assertions of the form (i, j) : R (or (j, i) : R) add constraints of the form i : ∃R.>
(or i : ∃R−1.>). Afterwards, constraints for a certain individual i are collected into a set
{i : C1, . . . , i : Cn}. Then, MSC ′(i) := C1 u . . . u Cn. Now, if MSC ′(i) is subsumed by the
query concept C, then i must be an instance of C. In the case of LUBM many of the assertions
lead to deterministic constraints in the tableau proof which, in turn, results in the fact that
for many instances of a query concept C (e.g., Faculty as in query Q9) the instance problem
is decided with a subsumption test based on the MSC’ of each individual. Subsumption tests
are known to be fast due to caching and model merging. The more precisely MSC’(i) approx-
imates MSC(i), the more often an individual can be determined to be an obvious instance of
a query concept. Obviously, it might be possible to determine obvious instances by directly
considering the precompletion data structures. However, these are technical details. The main
point is that, due to our findings, the crude approximation described above suffices to detect
all “obvious” instances in LUBM.

If query atoms are used as testers, in LUBM it is the case that in a large number of
cases the test for obvious non-instances or the test for obvious instances determines the result.
However, for some individuals i and query concepts C both tests do not determine whether
i is an instance of C (e.g., this is the case for Chair). Since both tests are incomplete, for
some individuals i a refutational ABox consistency test resulting from adding the claim i : ¬C
must be decided with a sound and complete tableau prover. For some concepts C, the set of
remaining instances i for which the “expensive” ABox instance test must be used is quite large,
or, considering C as a generator, the set of candidates is quite large. In any case, considering
the volume of assertions in LUBM (see below for details), it is easy to see that the refutational
ABox consistency test must not start from the initial, unprocessed ABox in order to ensure
scalability.

For large ABoxes and many repetitive instance tests it is mandatory not to “expand” the
very same initial constraints over and over again. Therefore, the precompletion resulting from
the initial ABox consistency test is used as a starting point for refutational instance tests. The
tableau prover keeps the precompletion in memory. All deterministic constraints are expanded,
so if some constraint is added, only a limited amount of work is to be done. Tableau provers
are fast w.r.t. backtracking, blocking, caching and the like. But not fast enough if applied in
a naive way. If a constraint i : ¬C is added to a precompletion, the tableau prover must be
able to very effectively determine related constraints for i that already have been processed.
Rather than using linear search through lists of constraints, index structures are required.

3.5 Index Structures for Optimizing Tableau Provers

First of all, it is relatively easy to classify various types of constraints (for exists restrictions,
value restrictions, atomic restrictions, negated atomic restrictions, etc.) and access them
effectively according to their type. We call the corresponding data structure an active record
of constraint sets (one set for each kind of constraint). For implementing a tableau prover,
the question for an appropriate set data structure arises. Since ABoxes are not models,
(dependency-directed) backtracking cannot be avoided in general. In this case, indexing the
set of “relevant” constraints in order to provide algorithms for checking if an item is an element
of a set or list (element problem) is all but easy. Indexing requires hashtables (or trees), but

1Cardinality measures for concept names, required for determining optimized query execution plans, could
be made more precise if cardinality information is computed by considering a precompletion. However, in the
case of LUBM this did not result in better query execution plans.



backtracking requires either frequent copying of index structures (i.e., hashtables) or frequent
inserting and deleting items from hashtables. Both operations are known to be costly.

