
Proceedings

of the

2006 International Workshop on

Description Logics

DL’06

May 30 – June 1, 2006

Lake District, United Kingdom

Edited by Bijan Parsia, Ulrike Sattler, and David Toman

Preface

Welcome to the 2006 International Workshop on Description Logics, DL’06,
in the Lake District, UK, May 30–June 1, 2006. The workshop continues the
long-standing tradition of international workshops devoted to discussing devel-
opments and applications of knowledge representation formalisms and systems
based on Description Logics. The list of the International Workshops on De-
scription Logics can be found at http://dl.kr.org.

There were 38 papers submitted to DL’06 each of which was reviewed by at least
three members of the program committee or additional reviewers recruited by
the PC members.

In addition to the presentation of the accepted papers, posters, and demos the
following speakers agreed to give invited talks at the workshop:

• Franz Baader: Description Logics: a personal history

• Anthony Hunter: Living with Inconsistency: Theory + Applications

The organizers and participants of the Description Logics 2006 workshop grate-
fully acknowledge the support of Cerebra (cerebra.com) that helped to provide
reduced registration fees for students, and the University of Manchester for pro-
viding logistical support, in particular with registration.

Our thanks go to all the authors for submitting to DL, and to the invited
speakers, PC members, and all additional reviewers who made the technical
programme possible. The organization of the workshop also greatly benefited
from the help of many people at the University of Manchester, in particular
Sam Creighton for helping with all the invitation letters for visas, and Bernardo
Cuenca Grau, Hector Perez-Urbina and Birte Glimm for helping with the local
organization. Finally, we would like to acknowledge that the work of the PC
was greatly simplified by using the EasyChair conference management system
(www.easychair.org) developed by Andrei Voronkov.

Bijan Parsia, Ulrike Sattler, and David Toman
Description Logics 2006 PC chairs and organizers

i

Programme Committee

Carlos Areces, INRIA Lorraine, France
Giuseppe De Giacomo, Università di Roma ”La Sapienza”, Italy
Enrico Franconi, Free University of Bozen-Bolzano, Italy
Volker Haarslev, Concordia University, Quebec, Canada
Ian Horrocks, University of Manchester, UK
Ralf Küsters, Christian-Albrechts-Universitt zu Kiel, Germany
Carsten Lutz, Technical University Dresden, Germany
Ralf Möller, Hamburg University of Technology, Germany
Bijan Parsia, University Of Maryland, College Park, USA
Peter Patel-Schneider, Bell Laboratories, USA
Ulrike Sattler, University of Manchester, UK
David Toman, University of Waterloo, Canada
Chris Welty, IBM Watson Research Center, USA
Frank Wolter, University of Liverpool, UK

Additional Reviewers

Alex Borgida
Sebastian Brandt
Diego Calvanese
Xi Deng
Sofia Espinosa
Birte Glimm
Daniel Gorin
Christian Halaschek-Wiener
Jan Hladik
Aditya Kalyanpur
Alissa Kaplunova
Atila Kaya
Sergio Mera

Maja Miličić
Boris Motik
Hsueh-Ieng Pai
Boontawee Suntisrivaraporn
Stephan Tobies
Dmitry Tsarkov
Anni-Yasmin Turhan
Dirk Walther
Grant Weddell
Michael Wessel
Michael Zakharyaschev
Hui Zhang
Evgeny Zolin

ii

Contents

I Long Papers 1

Conjunctive Query Answering for Description Logics with Transitive
Roles.
Birte Glimm, Ian Horrocks and Ulrike Sattler 3

Efficient Reasoning in EL+.
Franz Baader, Carsten Lutz and Boontawee Suntisrivaraporn . . 15

DL Actions with GCIs: a Pragmatic Approach.
Hongkai Liu, Carsten Lutz, Maja Miličić and Frank Wolter . . 27

Discrete Tableau Algorithms for FSHI.
Yanhui Li, Baowen Xu, Jianjiang Lu and Dazhou Kang 39

Epistemic First-order Queries over Description Logic Knowledge Bases.
Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Mau-
rizio Lenzerini and Riccardo Rosati 51

Data Complexity of Answering Unions of Conjunctive Queries in SHIQ.
Magdalena Ortiz, Diego Calvanese and Thomas Eiter 62

PSPACE Automata for Description Logics.
Jan Hladik and Rafael Peñaloza 74

Binary Absorption in Tableaux-Based Reasoning for Description Log-
ics.
Alexander K. Hudek and Grant Weddell 86

A Description Logic of Change.
Alessandro Artale, Carsten Lutz and David Toman 97

II Regular Papers 109

Reasoning for Fuzzy Description Logic with Comparison Expressions.
Dazhou Kang, Baowen Xu, Jianjiang Lu and Yanhui Li 111

Handling Imprecise Knowledge with Fuzzy Description Logic.
Giorgos Stoilos, Giorgos Stamou and Jeff Pan 119

Finding Subsumers for Natural Language Presentation.
Chris Mellish and Jeff Pan . 127

iii

SHIN ABox Reduction.
Achille Fokoue, Aaron Kershenbaum and Li Ma 135

Tableau Caching for Description Logics with Inverse and Transitive
Roles.
Yu Ding and Volker Haarslev 143

On the Scalability of Description Logic Instance Retrieval.
Ralf Möller Volker Haarslev and Michael Wessel 151

High Performance Absorption Algorithms for Terminological Reason-
ing.
Ming Zuo and Volker Haarslev 159

Automated Benchmarking of Description Logic Reasoners.
Tom Gardiner, Ian Horrocks and Dmitry Tsarkov 167

Will my Ontologies Fit Together?.
Bernardo Cuenca Grau, Ian Horrocks, Oliver Kutz and Ulrike
Sattler . 175

Description logic reasoning using the PTTP approach.
Zsolt Nagy, Gergely Lukácsy and Peter Szeredi 183

Extending the SHOIQ(D) Tableaux with DL-safe Rules: First Re-
sults.
Vladimir Kolovski, Bijan Parsia and Evren Sirin 192

Description Logic Reasoning for Dynamic ABoxes.
Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin and Aditya
Kalyanpur . 200

Beyond Asserted Axioms: Fine-Grain Justifications for OWL-DL En-
tailments.
Aditya Kalyanpur, Bijan Parsia and Bernardo Cuenca Grau . . 208

Optimizations for Answering Conjunctive ABox Queries.
Evren Sirin and Bijan Parsia 215

Model checking the basic modalities of CTL with Description Logic.
Shoham Ben-David, Richard Trefler and Grant Weddell 223

Towards Mobile Reasoning.
Thomas Kleemann . 231

iv

III Posters 239

Euclidian Roles in Description Logics.
Giorgos Stoilos and Giorgos Stamou 241

Experiences with Load Balancing and Caching for Semantic Web Ap-
plications.
Alissa Kaplunova, Atila Kaya and Ralf Möller 243

How sensor data interpretation could benefit from description logics:
A practical case study.
Ralf Möller and Sylvia Melzer 245

Cost-Efficient Web Service compositions for querying processes over
reasoning services.
Irma Sofia Espinosa Peraldi and Ralf Möller 247

Static Knowledge Representation of Multi-Agent System’s Specifica-
tion by Description Logic.
Haiyan Che and Jigui Sun . 249

A Tableaux-based Mobile DL Reasoner - An Experience Report.
Felix Müller, Michael Hanselmann, Thorsten Liebig and Olaf Nop-
pens . 251

Computing Maximally Satisfiable Terminologies for the Description
Logic ALC with Cyclic Definitions.
Kevin Lee, Thomas Meyer, Jeff Pan and Richard Booth 253

Pellet System Description.
Evren Sirin and Bijan Parsia 255

Topological Reasoning in Basic Description.
Matteo Cristani, Nicoletta Gabrielli and Paolo Torelli 257

The new ICOM Ontology Editor.
Pablo Fillottrani, Enrico Franconi and Sergio Tessaris 259

v

vi

Part I

Long Papers

Conjunctive Query Answering for Description
Logics with Transitive Roles

Birte Glimm∗ Ian Horrocks Ulrike Sattler
The University of Manchester, UK

[glimm,horrocks,sattler]@cs.man.ac.uk

Abstract

An important reasoning task, in addition to the standard DL reason-
ing services, is conjunctive query answering. In this paper, we present
algorithms for conjunctive query answering in the expressive Description
Logics SHQ and SHOQ. In particular, we allow for transitive (or non-
simple) roles in the query body, which is a feature that is not supported
by other existing conjunctive query answering algorithms. For SHQ, we
achieve this by extending the logic with a restricted form of ↓ binders and
state variables as known from Hybrid Logics. We also highlight, why the
addition of inverse roles makes the task of finding a decision procedure
for conjunctive query answering more complicated.

1 Introduction

Existing Description Logic (DL) reasoners1 provide automated reasoning sup-
port for checking concepts for satisfiability and subsumption, and also for an-
swering queries that retrieve instances of concepts and roles. The development of
a decision procedure for conjunctive query answering in expressive DLs is, how-
ever, still a partially open question. Grounded conjunctive queries for SHIQ
are supported by KAON2, Pellet, and Racer’s query language nRQL. However,
the semantics of grounded queries is different from the usually assumed open-
world semantics in DLs since existentially quantified variables are always bound
to named individuals.

∗This work was supported by an EPSRC studentship.
1For example, FaCT++ http://owl.man.ac.uk/factplusplus/, KAON2 http://

kaon2.semanticweb.org/, Pellet http://www.mindswap.org/2003/pellet/, or Racer Pro
http://www.racer-systems.com/

Proceedings of DL 2006 3

None of the existing conjunctive query answering techniques [14, 10, 4, 9, 13]
is able to handle transitive roles or nominals in the query body.2 In this paper,
we present an extension of SHQ with a restricted form of the ↓ binder operator
and state variables as known from Hybrid Logics [3]. This extended logic enables
an extension of the rolling-up technique [14, 4] to transitive roles; a feature which
was left open by Tessaris [14]. Unfortunately, the ↓ binder already makes the
DL ALC undecidable. For query answering, however, the ↓ binder occurs in
a very restricted form and, as we show in Section 4, this extension of SHQ is
decidable. Further on, we adapt the tableaux algorithm for SHOQ [7] in order
to decide conjunctive query entailment in SHQ.

Query answering for a logic that includes nominals, e.g., a logic such as
SHOQ, has the additional difficulty that cycles are no longer limited to ABox
individuals or shortcuts via transitive roles. Therefore, the non-deterministic
assignment of individual names to variables in a cycle, as suggested for the
DL DLR by Calvanese et al. [4], can no longer be applied. In Section 5,
however, we show that, by also introducing new variables, the non-deterministic
assignment of individual names to variables can be used in order to provide a
query answering algorithm for SHOQ.

Finally, we highlight why the extension of SHQ or SHOQ with inverse roles
makes the design of a decision procedure for conjunctive query answering more
complicated.

2 Preliminaries

We assume readers to be familiar with the syntax and semantics of the DL
SHOIQ (for details see [1]) and of SHOIQ knowledge bases. Therefore, we
introduce only the syntax and semantics of the ↓ binder and of conjunctive
queries here.

Let L be a Description Logic, C an L-concept, and NV a finite set of variable
names with y ∈ NV . With L↓, we denote the language obtained by allowing,
additionally, y and ↓y.C as L-concepts. For an interpretation I = (∆I ,·I), an
element d ∈ ∆I , and a variable y ∈ NV , we denote with I[y/d] the interpretation
that extends I such that yI = {d}. The L↓-concept ↓y.C is then interpreted as

(↓y.C)I = {d ∈ ∆I | d ∈ CI[y/d]}.
Let ~y be a vector of variables and ~c a vector of individual names. A Boolean

conjunctive query q has the form 〈〉 ← conj1(~y;~c) ∧ . . . ∧ conjn(~y;~c). We call
T(q) = ~y ∪ ~c the set of terms in q,3 and we call each conji(~y;~c) for 1 ≤ i ≤ n

2Although the algorithm presented by Calvanese et al. [4] allows the use of regular expres-
sions in the query (in particular the transitive reflexive closure), it has been shown that the
algorithm is incomplete [8, 5].

3For readability, we sometimes abuse our notation and refer to ~y as a set. When referring

4 Long Papers

an atom. Atoms are either concept or role atoms: a concept atom has the form
t : C, and a role atom the form 〈t, t′〉 : r, for {t, t′} ⊆ T(q), C a possibly complex
L-concept, and r an L-role.

Let K be an L-knowledge base (L-KB), I = (∆I ,·I) a model for K, and q a
Boolean conjunctive query for K. An assignment in I is a mapping ·A : T(q)→
∆I . We say that q is true in I and write I |= q if there exists an assignment
·A in I s.t. tA ∈ {tI} for every individual t ∈ ~c, tA ∈ CI for every concept atom
t : C in q, and 〈tA, t′A〉 ∈ rI for every role atom 〈t, t′〉 : r in q. We call such an
assignment a q-mapping w.r.t. I . If I |= K implies I |= q for all models I of
K, then we say that q is true in K, and write K |= q; otherwise we say that q is
false in K, and write K 6|= q.

Since answering non-Boolean conjunctive queries can be reduced to answer-
ing (possibly several) Boolean queries, we consider only Boolean queries here.

3 Reducing Query Answering to Concept Un-

satisfiability

The main ideas used in this paper were first introduced by Calvanese et al. [4]
for deciding conjunctive query entailment for the expressive DL DLRreg . Since
query answering can be reduced to query entailment, the algorithm in [4] is
capable of deciding conjunctive query answering as well. The authors show how
a query q can be expressed as a concept Cq, such that q is true w.r.t. a given
knowledge base if adding > v ¬Cq makes the KB unsatisfiable. In order to
obtain the concept Cq, the query q is represented as a directed, labelled graph.
This graph, called a tuple-graph or a query graph, is traversed in a depth-first
manner and, during the traversal, nodes and edges are replaced with appropriate
concept expressions, leading to the concept Cq after completing the traversal.

The nodes in a query graph correspond to the terms in the query and are
labelled with the concepts that occur in the corresponding concept atoms. The
edges correspond to the role atoms in q and are labelled accordingly. For
example, let q1 be the query 〈〉 ← x : C ∧ 〈x, y〉 : s ∧ y : D and q2 the query
〈〉 ← x : C ∧ 〈x, y〉 : s ∧ 〈y, x〉 : r ∧ y : D. The query graphs for q1 and q2 are
depicted in Fig. 1 and Fig. 2 respectively.

y:Dx:C s

Figure 1: The (acyclic) query
graph for q1.

y:Dx:C

r

s

Figure 2: The (cyclic) query
graph for q2.

Since q1 is acyclic, we can build the concept that represents q1 as follows:

to a vector ~y as a set, we mean the set {yi | yi occurs in ~y}.

Proceedings of DL 2006 5

start at x and traverse the graph to y. Since y is a leaf node, remove y and its
incoming edge and conjoin ∃s.D to the label C of x, resulting in C u ∃s.D for
Cq1 . A given KB K entails q1 iff K ∪ {> v ¬Cq1} is unsatisfiable. Since the
graph is collapsed with each step, the technique is often called rolling-up. Full
details can be found in the original paper [4], although the description there is
slightly different since reification and name formulae are used in order to reduce
DLRreg (which allows also for roles of arity n > 2) to converse-pdl. Tessaris
[14] proposes a similar approach for the DL SHQ (without transitive roles in
the query).

This reduction is not directly extendable to cyclic queries since, due to the
tree-model property of most DLs, a concept cannot capture cyclic relationships.
However, for simpler DLs, this also means that cycles can only be enforced by
ABox assertions and hence, Calvanese et al. suggest to replace variables in a
cycle, i.e., x and y in q2, non-deterministically with individual names from the
KB (or with terms from the more specific query in the case of query entailment).

Although the technique presented by Calvanese et al. provides the basic foun-
dation of several query answering algorithms, including the extensions presented
here, it was found later that the algorithm in its original form is not a decision
procedure. Horrocks et al. [8] point out that, by identifying variables with each
other, some cyclic queries become acyclic, and hence a replacement of variables
with named individuals might not find all solutions. For example, identifying y
and y′ in the query graph depicted in Fig. 3, leads to the acyclic query graph in
Fig. 4, which can be expressed as C u ∃r.∃s.D. Clearly, the KB containing the
ABox assertion a :∃r′.(C u∃r.∃s.D) would make the query true, although in the
relevant assignments none of the variables can be bound to the individual name
a.

x:C z:Dr

r

s

s

y�

y

Figure 3: The original query
graph.

x:C z:D

r s
y=y�

Figure 4: The query graph after
identifying y with y′.

Another problem arises through the regular expressions in DLRreg , which
are, for example, capable of expressing inverse roles in the query. Let q3 be the
query 〈〉 ← 〈x, y〉 : r ∧ 〈y, x〉 : s− (see Fig. 5). Identifying x and y still leaves us
with a cyclic query graph. Let K be a knowledge base containing the role axiom
r v s and the ABox assertion a : ∃r′.∃r.>. Clearly, we have that K |= q3 (see
Fig. 6), although again in the relevant assignments none of the variables can
be bound to the individual name a. Similar examples can be given for regular
expressions that use the Kleene star for expressing the transitive closure. These
discoveries motivated the work presented in the following sections, which in
particular targets the problems arising with cyclic queries.

6 Long Papers

x y

s-

r

Figure 5: The query
graph for q3.

a r� r, s

r -,s-r� -

Figure 6: A representation of the canonical
model of K. The parts that make q3 true
are highlighted.

4 The Rolling-Up Technique with ↓ Binders

An extension of the rolling-up technique to cyclic queries is not directly possible,
as we have tried to explain in the previous section. Due to the tree-model
property of most DLs, a concept cannot capture cyclic relationships, but it is
also not always correct to replace variable names in a cycle with individual names
from the knowledge base. In this section, we show how cyclic queries for an L-KB
can be rolled-up into L↓-concepts. The ↓ binder can label elements in a model
with a variable, and this variable can be used to enforce a co-reference. Consider
again the query q2〈〉 ← x : C ∧〈x, y〉 : s∧〈y, x〉 : r∧y : D (see Fig. 2). Using the ↓
binder, we can construct the following concept Cq2 for q2: ↓x.(Cu∃s.(Du∃r.x)).
In order to obtain this concept, we still traverse the query graph (see Fig. 7):
we start at x, traverse to y, then we reach x again and replace the r-edge by
conjoining ∃r.x to the label of y, now y is a leaf node and we replace y and
its incoming s-edge by conjoining ∃r.↓y.(D u ∃r.x) to the label of x, since x is
the last node, we obtain Cq2 as ↓x.(∃r.↓y.(D u ∃r.x). Since y never occurs as
a variable, we can omit the ↓ binder for y. Now we have again that K |= q2 iff
K ∪ {> v ¬Cq2} is unsatisfiable. Further details and a proof that Cq2 indeed
captures q2 can be found in a technical report [6].

y:Dx:C

r

s y:Dx:C

r

s y:Du9r.xx:C s x:Cu9s.#y.(Du9r.x)

Figure 7: The graph traversal for the query graph of q2 step by step. Parts
already seen during the traversal are highlighted.

Even for cyclic queries, the rolling-up is now straightforward. If, however,
the logic L under consideration does not provide for inverse roles, then this
technique is only applicable in case each component in the query graph is also
strongly connected. In the presence of weakly connected components, we would
need inverse roles in order to roll-up a query. For example, let q4 be the query
〈〉 ← x : C ∧ 〈x, y〉 : s∧ 〈x, y〉 : r∧ y : D, i.e., both edges go now from x to y and x
is not reachable from y. Therefore, the query graph is composed of two weakly
connected components and a traversal of the query graph would get stuck at y.
With inverse roles, q4 could easily be expressed as ↓x.(C u ∃s.(D u ∃Inv(r).x)).
Tessaris [14] shows how arbitrary conjunctive queries for SHQ can be rolled-up

Proceedings of DL 2006 7

even without inverse roles, and an extension of this technique might work for ↓
binders and variables as well.

y:Dx:C

r

s

Figure 8: The query graph for q4.

Unfortunately, there are no decision procedures for expressive DLs with the
↓ binder operator. It is even known that ALC extended with binders and state
variables is undecidable [2]. However, we can observe some interesting properties
for our query concepts. (1) After the rolling-up, all variables occur only posi-
tively. (2) Only existential restrictions are introduced in the rolling-up. Hence,
negating the query concept for q2 and transforming it into negation normal form
yields ↓x.(¬Ct∀s.(¬Dt∀r.¬x)) and we observe that all variables occur negated
and are under the scope of universal quantifiers. For ALC, these restrictions are
enough to regain decidability [11].

4.1 A Tableaux Algorithm for SHQ Query Concepts

Our algorithm is based on the tableaux algorithm for SHOQ [7], which obviously
decides KB satisfiability for SHQ. Using this algorithm has the advantage that
we can use nominals for the constants in the query. Alternatively, representative
concepts and additional ABox assertions for each constant in a query could be
used [14]. A tableaux algorithm builds a finite representation of a model, which
is called a completion graph. The nodes in the completion graph represent
elements in the domain and are labelled with a set of concepts. Labelled edges
represent the relational structures among the elements. An initial completion
graph is expanded according to a set of expansion rules. The expansion stops
when an obvious contradiction, called a clash, occurs, or when no more rules
are applicable. In the latter case, the completion graph is called complete.
Termination is guaranteed by a technique called blocking. A complete and
clash-free completion graph can be “unravelled” into a model for the given KB.

In order to handle query concepts that may contain binders and state vari-
ables, some adaptations of the existing algorithm are necessary. In order to store
the bindings of variables, we modify the node labels s.t. they contain tuples of
the form 〈C, B〉, where C is a concept and B is a (possibly empty) set of bind-
ings of the form {y1/v1, . . . , yn/vn}, where y1, . . . , yn are the free variables in C
and v1, . . . , vn are nodes. The next obvious addition is a rule to handle concepts
of the form ↓y.C: if 〈↓y.C, B〉 is in the label of a node v, we add 〈C, {y/v}∪B〉
and 〈y, {y/v}〉 to the label of v. The latter states that y is bound to v at v, and
the former that the free variable y in C is bound to v. All other existing rules

8 Long Papers

have to propagate the bindings as well, e.g., the ∀-rule applied to 〈∀r.C, B〉 in
the label of a node v adds 〈C, B〉 to the labels of v’s r-successors. The set B
contains all and only the bindings for the free variables in C. Another obvious
consequence is the addition of a new clash condition: if both 〈y, {y/v}〉 and
〈¬y, {y/v}〉 are in the label of the node v, then this is a clash.

A more challenging task is the extension of the blocking condition. For SHQ,
however, we argue that we can simply ignore the bindings, i.e., if 〈C, B〉 is in
the label, we consider only C in the blocking condition. This clearly ensures
termination. But why does this guarantee that we can unravel a complete and
clash-free completion forest into a model? Obviously, in SHQ, there is no
way for a node to propagate information “back” to its ancestors, and clashes
according to the new clash condition can only occur through a cyclic structure.
This is so because a node v is only labelled with 〈y, {y/v}〉 by an application of
the new ↓-rule to some concept 〈↓y.C, B〉 in the label of v. Furthermore, the
only way ¬y can occur with v as a binding is when 〈C, {y/v} ∪B〉 is expanded
to 〈¬y, {y/v}〉 via a cyclic path back to v. This is obviously only possible among
individual nodes in SHQ and, therefore, no clash in the tableau can by caused
by unravelling. Hence, transitive roles alone are not causing major problems.

An interesting consequence is, however, that we loose the finite model prop-
erty. For example, let K contain the axioms > v ∃r.> and > v ¬Cq with r
a transitive role and ¬Cq := ↓x.(∀r.¬x). The first axiom enforces an infinite
r-chain for every individual. Normally, a finite model could contain an r-cycle
instead of an infinite chain, but this would clearly violate ¬Cq. Hence, every
model of K must be acyclic and therefore contain an infinite r-chain.

5 A Rolling-up Technique for SHOQ
In this section, we show how the rolling-up technique can be extended to the
DL SHOQ, i.e., SHQ plus nominals. We do not use ↓ binders here, but rather
propose an extension of the guessing technique as sketched in Section 3. In the
presence of nominals, a simple non-deterministic assignment of individual names
to variables that occur in a cycle is not sufficient. For example, Fig. 9 represents a
model for the KB containing the axioms {a} v ¬Cu¬Du∃s.(Cu∃r.(Du∃s.{a}))
and trans(s). The query 〈〉 ← x : C∧y : D∧〈x, y〉 : r∧〈y, x〉 : s (see Fig. 10) would
clearly be true, although in the relevant assignments a cannot be bound to either
x or y. Since the query graph for this query contains just one strongly connected
component, no inverse roles are required in the rolling-up and we should be able
to deal with this query.

For SHOQ, our main argument for the correctness of an extension of the
guessing of variable assignments is that a cycle among new nodes can only occur
due to a transitive role that provides a shortcut for “skipping” the nominal.

Proceedings of DL 2006 9

n1:Ca:¬Cu¬D

s

s n2:Dr

s

Figure 9: The dashed line indicates the relationship added due to s being tran-
sitive. Therefore, there is a cycle not directly containing the nominal a.

Hence, a nominal is always at least indirectly involved in a cycle. In this case, we
have only one nominal a, and we may guess that it is either in the position of x,
in the position of y, or it is “splitting” the (transitive) role s (see Fig. 11). In each
case, we can roll-up the query graph into the nominal, obtaining the three query
concepts C1

q := {a}uCu∃r.(Du∃s.{a}), C2
q := {a}uDu∃s.(Cu∃r.{a}), C3

q :=
{a} u ∃s.(C u ∃r.(D u ∃s.{a})). Identifying x with y gives the additional forth
query concept C4

q := {a} u C uD u ∃r.{a} u ∃s.{a}. The query is true just in
case one of these query concepts is entailed by the KB. Clearly, in our example,
only the concept C3

q that corresponds to the “new” guess is entailed. If we had
n nominals, then we would need to try 4n guesses.

x:C y:Dr

s

Figure 10: The original
query graph.

x:C y:Dr

s sa

Figure 11: An alternative query graph
in which the nominal a is assumed to be
involved in the cycle.

Since it was, to the best of our knowledge, not even known if conjunctive
query answering for logics with nominals and transitive roles is decidable, this
technique is clearly valuable, although it is, due to its highly non-deterministic
nature, not very practical.

6 The Challenges of Inverses and Nominals

Neither the arguments used for the extension of SHQ with binders (i.e., blocking
can ignore different bindings), nor the extended guessing strategy for SHOQ,
can be used with inverse roles. Fig. 12 shows a representation of a model for
the concept {a} u ∃r.(∃s.>) for s a transitive and symmetric role. The query
〈〉 ← 〈x, x〉 : s is obviously true in this model. The nominal a is, however, not
even indirectly involved in the cycle.

n1a r n2s

ss s

Figure 12: The dashed lines represent the additional relationships added for s
being transitive and symmetric.