Practical experiments with LUBM and many other knowledge bases indicate that the
following approach is advantageous in the average case. For frequent updates of the search
space structures during a tableau proof, we found that simple lists for different kinds of
constraints are most efficient, thus we have an active record of lists of constraints. New
constraints are added to the head of the corresponding list, a very fast operation. During
backtracking, the head is chopped off with minimum effort. The list representation is used if
there are few constraints, and the element problem can be decided efficiently. However, if these
lists of constraints get large, performance decreases due to linear search. Therefore, if some
list from the active record of constraints gets longer than a certain threshold, the record is
restructured and the list elements are entered into an appropriate index structure (hashtables
with individuals as keys). Afterwards the tableau prover continues with a new record of empty
lists as the active record. The pair of previous record of lists and associated hashtable is called
a generation. From now on, new constraints are added to the new active record of constraints
and the list(s) of the first generation are no longer used. For the element problem the lists
from the active record are examined first (linear search over small lists) and then, in addition,
the hashtable from the first generation is searched (almost linear search). If a list from the
active record gets too large again, a new generation is created. Thus, in general we have a
sequence of such generations, which are then considered for the element test in the obvious
way. If backtracking occurs, the lists of the appropriate generation are installed again as the
active record of lists. This way of dealing with the current search state allows for a functional
implementation style of the tableau prover which we prefer for debugging purposes. However,
one might also use a destructive way to manage constraints during backtracking. Obviously,
all (deterministic) constraints from the initial Abox can be stored in a hashtable. In any case,
the main point here is that tableau provers need an individual-based index to efficiently find
all constraints an individual is involved in. In the evaluation of other optimization techniques
(see below) we presuppose that a tableau prover is equipped with this technology.

3.6 Transforming Sufficient Conditions into Conjunctive Queries

Up to now we have discussed the optimization of concept atoms used as testers in the query
execution plan. If concepts are used as generators, indeed a retrieval problem rather than only
an instance test problem has to be solved. Using the results in [5] it is possible to linearly
iterate over all individuals, check for obvious non-instances and obvious instances, and then, for
the set of remaining candidates dependency-directed instance retrieval and binary partitioning
can be used (see [5]). Our findings suggest that in the case of LUBM, for example for the
concept Chair, the remaining tableau proofs are very fast. Nevertheless it is the case that the
whole procedure is based on a linear iteration over all individuals. In application scenarios
such as those we investigate with LUBM we have 200,000 individuals and more, and even if
each single test lasts only a few dozen microseconds, query answering will be too slow, and
hence additional techniques must be applied to solve the scalability problem.

The central insight for another optimization technique is that conjunctive queries can be
optimized according to the above-mentioned arguments whereas for concept-based retrieval
queries, optimization is much harder to achieve. Let us consider the query ans(x)← Chair(x).
For Chair, sufficient conditions are given as part of the TBox (see above). Thus, in principle,
we are looking for instances of the concept Person u ∃headOf.Department. The key to
optimizing query answering becomes apparent if we transform the definition of Chair into a
conjunctive query and derive the optimized version Q15′

Q15 : ans(x)← Person(x), headOf(x, y), Department(y)
Q15′ : ans(x)← Department(y), headOf−1(y, x), P erson(x)



Univs Inds Concept Assertions Role Assertions

1 17174 53738 49336
3 55664 181324 166682
5 102368 336256 309393
10 207426 685569 630753

Table 1: Linearly increasing number of individuals, concept assertions and role assertions for
different numbers of universities.

Because there exist fewer Departments than Persons in LUBM, search for bindings for x is
substantially more focused in Q15′ (which is the result of automatic query optimization, see
above). In addition, in LUBM, the extension of Department can be determined with simple
index-based tests only (only hierarchies are involved). With the Chair example one can easily
see that the standard approach for instance retrieval can be optimized dramatically if query
atoms are rewritten as indicated in the above example.

If there is no specific definition or there are meta constraints, rewriting is not applied. It is
easy to see that the rewriting approach is sound. However, it is complete only under specific
conditions, which can be automatically detected. If we consider the Tbox T = {D .= ∃R.C},
the Abox A = {i : ∃R.C} and the query ans(x)← D(x), then, due to the algorithm presented
above, the query will be rewritten as ans(x)← R(x, y), C(y). For variable bindings, the query
language nRQL (see above) considers only those individuals that are explicitly mentioned in
the Abox. Hence, i will not be part of the result set because there is no binding for y in the
Abox A. Examining the LUBM Tbox and Abox it becomes clear that in this case for every
i : ∃R.C appearing in a tableau proof there already exist constraints (i, j) : R and j : C in
the original Abox. However, even if this is not the case, the technique can be employed under
some circumstances.