10 Long Papers

Since completion graphs are finite representations of models, the question is
how far do we have to expand a completion graph before blocking is “safe”, i.e.,
unravelling into a tableau does not lead to a clash.

In order to see the same problem from another perspective, we briefly sketch
a different query answering algorithm in the style of CARIN [10]. CARIN
provides a conjunctive query answering algorithm for the DL ALCNR. Recall
from Section 2 that a query q is true in a knowledge base K, if there is a q-
mapping for every model I = (∆I ,·I) of K. Similarly, we define a mapping
φ from terms in a query to nodes in a completion graph G and we call φ a
q-mapping w.r.t. G if, for each constant t in q, {t} is in the label of φ(t) (i.e.,
constants are mapped to the corresponding nominal nodes), for each concept
atom t : C in q, C is in the label of φ(t) and, for each role atom 〈t, t′〉 : r in q, φ(t′)
is an r-descendant of φ(t), where r-descendant implicitly closes the transitive
roles. Since φ is purely syntactic, we extend the KB with an axiom > v C t¬C
for each concept C s.t. t : C is a concept atom in q. Hence, we obtain a decision
procedure for conjunctive query answering if we can show the following:

Claim 6.1
For each model I of K, there is a q-mapping w.r.t. I iff for each completed and
clash-free completion graph G of K, there is a q-mapping w.r.t. G.

In order to take the length of the paths in the query into account, blocking
must be delayed appropriately. In CARIN (i.e., for a logic without transitive
roles) this is achieved by using two isomorphic trees (instead of two isomorphic
pairs as it is the case for normal pairwise blocking as in SHIQ) s.t. the depth
of the trees corresponds to the longest path in the query.

The “if” direction of Claim 6.1 is relatively straight forward but, for the
“only if” direction, we have to show that (in contrapositive form), if there is a
completion graph G for K s.t. there is no q-mapping φ w.r.t. G, then there is a
model I of K s.t. there is no q-mapping σ w.r.t. I. We now give an example that
shows that, even if we find such a completion graph G, we cannot guarantee
that there is no mapping σ w.r.t. the canonical model I of G, if q contains
a cycle with a transitive role occurring in it. Of course there may be another
completion graph, for which this problem does not occur, but it is hard to prove
that there is always a canonical counter-model for the query.

Let K be a KB containing the axiom > v ∃r.> t ∃s.> for r a transitive
and symmetric role and let q be the query 〈〉 ← 〈x, x〉 : r ∧ 〈x, y〉 : s ∧ 〈y, z〉 : r ∧
〈z, z〉 : r ∧ x : C ∧ z : C, see Fig. 13 right. The upper part of Fig. 13 shows a
possible (simplified) completion graph G for K, where C or ¬C is added to the
node labels to allow for a purely syntactic mapping φ. The grey underlying
triangle shapes illustrate the two isomorphic trees used for blocking, and clearly
there is no q-mapping w.r.t. G. The partial representation of a model depicted
in the lower part of Fig. 13, however, shows that, by unravelling G, we would get

Proceedings of DL 2006 11

a model I of K s.t. there is a q-mapping w.r.t. I. This is the case because there
is no longer only one element in the extension of C, and all role relationships
for q are satisfied since r is transitive and symmetric (inferred relationships are
only pictured where they are relevant for the mapping). Even choosing a larger
depth for the two trees would allow this to happen, since the decision for C or
¬C and for an r- or s-successor was purely non-deterministic.

r r r r r r r r rsr r r rsr

x:C

s

z:C

r

¬C

r

¬C

r

¬C

r

¬C

r

¬C

r

¬C C ¬C

r

¬C

r

¬C

r

¬C

r

¬C

r r

y

sr

¬C ¬C ¬C ¬C ¬C ¬C C ¬C ¬C ¬C ¬C ¬C C ¬C ¬C ¬C

r rr

Figure 13: A completion graph G with trees for blocking (top), a partial un-
ravelling of G (bottom), and a query graph (right).

Therefore, the absence of a q-mapping for the completion graph does not
prove that there is a model for which there is no q-mapping. Requiring several
isomorphic trees or pairs before blocking occurs obviously does not help either
since only one part between the isomorphic trees/pairs could contain the twice
required C in the node label. The problem is that, by repeating the unique part
between the blocking and the blocked node, we can produce a structure that
allows for a q-mapping.

A tempting solution for “safe” blocking conditions would be to require a path
of n isomorphic sequences directly following each other, where n is the length
of the longest path in the query. However, this will not guarantee termination,
as the following argument shows: we could interpret each path from a root
or nominal node as a word over the edge labels, e.g., the above example would
produce a word starting with rrrrrrsrrrr. For the suggested blocking condition,
such a path must contain a substring of the form W n, i.e., n repetitions of the
word W , where W is any sequence of letters over our alphabet of roles. The
additional blocking conditions for the node labels are irrelevant here. In 1944
Morse and Hedlund [12] showed that the so called Thue-Morse sequence, which
forms a word over an alphabet of only two letters, is cube-free, which would
correspond to a path of unbounded length in which no blocking occurs. Hence,
the algorithm would not terminate for n > 3. For a three letter alphabet, this
holds already for n > 2.

We encounter similar difficulties when using ↓ binders and variables for a logic
like SHIQ or SHOIQ. It is difficult to determine how “deep” the completion
graph has to be before blocking is safe. If the completion graph is not “deep
enough”, unravelling does not yield a model.

Although for the CARIN technique, some canonical models with a q-mapping
have completion graphs without a q-mapping, it seems as if by testing all possi-

12 Long Papers

ble completed and clash-free completion graphs, one would always find at least
one completion graph such that also its canonical model does not provide for a
q-mapping. However, this is only an observation, which could support the view
that the problem is, despite all these problems, decidable. A different proof
technique might be necessary to show this, and our future work is aimed at
investigating this.

7 Conclusions

In the previous sections, we have presented two ideas that allow an extension of
the rolling-up technique also to cyclic conjunctive queries for SHQ and SHOQ.
For SHQ, we achieved this by extending the logic with a restricted form of
↓ binders and state variables as known from Hybrid Logics. This allows the
expression of cyclic queries as concepts since, with ↓ binders and variables we
can express a co-reference. Query entailment can then be reduced to deciding
concept satisfiability for the extended DL. However, adding the ↓ binder, even in
the very restricted form needed for query answering, has a notable impact on the
resulting logic; e.g., for SHQ, this extension leads to the loss of the finite model
property. In Section 4.1, we illustrate how a tableaux algorithm for SHQ can
be extended in order to handle query concepts. Although each ↓ introduces a
fresh nominal on the fly, we show that, for SHQ, termination can be regained by
ignoring them in the blocking condition. Thus we have shown how conjunctive
queries with transitive roles in the query body can be answered.

In Section 5, we extend the work by Calvanese et al. [4] to SHOQ, i.e., to
a logic that allows for nominals. We do this by proposing a more sophisticated
guessing technique, which then again enables the rolling-up of a query into a
SHOQ-concept.

In Section 6, we highlight why none of the proposed techniques extends easily
to a logic with inverse roles. We also show this for a query entailment algorithm
in the style of CARIN [10]. The main problem is to decide when a completion
graph is expanded “far enough” in order to safely predict that the query is also
not entailed in its possibly infinite canonical model.

The rolling-up technique with binders and variables integrates seamlessly into
the existing tableaux algorithms, whereas, for the CARIN-style algorithms, the
search for a q-mapping is an additional and completely separated step. Moreover,
the added axioms > v Ct¬C for every concept C in the query, can significantly
increase the amount of non-determinism. This makes binders and variables the
more attractive choice from an implementation point of view.

Our future work will include efforts to show that answering arbitrary con-
junctive queries for SHIQ and SHOIQ is decidable. If that is the case — and
we believe it is — we aim at extending the rolling-up technique with binders

Proceedings of DL 2006 13

and state variables to SHIQ, SHOQ and SHOIQ. This would provide a
(hopefully practical) decision procedure for arbitrary conjunctive queries over
OWL-DL knowledge bases.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P.F̃. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[2] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and
Information, 4(3):251–272, 1995. Special issue on decompositions of first-order
logic.

[3] P. Blackburn and J. Seligman. Advances in Modal Logic, volume 1, chapter What
are hybrid languages?, pages 41–62. CSLI, 1998.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS’98, pages 149–158. ACM, 1998.

[5] B. Glimm and I. Horrocks. Handling cyclic conjunctive queries. In Proc. of
DL’05, Edinburgh, UK, July 26–28 2005. CEUR.

[6] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answering for the
description logic SHOIQ. Technical report, The University of Manchester, 2006.
Available online at http://www.cs.man.ac.uk/∼glimmbx/download/GlHS06b.pdf.

[7] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ description logic.
In Proc. of IJCAI’01, pages 199–204. Morgan Kaufmann, 2001.

[8] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query contain-
ment under constraints using a description logic. In Proc. of LPAR’00, LNAI.
Springer, 2000.

[9] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision proce-
dures by resolution-based calculi. In Proc. of LPAR’04, volume 3452 of LNCS.
Springer, 2004.

[10] A. Y. Levy and M.-C. Rousset. CARIN: A representation language combining
horn rules and description logics. In European Conf. on Artificial Intelligence,
pages 323–327, 1996.

[11] M. Marx. Narcissists, stepmothers and spies. In Proc. of DL’02, volume 53.
CEUR, 2002.

[12] M. Morse and G. A. Hedlund. Unending chess, symbolic dynamics, and a problem
in semigroups. Duke Mathematical Journal, 11(1):1–7, 1944.

[13] M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for
conjunctive query answering in expressive description logics. In Proc. of the 21st
Nat. Conf. on Artificial Intelligence (AAAI’06), 2006. to appear.

[14] S. Tessaris. Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester, 2001.

14 Long Papers

Efficient Reasoning in EL+

Franz Baader, Carsten Lutz, Boontawee Suntisrivaraporn
Institute for Theoretical Computer Science

TU Dresden, Germany
{baader,clu,meng}@tcs.inf.tu-dresden.de

1 Introduction

The early dream of a description logic (DL) system that offers both sound and
complete polynomial-time algorithms and expressive means that allow its use
in real-world applications has since the 1990ies largely been considered to be
a pipe dream. This was, on the one hand, due to complexity results showing
intractability even in very inexpressive DLs [5], in particular in the presence
of TBoxes [13]. On the other hand, many of the applications considered then
required more expressive power rather than less, which led to the development of
more and more expressive DLs. The use of such intractable DLs in applications
was made possible by the fact that highly-optimized tableau-based reasoners for
them behaved quite well in practice.

However, more recent developments regarding the EL family of DLs have
shed a new light on the realizability of this dream.1 On the one hand, theoreti-
cal results [1, 6, 2] have shown that reasoning in EL and several of its extensions
remains tractable in the presence of TBoxes and even of general concept inclu-
sions (GCIs). On the other hand, it has turned out that, despite its relatively
low expressivity, the EL family is highly relevant for a number of important
applications, in particular in the bio-medical domain: for example, medical ter-
minologies such as the Systematized Nomenclature of Medicine (Snomed) [9]
and the Galen Medical Knowledge Base (Galen) [14] are formulated in EL or
small extensions thereof, and the Gene Ontology (Go) [8] used in bioinformatics
can also be viewed as an EL TBox.

In this paper, we address the question of whether the polynomial-time algo-
rithms for reasoning in EL and its extensions really behave better in practice
than intractable, but highly-optimized tableau-based algorithms. To this end,
we have implemented a refined version of the algorithm described in [2] in our

1An alternative contender for a usable tractable DL is the one introduced in [7].

Proceedings of DL 2006 15

Endocardium v Tissue u ∃cont-in.HeartWall u

∃cont-in.HeartValve

HeartWall v BodyWall u ∃part-of.Heart

HeartValve v BodyValve u ∃part-of.Heart

Endocarditis v Inflammation u ∃has-loc.Endocardium

Inflammation v Disease u ∃acts-on.Tissue

Heartdisease u ∃has-loc.HeartValve v CriticalDisease

Heartdisease
.
= Disease u ∃has-loc.Heart

part-of ◦ part-of v part-of

part-of v cont-in

has-loc ◦ cont-in v has-loc

Figure 1: An example EL+ ontology.

CEL reasoner,2 and compared its performance on the large bio-medical ontologies
Snomed, Go, and a trimmed-down version of Galen with the performance of
the most advanced tableau-based reasoners FaCT++,3 RacerMaster,4 and Pellet5

on these ontologies.

2 EL+ and the algorithm implemented in CEL

The CEL system currently supports the DL EL+, whose concepts are formed
according to the syntax rule

C ::= A | > | C u D | ∃r.C,

where A ranges over concept names, r over role names, and C,D over concepts.
Thus, the concept language of EL+ is identical to that of EL. The ·+ in its
name refers to the more powerful ontology formalism. An EL+ ontology is a
finite set of general concept inclusions (GCIs) C v D and role inclusions (RIs)
r1 ◦ · · · ◦ rn v r. Note that EL+ ontologies can thus express transitive roles, role
hierarchies, and so-called right-identities on roles (r◦s v s), which are very useful
in medical ontologies [15, 11]. The semantics of concepts and ontologies is defined
in the usual way (see, e.g., [2]). We write C vO D if the concept C is subsumed
by the concept D w.r.t. the ontology O. Figure 1 shows a small medical ontology
formulated in EL+. Based on this ontology, it is not hard to see that the

2CEL can be downloaded from http://lat.inf.tu-dresden.de/systems/cel/
3See http://owl.man.ac.uk/factplusplus/
4See http://www.racer-systems.com/
5See http://www.mindswap.org/2003/pellet/

16 Long Papers

Normal Form Completion Rules

A1 u · · · u An v B R1 If A1, . . . , An ∈ S(X), A1 u · · · u An v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) /∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3 If (X,Y) ∈ R(r), A ∈ S(Y), ∃r.A v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y) ∈ R(r), r v s ∈ O, and (X,Y) /∈ R(s)
then R(s) := R(s) ∪ {(X,Y)}

r ◦ s v t R5 If (X,Y) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O,
and (X,Z) /∈ R(t)

then R(t) := R(t) ∪ {(X,Z)}

Figure 2: Normal form and completion rules

concept Endocarditis is subsumed by the concept Heartdisease and CriticalDisease

(i.e. Endocarditis vO Heartdisease and Endocarditis vO CriticalDisease).
The main reasoning service that CEL offers is classification, i.e., the computa-

tion of the complete subsumption hierarchy between all concept names occurring
in the input ontology O. The CEL reasoner is based on the polynomial time al-
gorithm developed in [2] for the extension EL++ of EL+, which can additionally
handle the bottom concept (and thus disjoint concepts), restricted concrete do-
mains, and nonimals (and thus ABoxes). In the following, we briefly introduce
the restriction of this algorithm to EL+, and then describe the refined version
of this algorithm implemented in our CEL reasoner.

To classify an ontology, the algorithm first transforms it into normal form,
which requires that all concept and role inclusions are of one of the forms shown
in the left part of Figure 2. By introducing new concept and role names and
applying a number of simple transformation rules, any ontology O can be trans-
formed in linear time into a normalized one such that subsumption between the
concept names occurring in O is preserved [16, 2].

For the rest of this section, we assume without loss of generality that the
input ontology O is in normal form. Let RNO be the set of all role names
occurring in O, CNO the set of all concept names occurring in O, and CN>

O :=
CNO ∪ {>}. The algorithm computes

• a mapping S assigning to each element of CN>
O a subset of CN>

O, and

• a mapping R assigning to each element of RNO a binary relation on CN>
O.

The intuition is that these mappings make implicit subsumption relationships
explicit in the sense that B ∈ S(A) implies A vO B, and (A,B) ∈ R(r) implies

Proceedings of DL 2006 17

A vO ∃r.B. The mappings are initialized by setting S(A) := {A,>} for each
A ∈ CN>

O and R(r) := ∅ for each r ∈ RNO. Then the sets S(A) and R(r) are
extended by applying the completion rules shown in the right part of Figure 2
until no more rule applies.

In [2], it is shown that this algorithm always terminates in time polynomial in
the size of the input ontology, and that it is sound and complete in the following
sense: after termination we have B ∈ S(A) iff A vO B, for all A,B ∈ CN>

O.
Thus, the sets S(A) yield a complete representation of the subsumption relation
vO on the concept names from O (including >).

It is obvious that, when implementing this algorithm, an efficient approach
for finding an applicable rule must be developed. Though a näıve brute-force
search for applicable rules would still yield a polynomial time algorithm, its
complexity on very large knowledge bases would be prohibitive. As a solution
to this problem, we use a refined version of the algorithm, which is inspired
by the linear-time algorithm for satisfiability of propositional Horn formulas
proposed in [10]. More precisely, our algorithm uses a set of queues, one for
each element of CN>

O, to guide the application of completion rules. Intuitively,
the queues list additions to S(A) and R(r) that still have to be carried out. The
possible entries of the queues are of the form

B1 u · · · u Bn → B′ and ∃r.B

with B1, . . . , Bn, B, and B′ concept names, r a role name, and n ≥ 0. For
the case n = 0, we simply write the queue entry B1 u · · · u Bn → B′ as B′.
Intuitively,

• an entry B1 u · · · u Bn → B′ in queue(A) means that B ′ has to be added
to S(A) if S(A) already contains B1, . . . , Bn, and

• ∃r.B ∈ queue(A) means that (A,B) has to be added to R(r).

The fact that such an addition triggers other rules will be taken into account by
appropriately extending the queues when the addition is performed.

To facilitate describing the manipulation of the queues, we view the (normal-

ized) input ontology O as a mapping Ô from concepts to sets of queue entries

as follows: for each concept name A ∈ CN>
O, Ô(A) is the minimal set of queue

entries such that

• if A1 u · · · u An v B ∈ O and A = Ai, then

A1 u · · · u Ai−1 u Ai+1 u · · · u An → B ∈ Ô(A);

• if A v ∃r.B ∈ O, then ∃r.B ∈ Ô(A).

18 Long Papers

procedure process(A, X)
begin

if X = B1, . . . , Bn → B and B /∈ S(A) then

if {B1, . . . , Bn} ⊆ S(A) then

S(A) := S(A) ∪ {B};

queue(A) := queue(A) ∪ Ô(B);
for all concept names A′ and role names r

with (A′, A) ∈ R(r) do

queue(A′) := queue(A′) ∪ Ô(∃r.B);
if X = ∃r.B and (A, B) /∈ R(r) then

process-new-edge(A, r, B)
end;

procedure process-new-edge(A, r, B)
begin

for all role names s with r v∗
O s do

R(s) := R(s) ∪ {(A, B)};

queue(A) := queue(A) ∪
⋃
{B′|B′∈S(B)} Ô(∃s.B′);

for all concept names A′ and role names t, u with
t ◦ s v u ∈ O and (A′, A) ∈ R(t) and (A′, B) 6∈ R(u) do

process-new-edge(A′, u, B);
for all concept names B′ and role names t, u with

s ◦ t v u ∈ O and (B, B′) ∈ R(t) and (A, B′) 6∈ R(u) do

process-new-edge(A, u, B′);
end;

Figure 3: Processing the queue entries

Likewise, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue entries

such that, if ∃r.A v B ∈ O, then B ∈ Ô(∃r.A).

In the modified algorithm, the queues are used as follows: since the sets S(A)

are initialized with {A,>}, we initialize queue(A) with Ô(A) ∪ Ô(>), i.e., we
add to the queues the immediate consequences of being an instance of A and
>. Then, we repeatedly fetch (and thereby remove) entries from the queues
and process them using the procedure process displayed in Figure 3. To be
more precise, process(A,X) is called when the queue of A was non-empty and
we fetched the queue entry X from queue(A) to be treated next. Observe that
the first if-clause of the procedure process implements R1 and (part of) R3, and
the second if-clause implements R2, (the rest of) R3, as well as R4 and R5. The
procedure process-new-edge(A, r,B) is called by process to handle the effects of
adding a new pair (A,B) to R(r). The notation v∗

O used in its top-most for-

Proceedings of DL 2006 19

loop stands for the reflexive-transitive closure of the statements r v s occurring
in O. Queue processing is continued until all queues are empty. Observe that
the refined algorithm need not perform any search to check which completion
rules are applicable.

With a relatively straightforward implementation (in Common LISP) of this
algorithm, we were able to classify the large Snomed ontology (see below) in
less than 4 hours (see [4] for this and other experimental results). Since then,
however, we have further improved the implementation by changing the strategy
of rule applications, changing the encoding of concept and role names, and by
using low-level optimizations of the underlying data structure. These optimiza-
tions have enhanced the performance of CEL on large real-world ontologies. In
particular, CEL can now classify Snomed in less than half an hour (see below).

3 The experimental results

To test whether CEL can compete with modern tableau based reasoners, we
have conducted a number of experiments based on three important bio-medical
ontologies: the Gene Ontology (Go) [8], the Galen Medical Knowledge Base
(Galen) [14], and the Systematized Nomenclature of Medicine (Snomed) [9].
These ontologies provide us with the following benchmark EL+ ontologies:

• OGo, which is the latest OWL version of Go;

• OGalen, which is a stripped-down version of Galen obtained by removing
inverse role axioms and treating functional roles as ordinary ones;

• OSnomed, which is the complete Snomed ontology;

• OSnomed

core
, which is the definitorial fragment of OSnomed, obtained by keeping

only complete concept definitions (A ≡ C) , but not the primitive ones
(A v C). We consider this fragment in order to obtain another benchmark
that is easier to tackle for standard DL reasoners.

Some information about the size and structure of these ontologies is shown in
the upper part of Table 1, where CDefs stands for complete concept definitions
(A ≡ C), PCDefs for primitive concept definitions (A v C), and GCIs for
concept inclusions that are neither CDefs nor PCDefs. It is interesting to note
that all ontologies except for OGalen are actually acyclic TBoxes.

We have compared the performance of CEL with three of the most advanced
tableau-based reasoning systems: FaCT++ (v1.1.0), RacerMaster (v1.9.0), and
Pellet (v1.3b). All these systems implement expressive DLs in which subsump-
tion is ExpTime-complete. The experiments have been performed on a PC with
2.8GHz Intel Pentium 4 processor and 512MB memory running Linux v2.6.14.

20 Long Papers

OGo OGalen OSnomed
core

OSnomed

No. of CDefs. 0 699 38,719 38,719

No. of PCDefs. 20,465 2041 0 340,972

No. of GCIs 0 1214 0 0

No. of role axioms 1 438 0 11 + 1

|CNO| 20,465 2,740 53,234 379,691

|RNO| 1 413 52 52

CEL 5.8 14 95 1,782

FaCT++ 6.9 50 740 3,859

RacerMaster 19 14 34,709 unattainable

Pellet 1,357 75 unattainable unattainable

Table 1: Benchmarks and Evaluation Results

For Pellet, we used JVM v1.5 and set the Java heap space to 256MB (as recom-
mended by the implementor). In the case of Galen, for the sake of fairness also
the tableau reasoners have been used with the restricted version of Galen that
includes neither functional nor inverse roles. In the case of Snomed, the only
existing right-identity rule was passed to CEL, but not to the other reasoners as
they do not support right identities. The results of our experiments are sum-
marized in the lower part of Table 1, where all classification times are shown in
seconds and unattainable means the reasoner failed due to memory exhaustion.
Notably, CEL outperforms all the reasoners in all benchmarks except for OGalen,
where CEL and RacerMaster show the same performance.

CEL and FaCT++ are the only reasoners that can classify OSnomed, whereas
RacerMaster and Pellet fail. Pellet and the original version of FaCT (not shown
in the table) also fail already to classify OSnomed

core
. It seems worth noting that the

performance of FaCT++ on OSnomed degrades dramatically if OSnomed is extended
with real GCIs. For instance, FaCT++ needs about 3,000 more seconds to classify
OSnomed for each additional randomly generated GCI of the form ∃r.C v D,
whereas the performance of CEL does not change noticeably if we add such
GCIs.

4 Computing the Subsumption DAG

The innate classification output of CEL is simply the computed sets S(A) for all
concept names A. We call these sets subsumer sets in what follows. In contrast,
tableau-based reasoners usually employ the enhanced traversal method from [3]
to generate a directed acyclic graph (DAG) describing the direct subsumption
relationships, i.e., for every concept name A they compute the sets of its direct

Proceedings of DL 2006 21

subsumers and subsumees, which are the sets of concept names B such that
A vO B (B vO A) and there is no concept name B ′ /∈ {A,B} with A vO B′ vO

B (B vO B′ vO A). We will call this graph the subsumption DAG. Since the
subsumption relation is a quasi-order rather than a partial order (i.e., in general
not antisymmetric), one node of the DAG actually corresponds to an equivalence
class of concept names rather than a single concept name. The advantage of
using subsumption DAGs over subsumer sets is that this format is more compact,
and it directly supports browsing the subsumption hierarchy by going from a
concept name to its direct subsumers or subsumees. The disadvantage is that
answering a subsumption question A v?

O B then requires to test reachability of
B from A in the DAG, and not just a look-up in the subsumer set S(A).

Since many applications require subsumption DAGs rather than (or in addi-
tion to) subsumer sets, CEL allows to construct the former from the latter in an
efficient way. In principle, converting subsumer sets into a subsumption DAG is
easy. We can simply compute, for each concept name A,

• the set SS (A) := {B ∈ S(A) | A /∈ S(B)} of strict subsumers of A, i.e.,
subsumers of A that are not equivalent to A;

• the set DS (A) := SS (A) \
(⋃

B∈SS(A) SS (B)
)

of direct subsumers of A;

• the set DS−(A) := {B | A ∈ DS (B)} of direct subsumees of A.

Clearly, the sets DS (A) and DS−(A) yield a representation of the subsumption
DAG.

However, we do not use this direct construction since computing the sets
DS−(A) is expensive (it needs quadratic time) and it is possible to avoid the
direct computation of these sets according to the above definition by using an
approach that is inspired by the enhanced traversal method in [3]. Another
virtue of our alternative approach is that the potentially costly set operations in
the computation of DS (A) are replaced by an inexpensive marking algorithm.

In order to explain the main idea underlying our algorithm, assume that we
have already computed a restriction of the subsumption DAG to some subset
of the concept names, and that we now want to insert the concept name A into
this DAG. We start by computing the set SS (A) of strict subsumers according
to the definition given above. The elements of S(A) \ SS (A) are the concepts
that are equivalent to A. To find all the direct subsumers of A among the
elements of SS (A), we proceed as follows. If all elements of SS (A) belong to
the already computed DAG, we can find the direct subsumers by using a simple
graph traversal algorithm to mark all the strict subsumers of elements of SS (A)
in the DAG. The direct subsumers of A are then those elements of SS (A) that
are not marked. If there are elements of SS (A) that do not belong to the already
computed DAG, then we simply first insert these elements into the DAG (by

22 Long Papers

issuing recursive calls of the insertion procedure) before inserting A. By following
this strategy, we ensure that, when inserting a concept name A into the DAG,
all subsumers of A are already in the DAG, but no subsumee of A is. Hence,
our algorithm need not compute the direct subsumees explicitly. Instead, it is
enough to extend the set of direct subsumees of B by A in case B is found to
be a direct subsumer of A.