Usually, in order to construct a model (or a completion to be more precise), tableau provers
create a new individual for each constraint of the form i : ∃R.C and add corresponding concept
and role assertions. These newly created individuals are called anonymous individuals. Let us
assume, during the initial Abox consistency test a completion is found. As we have discussed
above, a precompletion is computed by removing all constraints that depend on a choice
point. If there is no such constraint, the precompletion is identical to the completion that the
tableau prover computed. Then, the set of bindings for variables is extended to the anonymous
individuals found in the precompletion. The rewriting technique for concept query atoms is
applicable (i.e., is complete) under these conditions. Even if the rewriting technique is not
complete (i.e., s.th. is removed from the completion to derive the precompletion), it can be
employed to reduce the set of candidates for binary partitioning techniques (c.f., [5]) that can
speed of this process considerably in the average case.

The transformation approach discussed in this section is reminiscent to an early transfor-
mation approach discussed in [7]. In fact, ideas from translational approaches from DLs to
disjunctive datalog [6] can also be integrated in tableau-based approaches. In the following
section, we will evaluate how the optimization techniques introduced up to now provide a
contribution to the data description scalability problem.

4 Evaluation and Conclusion

The significance of the optimization techniques introduced in this contribution is analyzed
with the system RacerPro 1.9. RacerPro is freely available for research and educational
purposes (http://www.racer-systems.com). The runtimes we present in this section are
used to demonstrate the order of magnitude of time resources that are required for solving
inference problems. They allow us to analyze the impact of proposed optimization techniques.
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Figure 1: Runtimes for loading, preparation, abox consistency checking and indexing.
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Figure 2: Runtimes of 14 LUBM queries with different optimization settings (see text).

An overview about the size of the LUBM benchmarks is given in Table 1. The runtimes
for loading the data descriptions, transforming them into abstract syntax trees (preparation),
and indexing are shown in Figure 1 (AMD 64bit processor, 4GB, Linux OS). It is important
to note that the curves are roughly linear, thus, no reasoning is included in these phases. In



Figure 1, the runtimes for checking ABox consistency and precompletion data structures (see
above) are indicated (the shape, which appears to be quadratic, reveals that this phase are
subject to further optimizations).

In Figure 2, average query-answering times for running all 14 LUBM queries on data
descriptions for an increasing number of universities are presented (see Table 1 for an overview
on the number of individuals, concept assertions, and role assertions). In mode A and B,
concept definitions are not rewritten into conjunctive queries (see Section 3.6). In mode A,
full constraint reasoning on datatypes is provided. However, this is not required for LUBM.
Therefore, in mode B, told value retrieval is performed only. As Figure 2 shows, this is much
more efficient. Mode C in Figure 2 presents the runtimes achieved when definitions of concept
names are rewritten to conjunctive queries (and told value reasoning on datatypes is enabled).
Mode C indicates that scalability for instance retrieval can be achieved with tableau-based
retrieval engines. Note that we argue that the concept rewriting technique is advantageous
not only for RacerPro but also for other tableau-based systems. Future work will investigate
optimizations of large Aboxes and more expressive Tboxes. Our work is based on the thesis
that for investigating optimization techniques for Abox retrieval w.r.t. more expressive Tboxes,
we first have to ensure scalability for Aboxes and Tboxes such as those that we discussed in
this paper. We have shown that the results are encouraging.
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[8] M. Wessel and R. Möller. A high performance semantic web query answering engine. In Proc.
of the 2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2005.

[9] Z. Zhang. Ontology query languages for the semantic web: A performance evaluation. Master’s
thesis, University of Georgia, 2005.