Figure 4 shows a pseudo code representation of our algorithm. The sets
parents(A) are used to store the direct subsumers of A, the sets children(A) are
used to store the direct subsumees of A, and the sets equivalents(A) are used to
store the concepts that are equivalent to A. Note that the description of the
algorithm is a bit sloppy in that we do not distinguish between a concept name
and the node in the DAG representing (the equivalence class of) this name.

An algorithm similar to ours is obtained if we describe the subsumer sets
as a primitive TBox, i.e. a set of primitive concept definitions A v uBi∈S(A)Bi

for each concept name A, and then employ a simplified version of the enhanced
traversal method [3] using told subsumer information and some of the optimiza-
tions described in [12] to compute the subsumption DAG from the resulting
TBox.

The time required by CEL for computing subsumption DAGs is very small.
For example, even in the case of OSnomed, which has almost 380,000 concepts
and huge subsumer sets, it takes only 9 seconds. This is negligible compared
to the time needed to compute the subsumer sets. In particular, if we add this
time to CEL’s run-time on OSnomed in Table 1, CEL is still more than twice as
fast as FaCT++.

There is an obvious alternative to first computing the full subsumer sets,
and only then deriving the subsumption DAG from them: we could modify our
classification algorithm, which computes the whole subsumption hierarchy, into
a subsumption algorithm that answers only a single subsumption query, and then
use this subsumption algorithm inside a standard enhanced traversal algorithm
as described in [3]. We have experimented with this strategy, which is closer
to the approach employed by tableau-based systems. To turn our algorithm
into a subsumption algorithm, we have developed a goal-directed variant of it,
which is based on activating a concept name if computing its subsumer set is
required for answering the subsumption question at hand. If the aim is to answer
the subsumption query A v?

O B, then initially only A is activated. Intuitively,
completion rules are only applied to activated names. We activate a concept
name B′ whenever B′ is the second component of a tuple added to some R(r).
The set S(A′) and the queue of A′ is initialized only when the concept name
becomes activated, and thus the subsumer sets of concept names that do not
become activated are not populated by the algorithm. During the construction of
the whole subsumption DAG, the enhanced traversal procedure makes repeated
calls to the subsumption algorithm. To avoid redoing work, we retain the already

Proceedings of DL 2006 23

procedure compute-dag

for all concept names X ∈ CN>
O do

classified(X) := false

parents(X) := children(X) := equivalents(A) := ∅

for each concept name A ∈ CN>
O do

if not classified(A) then

dag-classify(A);
end;

procedure dag-classify(A)
candidates := ∅;
for all subsumers B ∈ S(A) do

if A ∈ S(B) then

classified(B) := true;
equivalents(A) := equivalents(A) ∪ {B};

else

if not classified(B) then

dag-classify(B);
candidates := candidates ∪ {B};

dag-insert(A, candidates);
classified(B) := true;

end;

procedure dag-insert(A, candidates)

marked(X) := false for all X ∈ CN>
O;

for all B ∈ candidates do

for all X ∈ parents(B) do

marked(X) := true

while there are X, Y ∈ CN>
O with marked(X), Y ∈ parents(X), and

not marked(Y) do

marked(Y) := true

parents(A) := {B ∈ candidates | marked(B) = false};
for all B ∈ parents(A) do

children(B) := children(B) ∪ {A};
end;

Figure 4: Computing the DAG from the subsumer sets

computed parts of the mappings S(·) and R(·) for such repeated calls.

However, our current implementation of this idea cannot compete with the
runtime of the original CEL implementation described before. For example, the
classification of OSnomed takes 3,750 seconds. This is still slightly better than

24 Long Papers

the performance of FaCT++, but more than twice of the 1,791 seconds needed
when first computing the subsumer sets and then constructing the subsumption
DAG. The reason is probably that, in sum, the single subsumption tests do the
same work as the full classification algorithm, but then there is the additional
overhead of the enhanced traversal method (which is more complicated than
the simplified version employed to compute the subsumption DAG from the
subsumer sets).

5 Conclusion

The performance evaluations show that our tractable reasoner CEL outperforms
modern reasoners for intractable DLs based on tableau algorithms. It should be
noted that the good performance of CEL is achieved with a relatively straight-
forward implementation of the tractable algorithm, whereas the tableau-based
systems are the result of many years of research into optimization techniques.
The robustness and scalability of tractable reasoning is visible in the case of
Snomed, which comprises almost 380,000 concept definitions. Only CEL and
FaCT++ can classify this terminology, whereas RacerMaster, Pellet, and the orig-
inal version of FaCT fail. Additionally, FaCT++ shows a significant degradation
in performance if Snomed, which is an acyclic TBox, is extended with GCIs.
In contrast, the runtime of CEL is not noticeably affected by such an extension.

Developing CEL is ongoing work. We plan to extend its capabilities to the
DL EL++ [2], which includes, among other things, nominals and the bottom
concept (thus one can express ABoxes and disjoint concepts). We also plan to
implement DIG and OWL interfaces,6 so that CEL can be used as a backend
reasoner for ontology editors like OilEd7 and Protégé,8 which would also make
their sophisticated graphical user-interfaces available to users of CEL.

References

[1] F. Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. IJCAI’03, 2003.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. IJCAI’05,
2005.

[3] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence, 4:109–132, 1994.

6See http://dl.kr.org/dig/ and http://www.w3.org/2004/OWL/
7See http://oiled.man.ac.uk/
8See http://protege.stanford.edu/

Proceedings of DL 2006 25

[4] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Proc. M4M’05, 2005.

[5] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-
based description languages. In Proc. AAAI’84, 1984.

[6] S. Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. AAAI’05, 2005.

[8] The Gene Ontology Consortium. Gene Ontology: Tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[9] R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED
International, Northfield, IL: College of American Pathologists, 1993.

[10] W. F. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Logic Programming, 1(3):267–284, 1984.

[11] I. Horrocks and U. Sattler. Decidability of SHIQ with complex role inclusion
axioms. Artificial Intelligence, 160(1–2):79–104, 2004.

[12] I. Horrocks and D. Tsarkov. Optimised classification for taxonomic knowledge
bases. In Proc. DL’05, 2005.

[13] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelli-

gence, 43:235–249, 1990.

[14] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontol-
ogy using a description logic with transitivity and concept inclusions. In Proc.

Ontological Engineering Workshop, AAAI Spring Symposium, 1997.

[15] K.A. Spackman. Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT. J. of the American

Medical Informatics Association, 2000. Fall Symposium Special Issue.

[16] B. Suntisrivaraporn. Optimization and implementation of subsumption algo-
rithms for the description logic EL with cyclic TBoxes and general concept in-
clusion axioms. Master thesis, TU Dresden, Germany, 2005.

26 Long Papers

DL Actions with GCIs: a Pragmatic Approach

H. Liu1, C. Lutz1, M. Miličić1, F. Wolter2

1Institut für Theoretische Informatik 2Department of CS
TU Dresden, Germany Univ. of Liverpool, UK

lastname@tcs.inf.tu-dresden.de frank@csc.liv.ac.uk

Abstract

We recently proposed action formalisms based on description logics (DLs)
as decidable fragments of well-established action theories such as the Sit-
uation Calculus and the Fluent Calculus. One short-coming of our initial
proposal is that the considered formalisms admit only acyclic TBoxes,
but not GCIs. In this paper, we define DL action formalisms that admit
GCIs, propose a pragmatic approach to addressing the ramification prob-
lem that is introduced in this way, show that our formalim is decidable
and investigate its computational complexity.

1 Introduction

Action theories such as the Situation Calculus (SitCalc) and the Fluent Calculus
aim at describing actions in a semantically adequate way [8, 10]. They are
usually formulated in first- or higher-order logic and do not admit decidable
reasoning. For reasoning about actions in practical applications, such theories
are thus not directly suited. There are two obvious ways around this problem:
the first one is to accept undecidability and replace reasoning by programming.
This route is taken by the inventors of action-oriented programming languages
such as Golog [3] and Flux [11], whose semantics is based on the SitCalc and
Fluent Calculus, respectively. The second one is to try to identify fragments of
action theories such as SitCalc that are sufficiently expressive to be useful in
applications, but nevertheless admit decidable reasoning. For example, a simple
such fragment is obtained by allowing only propositional logic for describing
the state of the world and pre- and post-conditions of actions. A much more
expressive formalism was identified in our recent paper [1], where we define action
formalisms that are based on description logics (DLs). More precisely, we use DL
ABoxes to describe the state of the world and pre- and post-conditions of actions

Proceedings of DL 2006 27

and prove that reasoning in the resulting formalism is decidable [1]. We also show
in [1] that, in this way, we actually get a decidable fragment of SitCalc. However,
the DL action formalism defined in [1] has two major limitations: first, we only
admit acyclic TBoxes, but no general TBoxes involving GCIs. And second, we
allow only concept names (but no complex concepts) in post-conditions and
additionally stipulate that these concept names are not defined in the TBox.
In the present paper, we present a pragmatic approach to overcoming these
limitations while retaining decidability of reasoning. In particular, we show how
to incorporate general TBoxes into DL action formalisms. Since there is no clear
notion of a concept name “being defined” in a general TBox, we also drop the
second restriction and admit arbitrary concepts in post-conditions.

The main reason for adopting the mentioned restrictions in [1] was that
they disarm the frame and ramification problem, which pose major difficulties
in reasoning about actions. When admitting general TBoxes, in particular the
ramification problem becomes a serious issue. Attempts to automatically solve
this problem, e.g. by adopting a Winslett-style PMA semantics [14], lead to
semantic and computational problems: we show in [1] that counter-intuitive
results and undecidability of reasoning are the consequence of adopting such
a semantics. Since there appears to be no general automated solution to the
ramification problem introduced by general TBoxes, we take a rather pragmatic
approach and leave it to the designer of an action description to fine-tune the
ramifications of the action. This is similar to what is done in the SitCalc and
the Fluent Calculus to address the ramification problem. There, the designer
of an action description can control the ramifications of the action by specify-
ing causal relationships between predicates [4, 9]. While causality appears to
be a satisfactory approach for addressing the ramification problem in the case
of propositional state constraints (which correspond to a TBox formulated in
propositional logic), it seems not powerful enough for attacking the ramifica-
tions introduced by general TBoxes, which may involve complex quantification
patterns. We therefore adopt a different strategy for controlling ramifications:
when describing an action, the user can specify the predicates that can change
by executing the action, as well as those that cannot change. To allow an ad-
equate fine-tuning of ramifications, we admit rather complex statements about
the change of predicates such as “the concept name A can change from positive
to negative only at the indidivual a, and from negative to positive only where
the complex concept C was satisfied before the action was executed”.

The family of action formalisms introduced in this paper can be parame-
terized with any description logic. We show that, for many standard DLs, the
reasoning problems executability and projection in the corresponding action for-
malism are decidable. We also pinpoint the exact computational complexity of
these reasoning problems for several members of the ALCQIO family of DLs.
As a rule of thumb, our results show that reasoning in the action formalism

28 Long Papers

instantiated with a description logic L is of the same complexity as subsump-
tion in L extended with nominals. For fine-tuning ramifications, deciding the
consistency of actions is of prime importance. We introduce two notions of con-
sistency (weak and strong) and show that one of them is of the same complexity
as deciding projection while the other one is undecidable even when the action
formalism is instantiated with ALC.

2 Describing Actions

The action formalism proposed in this paper is an extension of the one from [1]
and is not restricted to a particular DL. However, for our complexity results
we consider the DL ALCQIO and its fragments. We refrain from introducing
the syntax and semantics of ALCQIO in full detail, referring e.g. to [2], and
only give a few central definitions. A concept literal is a concept name or the
negation thereof, and a role literal is a role name or the negation thereof. An
ABox assertion is of the form C(a) or r(a, b), where a, b are individual names, C
is a concept, and r a role literal. An ABox A is a finite set of ABox assertions.
A general concept inclusion axiom (GCI) is an expression of the form C v D,
where C and D are an concepts. A (general) TBox T is a finite set of GCIs.

The main ingredients of our approach to reasoning about actions are action
descriptions (as defined below), ABoxes for describing the current knowledge
about the state of affairs in the application domain, and TBoxes for describing
general knowledge about the application domain similar to state constraints in
the SitCalc and Fluent Calculus. On the semantic side, interpretations are used
to describe the state of affairs in the application domain. Thus, the knowledge
described by an ABox is incomplete: ABoxes may admit more than a single
model, and all the corresponding states of affairs are considered possible. Before
we go deeper into the semantics, we introduce the syntax of action descriptions.
We use LO to denote the extension of a description logic L with nominals.

Definition 1 (Action). Let L be a description logic. An atomic L-action
α = (pre, occ, post) consists of

• a finite set pre of L-ABox assertions, the pre-conditions ;

• the occlusion pattern occ which is a set of mappings {occϕ1
, . . . , occϕn

}
indexed by L-ABox assertions ϕ1, . . . , ϕn such that each occϕi

assigns

– to every concept literal A an LO-concept occϕi
(A),

– to every role literal r a finite set occϕi
(r) of pairs of LO-concepts.

• a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ
and ψ are L-ABox assertions.

A composite L-action is a finite sequence of atomic L-actions α1, . . . , αn.

Proceedings of DL 2006 29

Applying an action changes the state of affairs, and thus transforms an interpre-
tation I into an interpretation I ′. Intuitively, the pre-conditions specify under
which conditions the action is applicable. The post-condition ϕ/ψ says that, if
ϕ is true in the original interpretation I, then ψ is true in the interpretation
I ′ obtained by applying the action. The purpose of the occlusion pattern is to
control the changes that are allowed to occur during the execution of the action.
This is necessary because, as will be discussed in more detail later, the presence
of TBoxes often requires to allow more changes than those that are directly en-
forced via the post-conditions. To illustrate how the occlusion pattern works,
suppose occ = {occϕ1

, . . . , occϕn
} and ϕi1 , . . . , ϕim are the assertions among the

indexes in occ that are true in the original interpretation I. If A is a concept
name, then instances of the concept

occϕi1
(A) t · · · t occϕim

(A)

in I may change from A in I to ¬A in I ′, but non-instances may not. Likewise,
instances of

occϕi1
(¬A) t · · · t occϕim

(¬A)

may change from ¬A to A. For role names, (C,D) ∈ occϕik
(r) means that pairs

from CI×DI that have been connected by r in I may lose this connection in I ′,
and similarly for the occlusion of negated role names. Note that the indexing of
the mappings occϕ with ABox assertions makes the occlusions conditional: the
occlusion occϕ is only active if ϕ is satisfied by the original interpretation I. We
will explain later why nominals are always admitted in the occlusion pattern,
even if they are not provided by L.

For defining the semantics in a succinct way, it is convenient to introduce
the following abbreviation. For an action α with occ = {occϕ1

, . . . , occϕn
}, an

interpretation I, a concept literal A, and a role literal r, we set

(occ(A))I :=
⋃

I|=ϕi

(occϕi
(A))I

(occ(r))I :=
⋃

(C,D)∈occϕi
(r),I|=ϕi

(CI ×DI)

Thus, occ(B)I describes those elements of ∆I that may change from B to ¬B
when going to I ′.

Definition 2 (Action semantics). Let α = (pre, occ, post) be an atomic ac-
tion and I, I ′ interpretations sharing the same domain and interpretation of
all individual names. We say that α may transform I to I ′ w.r.t. a TBox T
(I ⇒T

α I ′) iff the following holds:

• I, I ′ are models of T ;

• for all ϕ/ψ ∈ post: I |= ϕ implies I ′ |= ψ (written I, I ′ |= post);

30 Long Papers

• for each A ∈ NC and r ∈ NR, we have

AI \ AI′

⊆ (occ(A))I ¬AI \ ¬AI′

⊆ (occ(¬A))I

rI \ rI
′

⊆ (occ(r))I ¬rI \ ¬rI
′

⊆ (occ(¬r))I

The composite action α1, . . . , αn may transform I to I ′ w.r.t. T (I ⇒T
α1,...,αn

I ′)
iff there are models I0, . . . , In of T with I = I0, I

′ = In, and Ii−1 ⇒
T
αi
Ii for

1 ≤ i ≤ n.

We now give a simple example for DL actions that illustrates the ramification
problem introduced by general TBoxes and how occlusion patterns can be used
to control this problem. The TBox T contains the following GCI, which says
that everybody registered for a course has access to the university library:

∃registered for.Course v ∃access to.Library

The ABox A, which describes the current state of the world, is defined as:

Course(cs), ¬∃registered for.Course(peter), ¬∃access to.Library(peter).

Obviously, A states that computer science is a course and that Peter is neither
registered for a course nor has access to a library. Now, the action

α := (∅, occ, {taut/registered for(peter, cs)})

describes the registration of Peter for the computer science course. For simplic-
ity, the set of pre-conditions is empty and taut is some valid ABox assertion (say
>(cs)), i.e., the post-condition is unconditional.

Following the law of inertia, it may seem reasonable to specify occ such that
only the fact stated explicitly in the post-condition can change when execut-
ing the action: occ consists of just one (unconditional) mapping occtaut which
maps all concept and role literals with the exception of ¬registered for to ⊥ and
{(⊥,⊥)}, respectively. By setting

occtaut(¬registered for) := {({peter}, {cs})},

where {peter} and {cs} are nominals, we achieve the desired effect that only
the pair (peter, cs) can be added to “registered for”, and nothing else can be
changed. This shows why nominals are indispensible in the occlusion pattern:
without them, we are not able to occlude only the change that is enforced by
simple post-conditions such as the one in the example.

However, our choice of the occlusion pattern is too strict. Due to the presence
of the TBox, the action is inconsistent in the sense that there is no model I of A
and T such that I ⇒T

α I ′ for some model I ′ of T . The reason is that, due to T ,

Proceedings of DL 2006 31

Peter should have access to a library after execution of the action. Since he does
not have access before the action and the occlusion pattern does not allow us
to change access to, there is no way to achieve this. This shows that admitting
general TBoxes induces a ramification problem: there may be indirect effects of
an action that are not directly stated in the post-conditions. Such ramifications,
which led us to introducing occlusion patterns in the current paper, cannot occur
in the more basic DL action formalism introduced in [1] where we admit only
acyclic TBoxes and primitive concepts in post-conditions. An obvious way to
regain consistency of the action α is to allow via the occlusion pattern that
access to can change in the required way, i.e., setting

occtaut(¬access to) := {({peter}, Library)}

and thus allow Peter to have access to a library after the action.

In the example above, for simplicity we did not use conditional post-conditions,
i.e., conditions ϕ/ψ where ϕ is not taut. For this reason, it was sufficient that
occ consists of a single (unconditional) mapping as well. Obviously, controlling
the ramifications of conditional post-conditions requires occlusion patterns that
are conditional as well.

The above example suggests that deciding consistency of an action is an
important task because failure to specify the occlusion pattern in a proper way
can result in inconsistent actions. In the following, we propose two notions of
consistency.

Definition 3 (Consistency). Let α = α1, . . . , αn be a composite action, let T
be a TBox, and A an ABox. We say that

• α is weakly consistent with T and A iff there is a model I of T and A,
and a model I ′ of T such that I ⇒T

α I ′.

• α is strongly consistent with T and A iff for all models I of T and A, there
is a model I ′ of T such that I ⇒T

α I ′.

Ideally, the designer of an action α = (pre, occ, post) should establish strong
consistency of α w.r.t. the relevant TBox and the ABox pre. Note that strong
consistency of an action α w.r.t. T and pre implies strong consistency of α w.r.t.
T and A for all ABoxes A that satisfy the preconditions pre. Unfortunately, we
shall show later that strong consistency is undecidable even for ALC actions. In
contrast, weak consistency will turn out to be decidable. As demonstrated by
our example, in which the first attempt to specify occ yields an action that is
not even weakly consistent, checking for weak consistency is helpful to detect
severe ramfication problems. In the case of weak consistency, consistency w.r.t.
pre does not imply consistency w.r.t. all ABoxes satisfying the pre-conditions.
Hence, the designer of an action should not only consider the ABox pre when

32 Long Papers

checking weak consistency, but also additional ABoxes that he considers typical
for the application domain.

To check whether an action can be applied in a given situation, the user wants
to know whether it is (strongly consistent and) executable, where executable
means that all pre-conditions are satisfied in the states of the world considered
possible. If the action is executable, he wants to know whether applying it
achieves the desired effect, i.e., whether an assertion that he wants to make
true really holds after executing the action. This problem is usually called
projection [8, 1].

Definition 4 (Executability and projection). Let α1, . . . , αn be a composite
action with αi = (prei, occi, posti) for i = 1, . . . , n, let T be a TBox, and A an
ABox.

• Executablity: α1, . . . , αn is executable in A w.r.t. T iff the following con-
ditions are true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒T
α1,...,αi

I ′,
we have I ′ |= prei+1.

• Projection: The assertion ϕ is a consequence of applying α1, . . . , αn in A
w.r.t. T iff for all models I of A and T and for all I ′ with I ⇒T

α1,...,αn
I ′,

we have I ′ |= ϕ.

It is not too difficult to see that the action formalism just introduced is a gen-
eralization of the one introduced in [1], for details see [5]. As in [1], projection
and executability are mutually reducible in polynomial time. Moreover, (i) an
action α is weakly consistent with a TBox T and ABox A iff ⊥(a) is not a
consequence of applying α in A w.r.t. T ; and (ii) ϕ is a consequence of applying
α = (pre, occ, post) in A w.r.t. T iff the action (pre, occ, post∪{>(a)/¬ϕ}) is not
weakly consistent with T and A. Thus, since both executability and weak con-
sistency can be reduced to (non-)projection and vice versa, we will concentrate
on the latter throughout this paper.

3 Deciding Projection in ALCQI and ALCQIO

We consider the prominent DLs ALCQI and ALCQIO and show that projec-
tion is co-NExpTime-complete. It is shown in [5] that Lemma 8 of [1] implies
the following.

Theorem 5. Projection and executability (weak consistency) in ALCQI are co-
NExpTime-hard (NExpTime-hard) even if occlusions for roles are restricted
to {(⊥,⊥)} and only nominals are allowed in the occlusions of concept names.

Proceedings of DL 2006 33

Note that projection in ALCQI is thus harder than subsumption in the same
logic, which is ExpTime-complete [13]. In the case of ALCQIO, the complex-
ities of subsumption and projection coincide. Intuitively (and as shown by the
proof of Theorem 5), projection in a logic L should be expected to be of the
same complexity as subsumption in L extended with nominals.

In the following, we establish a matching co-NExpTime upper bound for
projection inALCQIO (and thus alsoALCQI). The proof proceeds by reducing
projection in ALCQIO to ABox (in)consistency in ALCQIO¬,∩,∪, i.e. the
extension of ALCQIO with the Boolean role constructors.

Let α1, . . . , αn be a composite action with αi = (prei, occi, posti) for i =
1, . . . , n, and let T be a TBox, A0 an ABox and ϕ0 an assertion. We are
interested in deciding whether ϕ0 is a consequence of applying α1, . . . , αn in A0

w.r.t. T . In what follows, we call α1, . . . , αn, T , A0 and ϕ0 the input. W.l.o.g.,
we make the following assumptions:

• ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (possibly complex) concept.

This assumption can be made because an assertion r(a, b) can be replaced
with (∃r.{b})(a), and ¬r(a, b) with (¬∃r.{b})(a).

• Each occlusion pattern occi contains exactly one occlusion pattern that is
unconditional (i.e., indexed by taut) and formulated in ALCQIO¬,∩,∪.

An occlusion pattern {occϕ1
, . . . , occϕn

} can be converted into an occlusion
pattern {occtaut} formulated in ALCQIO¬,∩,∪ as follows. First, we may
assume w.l.o.g. that ϕi is of the form Ci(ai) for 1 ≤ i ≤ n (see previous
point). For 1 ≤ i ≤ n, let Pi denote the concept ∀U.({ai} → Ci), where
U denotes the universal role, i.e. r ∪ ¬r for some r ∈ NR. Then, define for
each concept literal A

occtaut(A) := t
1≤i≤n

(Pi u occϕi
(A)

)

Likewise, for each role literal r, define

occtaut(r) := {(Pi u C,Pi uD) | (C,D) ∈ occϕi
}.

Having the occlusion pattern formulated in ALCQIO¬,∩,∪ is unproblem-
atic since our reduction is to ALCQIO¬,∩,∪ anyway. In the following, we
slightly abuse notation and confuse the singleton set occi with the (uncon-
ditional) occlusion mapping contained in it.

The idea of the reduction is to define an ABox Ared and a TBox Tred such that a
single model of them encodes a sequence of interpretations I0, . . . , In such that
I0 |= A0, T and Ii−1 ⇒

T
αi
Ii for i = 1, . . . , n. In the following, we use Sub to

denote the set of subconcepts of the concepts which occur in the input. In the

34 Long Papers

reduction, we introduce concept names A(i) and role names r(i) for every concept
name A and every role name r used in the input, and every i ≤ n. Intuitively,
A(i) and r(i) represent the extensions of A and r in the i-th interpretation. For a
complex concept C ∈ Sub, we use C(i), for i ≤ n, to denote the concept obtained
by replacing all concept names A and role names r occurring in C by A(i) and
r(i) respectively.

We start by assembling the reduction ABox Ared. First, define a “copy” Aini

of the input ABox A0 as:

Aini := {C(0)(a) | C(a) ∈ A0}∪
{r(0)(a, b) | r(a, b) ∈ A0} ∪ {¬r

(0)(a, b) | ¬r(a, b) ∈ A0}

Then, introduce abbreviations, for i ≤ n:

pi(C(a)) := ∀U.({a} → C (i)),
pi(r(a, b)) := ∀U.({a} → ∃r(i).{b}),

pi(¬r(a, b)) := ∀U.({a} → .∀r(i).¬{b}),

Now we can define the components of Ared that take care of post-condition
satisfaction. For 1 ≤ i ≤ n, we define:

A
(i)
post := {

(

pi−1(ϕ) → pi(ψ)
)

(a0) | ϕ/ψ ∈ posti}

We assemble Ared as
Ared := Aini ∪

⋃

1≤i≤n

A
(i)
post.

Next, we define the components of the TBox Tred. Since all interpretations
I0, . . . , In have to be models of the input TBox T , we define for each i ≤ n, a
copy T (i) of T in the obvious way:

T (i) = {C(i) v D(i) | C v D ∈ T }.

To deal with occlusions, we introduce auxiliary role names r
(i)
Dom(C) and r

(i)
Ran(D)

for 0 ≤ i < n and all concepts C,D such that (C,D) ∈ occi(s) for some role

literal s. The following TBox T
(i)

aux ensures that r
(i)
Dom(C) and r

(i)
Ran(D) are interpreted

as C(i) ×> and >×D(i), respectively. It contains the following axioms, for all
concepts C,D as above:

C(i) v ∀¬r
(i)
Dom(C).⊥ > v ∀r

(i)
Ran(D).D

(i)

¬C(i) v ∀r
(i)
Dom(C).⊥ > v ∀¬r

(i)
Ran(D).¬D

(i)

The following TBox T
(i)

fix ensures that concept and role names do not change
unless this is allowed by the occlusion pattern:

Proceedings of DL 2006 35

• for every concept name A in the input,

A(i) u ¬A(i+1) v (occi+1(A))(i)

¬A(i) u A(i+1) v (occi+1(¬A))(i)

• for every role name r in the input,

> v ∀¬
(

⋃

(C,D)∈occi+1(r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)

∩ (r(i) ∩ ¬r(i+1)).⊥

> v ∀¬
(

⋃

(C,D)∈occi+1(¬r)

(r
(i)
Dom(C) ∩ r

(i)
Ran(D))

)

∩ (¬r(i) ∩ r(i+1)).⊥

Finally, we can construct Tred as

Tred :=
⋃

0≤i≤n

T (i) ∪
⋃

0≤i<n

T (i)
aux ∪

⋃

0≤i<n

T
(i)

fix .

The following is shown in [5]:

Lemma 6. C0(a0) is a consequence of applying α1, . . . , αn in A0 w.r.t. T iff

Ared ∪ {¬C
(n)
0 (a0)} is inconsistent w.r.t. Tred.

Since ALCQIO¬,∩,∪ is a fragment of C2 (the 2-variable fragment of first-order
logic with counting), ABox inconsistency in ALCQIO¬,∩,∪ is in co-NExpTime

even if numbers are coded in binary [7]. Since Ared and Tred are polynomial
in the size of the input, Lemma 6 gives us a co-NExpTime upper bound for
projection in ALCQIO and ALCQI.

Theorem 7. Projection and executability are co-NExpTime-complete, while
weak consistency is NExpTime-complete in ALCQIO and ALCQI.

4 Undecidability of Strong Consistency

Here we show that strong consistency is undecidable. The proof consists of a
reduction of the undecidable semantic consequence problem from modal logic.
Before formulating the DL version of this problem, we need some preliminaries.
We use concepts and interpretations with only one role name r, which we call
ALCr-concepts. Accordingly, we also assume that interpretations interprete only
concept names and the role name r. A frame is a structure F = (∆F , rF) where
∆F is a non-empty set and rF ⊆ ∆F × ∆F . An interpretation I = (∆I , ·I) is
based on a frame F iff ∆I = ∆F and rI = rF . We say that a concept C is valid
on F (written F |= C) iff CI = ∆I for every interpretation I based on F .

Definition 8 (Semantic consequence problem). Let D and E be ALCr-
concepts. We say that E is a semantic consequence of D iff for every frame
F = (∆F , rF) such that F |= D, it holds that F |= E.

36 Long Papers

In [12], it is proved that for ALCr-concepts D and E, the problem “Is E a
semantic consequence of D?” is undecidable. We now show that the semantic
consequence problem can be reduced to strong consistency. For ALCr-concepts
D and E, we define the ABox AE := {¬E(a)} and the atomic action αD =
(∅, {occtaut}, post) with post := {>(a)/(∃u.¬D)(a)} where u is an arbitrary role
name and occtaut maps r and ¬r to {(⊥,⊥)}, all other role literals to {(>,>)},
and all concept literals to >. Then the action αD is strongly consistent with the
empty TBox and the ABox AE iff E is a semantic consequence of D [5]. As an
immediate consequence, we obtain the following theorem.

Theorem 9. Strong consistency of ALC-actions is undecidable, even with the
empty TBox.

5 Discussion

We have introduced an action formalism based on description logics that ad-
mits general TBoxes and complex post-conditions. To deal with ramifications
induced by general TBoxes, the formalism includes powerful occlusion patterns
that can be used to fine-tune the ramifications. We believe that undecidability
of strong consistency is no serious obstacle for the feasibility of our approach
in practice. Although deciding strong consistency would provide valuable sup-
port for the designer of an action, it could not replace manual inspection of the
ramifications. For example, occluding all concept names with > and all role
names with {(>,>)} usually ensures strong consistency but does not lead to an
intuitive behaviour of the action. With weak consistency, we offer at least some
automatic support to the action designer for detecting ramification problems.

In [6], we investigate the complexity of reasoning with DL actions for other
fragments of ALCQIO, most notably ALC, ALCI, and ALCIO. It turns
out that, in these logics, deciding projection (as well as executability and weak
consistency) is ExpTime-complete, which is in accordance with the observation
that, usually, reasoning with L-actions has the same complexity as subsumption
in L extended with nominals. In [5], we also show how reasoning with a restricted
version of ALCQIO actions can be reduced to reasoning in ALCQIO instead
of ALCQIO¬,∩,∪. This is relevant since reasoners for the former (but not for
the latter) are readily available.

Acknowledgements. We would like to thank Giuseppe De Giacomo for ideas
and discussions. The third author is supported by the DFG Graduiertenkol-
leg 334. The fourth author is partially supported by UK EPSRC grant no.
GR/S63182/01.

Proceedings of DL 2006 37

References

[1] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating
description logics and action formalisms: First results. In Proc. of (AAAI-
05), Pittsburgh, PA, USA, 2005.

[2] F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The De-
scription Logic Handbook: Theory, implementation and applications. Cam-
bridge University Press, 2003.

[3] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG:
A logic programming language for dynamic domains. J. Log. Program.,
31(1-3):59–83, 1997.

[4] F. Lin. Embracing causality in specifying the indirect effects of actions. In
Proc. of IJCAI-95, Montreal, Canada, 1995. Morgan Kaufmann.

[5] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with
general TBoxes: a pragmatic approach. LTCS-Report 06-03, TU Dresden,
Germany, 2006. See http://lat.inf.tu-dresden.de/research/reports.html.

[6] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with
general TBoxes: a pragmatic approach. Submitted to JELIA’06, 2006.

[7] I. Pratt-Hartmann. Complexity of the two-variable fragment with counting
quantifiers. Journal of Logic, Language and Inf., 14(3):369–395, 2005.

[8] R. Reiter. Knowledge in Action. MIT Press, 2001.

[9] M. Thielscher. Ramification and causality. Artificial Intelligence Journal,
89(1–2):317–364, 1997.

[10] M. Thielscher. Introduction to the Fluent Calculus. Electronic Transactions
on Artificial Intelligence, 2(3–4):179–192, 1998.

[11] M. Thielscher. FLUX: A logic programming method for reasoning agents.
TPLP, 5(4-5):533–565, 2005.

[12] S. K. Thomason. The logical consequence relation of propositional tense
logic. Z. Math. Logik Grundl. Math., 21:29–40, 1975.

[13] S. Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence
Research, 12:199–217, 2000.

[14] M. Winslett. Reasoning about action using a possible models approach. In
AAAI, pages 89–93, Saint Paul, MN, 1988.

38 Long Papers

Discrete Tableau Algorithms for FSHI∗
Yanhui Li1, Baowen Xu1,2, Jianjiang Lu3 and Dazhou Kang1

1 School of Computer Science and Engineering, Southeast University,

Nanjing 210096, China
2 Jiangsu Institute of Software Quality, Nanjing 210096, China

3 Institute of Command Automation, PLA University of Science and Technology,

Nanjing 210007, China

bwxu@seu.edu.cn

Abstract

A variety of fuzzy description logics are proposed to extend classical
description logics with fuzzy capability. However, reasoning with general
TBoxes is still an open problem in fuzzy description logics. In this paper,
we present a novel discrete tableau algorithm for a given fuzzy descrip-
tion logic FSHI with general TBoxes, which tries to construct discrete
tableaus of FSHI knowledge bases. We prove the equivalence of exis-
tence between discrete tableaus and models of FSHI knowledge bases,
hence getting that the discrete tableau algorithm is a sound and complete
decision procedure for FSHI reasoning problems with general TBoxes.

1 Introduction

Increasing demands for fuzzy knowledge representation have triggered a variety
of fuzzy extensions of description logics (DLs) that make them convenient to
express knowledge in fuzzy cases. Straccia adopted fuzzy interpretations to
propose a representative fuzzy extension FALC of ALC, and designed a tableau
algorithm for acyclic TBoxes [9]. Based on FALC, Höldobler et al proposed
membership manipulator constructors to define new fuzzy concepts [2]. Fuzzy
extensions of more expressive DLs like ALCQ and SHOIN (D) were presented

∗This work was supported in part by the NSFC (60373066, 60425206 and 90412003),
National Grand Fundamental Research 973 Program of China (2002CB312000), Excel-
lent Ph.D. Thesis Fund of Southeast University, Advanced Armament Research Project
(51406020105JB8103), High Technology Research Project of Jiangsu Province (BG2005032)
and Advanced Armament Research Project (51406020105JB8103).

Proceedings of DL 2006 39

in [6,11], but there were no reasoning algorithms for them. The concrete domains
were also introduced into fuzzy DLs with an optimized reasoning technique in
FALC(D) [10]. Stoilos et al extended Straccia’s fuzzy framework into OWL,
hence getting a fuzzy ontology language: Fuzzy OWL [8]. They also gave a
reasoning technique to deal with ABox consistency without TBoxes.

Though the fuzzy extension of DLs has done a lot, reasoning with general
TBoxes is still an open problem in fuzzy DLs. In this paper, we will propose
a novel discrete tableau algorithm for satisfiability of FSHI knowledge bases
(KBs) with general TBoxes. The remaind of this paper is organized as follows.
A brief introduction to FSHI KBs will be given in section 2. The main theoreti-
cal foundation of our discrete tableau algorithms is the discretization of fuzzy
models, which will be discussed in section 3. Following that, we will present
the definition of discrete tableaus and the expansion rules of discrete tableau
algorithms, and propose a sketch proof of correctness and complexity of our
algorithms in section 4. Finally section 5 will conclude this paper and discuss
the further work.

2 A Brief Introduction to FSHI
FSHI is a complex fuzzy description logic with role hierarchy, transitive and
inverse role. Let NC be a set of concept names and R be a set of role names
with transitive role names R+ ⊆ R. FSHI roles are either role names R ∈ R
or their inverse role R−. FSHI concepts are inductively defined as follows:

1. For any A ∈ NC, A is a concept;

2. The top concept > and the bottom concept ⊥ are concepts;

3. If C and D are two concepts and R is a role, the ¬C, C uD, C tD, ∃R.C
and ∀R.C are concepts.

One of the main differences between fuzzy DLs and classical DLs is that fuzzy
DLs adopt fuzzy interpretations. A fuzzy interpretation I = 〈∆I , ·I 〉 of FSHI
consists of a nonempty domain ∆I and an interpretation function ·I mapping:

any individual name a into aI ∈ ∆I

any concept name A into AI : ∆I → [0, 1]

any role name R into RI : ∆I ×∆I → [0, 1]

And for any transitive role name R ∈ R+, ·I satisfies ∀d, d′ ∈ ∆I , RI(d, d′) ≥
supx∈∆I{min(RI(d, x), RI(x, d′))}. Intuitively, any concept name A is naturally
interpreted as the membership degree function AI w.r.t. ∆I : for any element
d ∈ ∆I , AI(d) shows the degree of d being an instance of the fuzzy concept A

40 Long Papers

>I(d) = 1
⊥I(d) = 0

(¬C)I(d) = 1− CI(d)
(C uD)I(d) = min(CI(d), DI(d))
(C tD)I(d) = max(CI(d), DI(d))
(∃R.C)I(d) = supd′∈∆I{min(RI(d, d′), CI(d′))}
(∀R.C)I(d) = inf d′∈∆I{max(1−RI(d, d′), CI(d′))}
(R−)I(d, d′) = RI(d ′, d)

Figure 1: The Semantics of FSHI

under the interpretation I. Similarly for role name R. For complex concepts
and inverse roles, ·I satisfies the following conditions (see figure 1):

A general TBox T is a finite set of fuzzy general concept inclusions C v D,
where C and D are FSHI concepts. An interpretation I satisfies C v D iff
∀d ∈ ∆I , CI(d) ≤ DI(d). I satisfies (is a fuzzy model of) a TBox T (written
I |= T) iff I satisfies every inclusion in T .

A RBox R is a finite set of fuzzy role inclusions R v P , where R and P are
FSHI roles. An interpretation I satisfies R v P iff ∀d, d′ ∈ ∆I , RI(d, d′) ≤
P I(d, d′). I satisfies (is a fuzzy model of) a RBox R (written I |= R) iff I
satisfies every inclusion in R. Here we introduce v∗ as the transitive-reflexive
closure of v on R∪ {R− v P−|R v P ∈ R}.

An ABox A is a finite set of fuzzy assertions α ./ n, where α is an assertion:
a : C or 〈a, b〉 : R, ./∈ {≥, >,≤, <} and n ∈ [0, 1]. I satisfies a fuzzy assertion
a:C ≥ n iff CI(aI) ≥ n. Similarly for other three cases: <, ≤ and >, and role
assertions 〈a, b〉 : R ./ n. I satisfies (is a fuzzy model of) an ABox A (written
I |= A) iff I satisfies every fuzzy assertion in A.

A FSHI KB K = 〈T ,R,A〉 consists of its TBox T , RBox R and ABox A.
An interpretation I is a fuzzy model of a KB K (written I |= K), iff I satisfies
its TBox, RBox and ABox. K is satisfiable iff there is a fuzzy model of K. In
this paper, we will present a discrete tableau algorithm to decide satisfiability
of FSHI KBs.

3 Discretization of Fuzzy Models

Before discussing discretization of fuzzy models, we analyze troubles of reasoning
with general TBoxes in fuzzy DLs: the key question is “why reasoning technique
for general TBoxes in classical DLs can not be applied in fuzzy DLs”. To answer
this question, we will compare the semantics of fuzzy DLs with classical DLs. In
classical DL cases, an individual (a pair of individuals) completely belongs to a
concept (a role) or not, that means in classical models any concept (role) will be

Proceedings of DL 2006 41

interpreted as two-value degree functions: ∆I(∆I×∆I) → { 0, 1}. For any gen-
eral concept inclusion C v D and any individual a, classical tableau algorithms
nondeterministically “guess” the membership degrees n and m of a being an in-
stance of C and D, for some n,m ∈ {0, 1} and n ≤ m [1]. However, such “guess”
technique cannot be directly applied in fuzzy DLs. The main difficulty is that in
fuzzy models concepts and roles are interpreted as complex membership degree
functions by extending {0, 1} to [0, 1], hence the value of membership degree
functions is continuous but not discrete. To solve this problem, we try to design
a discretization step to translate fuzzy model into corresponding discrete model,
in which any membership degree value belongs to a special discrete degree set.
This discretization can enable similar “guess” technique applied in fuzzy DLs.

The first issue in discretization of fuzzy models is to decide the special discrete
degree set S. Let us now proceed formally in the creation of S. Consider a
FSHI KB K = 〈T ,R,A〉. Let NK be the set of degrees appearing in A:
NK = {n|α ./ n ∈ A}. From NK, we define the degree closure DSK of K as:
DSK = {0, 0.5, 1} ∪ NK ∪ {1 − n|n ∈ NK} and sort DSK in ascending order:
DSK = {n0, n1, . . . , ns}, where for any 0 ≤ i < s, ni < ni+1. It is easy to prove
that n0 = 0 and ns = 1; s is even; and for any 0 ≤ i ≤ s, ni + nn−i = 1.

Consider a constant vector M = [c1, c2, . . . , cs/2], where for any ci, 0 < ci < 1.
We define the

⊗
operation: NSK = DSK

⊗
M = {m1,m2, . . . , ms}, where if

i ≤ s/2, mi = ci × ni−1 + (1 − ci) × ni, otherwise mi = (1 − cs+1−i) × ni−1 +
cs+1−i × ni. Obviously for any 1 ≤ i ≤ s, mi + ms+1−i = 1 and ni−1 < mi < ni.

Let S = DSK ∪ NSK, we call S a discrete degree set w.r.t K. Note that
|S| = 2s + 1 = O(|NK|) = O(|A|). We also sort degrees of S in ascending
order: S = {n0,m1, n1, . . . , ns−1,ms, ns}. For a fuzzy model Ic of K, if every
membership degree value of CIc() or RIc() belongs to a discrete degree set S,
Ic is called a discrete model of K within S. Following theorem guarantees the
equivalence between existence of fuzzy models and discrete models of K.

Theorem 1 For any K = 〈T ,R,A〉 and any discrete degree set S w.r.t K, K
has a fuzzy model, iff it has a discrete model within S.

Proof.⇒) Let I = 〈∆I , ·I〉 be a fuzzy model of K and the degree set S =
{n0,m1, n1, . . . , ns−1,ms, ns}. Consider a translation function ϕ() : [0, 1] → S:

ϕ(x) =

{
ni if x = ni

mi if ni−1 < x < ni

Here we enumerate some properties of ϕ(), which are useful for the following
proof: for any x ≤ y, ϕ(x) ≤ ϕ(y); for any x < y, if x or y ∈ DSK, ϕ(x) < ϕ(y);
and for any x and y, ϕ(1− x) = 1−ϕ(x), ϕ(max(x, y)) = max(ϕ(x), ϕ(y)), and
ϕ(min(x, y)) = min(ϕ(x), ϕ(y)).

Based on ϕ(), we construct a discrete model Ic = 〈∆Ic , ·Ic〉 within S from
I = 〈∆I , ·I 〉:

42 Long Papers

• The interpretation domain ∆Ic is defined as: ∆Ic = ∆I ;

• The interpretation function ·Ic is defined as: for any individual name a,
aIc = aI ; for any concept name A and any role name R: AIc() = ϕ(AI())
and RIc() = ϕ(RI()); and for complex concept C and inverse role R−,
their interpretation are recursively defined based on membership degree
functions AIc() and RIc() of concept names and role names.

1. For any concept C and role R and any two elements d, d′ ∈ ∆Ic , we show,
by induction on the structure of C and R, that CIc(d) = ϕ(CI(d)) and
RIc(d, d′) = ϕ(RI(d, d′)):

• Case A: from the construction of Ic, AIc(d) = ϕ(AI(d));

• Case R: the proof is similar to case A;

• Case R−: from the semantics of R− in I and Ic,

(R−)Ic(d, d′) = RIc(d′, d) = ϕ(RI(d′, d)) = ϕ((R−)I(d, d′))

• Case >: for 1 ∈ DSK, >Ic(d) = 1 = ϕ(>I(d));

• Case ⊥: the proof is similar to case >;

• Case ¬C: from induction, CIc(d) = ϕ(CI(d)). And from ϕ(1− x) =
1− ϕ(x), we have

(¬C)Ic(d) = 1− CIc(d) = 1− ϕ(CI(d))
= ϕ(1− CI(d)) = ϕ((¬C)I(d))

• Case CuD: from induction, CIc(d)=ϕ(CI(d)) and DIc(d)=ϕ(DI(d)).
We can get that

(C uD)Ic(d) = min(CIc(d), DIc(d))
= min(ϕ(CI(d)), ϕ(DI(d)))
= ϕ(min(CI(d), DI(d)))
= ϕ((C uD)I(d))

• Case CtD: the proof is similar to case C uD.

• Case ∀R.C: let f(d′) = max(1 − RI(d, d′), CI(d′)). From definition,
(∀R.C)I(d) = infd′∈∆If(d′). Assume there is an element d ′′ with the
minimal value of f(): for any d′ in ∆I , f(d′′) ≤ f(d′)1. Let

f ∗(d ′) = ϕ(f(d ′))
= ϕ(max(1−RI(d, d′), CI(d′)))
= max(ϕ(1−RI(d, d′)), ϕ(CI(d′)))
= max(1− ϕ(RI(d, d′)), ϕ(CI(d′)))
= max(1−RIc(d, d′), CIc(d′))

1The detailed proof of this assumption is given in [5]

Proceedings of DL 2006 43

Obviously, for ∀d ′ in ∆Ic , f ∗(d ′′) = ϕ(f(d ′′)) ≤ ϕ(f(d′)) = f ∗(d′).
Then we get

(∀R.C)Ic(d) = infd′∈∆Ic f ∗(d′) = f ∗(d′′)
= ϕ(f(d′′)) = ϕ((∀R.C)I(d))

• Case ∃R.C: for ¬(∃R.C) = ∀R.¬C, we can get the proof from case
¬C and ∀R.C.

2. We show Ic is a fuzzy model of K.

• Case R ∈ R+: for I is a fuzzy model of K, ∀d, d′ ∈ ∆I , RI(d, d′) ≥
supx∈∆I{RI(d, x), RI(x, d′)}. Therefore,

RIc(d, d′) = ϕ(RI(d, d′))
≥ supx∈∆I{min(ϕ(RI(d, x)), ϕ(RI(x, d′)))}
= supx∈∆Ic{min(RIc(d, x), RIc(x, d′))}

• Case C v D ∈ T : for I is a fuzzy model of K, ∀d ∈ ∆I , CI(d) ≤
DI(d). And from 1, for any concept C, CIc(d) = ϕ(CI(d)). There-
fore, ∀d ∈ ∆Ic , CIc(d) = ϕ(CI(d)) ≤ ϕ(DI(d)) = DIc(d);

• Case R v S ∈ R: the proof is similar to case C v D;

• Case α ./ n ∈ A: here we only focus on a:C ≥ n. For CI(aI) ≥ n
and n ∈ DSK, we can get:

CIc(aIc) = ϕ(CI(aI)) ≥ ϕ(n) = n

From above two points, Ic is a discrete model of K within S.

⇐) Let Ic be a discrete model of K within S. It is also a fuzzy model of K.¤

4 Discrete Tableau Algorithms

This section will talk about discrete tableau algorithms, which try to decide
the existence of discrete models of a FSHI KB K by constructing a discrete
tableau. Before going into the definition of discrete tableaus, we first introduce
some notations. It will be assumed that the concepts appearing in tableau
algorithms are written in Negation Normal Form (NNF). And for any concept
C, we use nnf(C) to denote its equivalent form in NNF. The set of subconcepts of
a concept C is denoted as sub(C). For a KB K, we define sub(K) as the union of
all sub(C), when the concept C appears in K. We also make two notions about
roles to make the following consideration easier: we use Inv(R) to denote the
inverse role of R and Tran(R) as a Boolean value to tell whether R is transitive.
Trans(R) =True, iff R or Inv(R) ∈ R+ or there is a role P with (1) P v∗ R and
R v∗ P ; and (2) P or Inv(P) ∈ R+. Moreover, we use the symbols B and C as
two placeholders for the inequalities ≥, > and ≤, <, and the symbols ./−, B−

44 Long Papers

Table 1: Conjugated pairs

〈<,m〉 〈≤,m〉
〈≥, n〉 n ≥ m n > m

〈>, n〉 ¬∃n1 ∈ S with n < n1 < m n ≥ m

and C− to denote the reflections of ./, B and C. For example, ≥ and ≤ are the
reflections to each other. Finally, we define 〈./, n〉 as a degree pair. Two degree
pairs 〈B, n〉 and 〈C,m〉 are called conjugated, iff they satisfy one of following
conditions (see table 1).

Now we define the discrete tableau for K. Let RK and OK be the sets of roles
and individuals appearing in K. A discrete tableau T for K within a degree set
S is a quadruple: 〈O, L, E , V〉, where

• O: a nonempty set of nodes;

• L: O → 2M , M = sub(K)× {≥, >,≤, <} × S;

• E : RK → 2Q, Q = {O ×O} × {≥, >,≤, <} × S;

• V : OK → O, maps any individual into a corresponding node in O.

The discrete tableau has a forest-like structure, which is a collection of trees
that correspond to individuals in the ABox A. Every tree consists of nodes
standing for the individuals, and edges representing the relations between two
nodes (individuals). Each node d is labelled with a set L(d) of degree triples:
〈C, ./, n〉, which denotes the membership degree of d being an instance of C ./ n.
A pair of triple 〈C, ./, n〉 and 〈C, ./′,m〉 are conjugated if 〈./, n〉 and 〈./′,m〉 are
conjugated. In a discrete tableau T, for any d, d′ ∈ O, a, b ∈ OK, C, D ∈ sub(K)
and R ∈ RK, the following conditions must hold:

1. There are not two conjugated degree triples in L(d);
2. There are not inconsistent triples: 〈⊥,≥, n〉 (n > 0), 〈>,≤, n〉 (n < 1),
〈⊥, >, n〉, 〈>, <, n〉, 〈C, >, 1〉 and 〈C, <, 0〉 in L(d);

3. If C v D ∈ T , then there must be some n ∈ S with 〈C,≤, n〉 and 〈D,≥, n〉
in L(d);

4. If 〈C, ./, n〉 ∈ L(d), then 〈nnf(¬C), ./−, 1− n〉 ∈ L(d);
5. If 〈C uD, B, n〉 ∈ L(d), then 〈C, B, n〉 and 〈D, B, n〉 ∈ L(d);
6. If 〈C uD, C, n〉 ∈ L(d), then 〈C, C, n〉 or 〈D, C, n〉 ∈ L(d);
7. If 〈C tD, B, n〉 ∈ L(d), then 〈C, B, n〉 or 〈D, B, n〉 ∈ L(d);
8. If 〈C tD, C, n〉 ∈ L(d), then 〈C, C, n〉 and 〈D, C, n〉 ∈ L(d);
9. If 〈∀R.C, B, n〉 ∈ L(d),〈〈d, d′〉, B′,m〉 ∈ E(R), and 〈B′,m〉 is conjugated

with 〈B−, 1− n〉, then 〈C, B, n〉 ∈ L(d′);
10. If 〈∀R.C, C, n〉 ∈ L(d), then there must be a node d′ ∈ O with 〈〈d, d′〉, C−, 1−

n〉 ∈ E(R) and 〈C, C, n〉 ∈ L(d′);
11. If 〈∃R.C, B, n〉 ∈ L(d), then there must be a node d′ ∈ O with 〈〈d, d′〉, B, n〉 ∈

E(R) and 〈C, B, n〉 ∈ L(d′);

Proceedings of DL 2006 45

12. If 〈∃R.C, C, n〉 ∈ L(d), 〈〈d, d′〉, B′,m〉 ∈ E(R), and 〈B′,m〉 is conjugated
with 〈C, n〉, then 〈C, C, n〉 ∈ L(d′);

13. If 〈∀P.C, B, n〉 ∈L(d), 〈〈d, d′〉, B′,m〉 ∈ E(R) for some R v∗ P with Trans(R)
=True and 〈B′,m〉 is conjugated with 〈B−, 1−n〉, then 〈∀R.C, B, n〉 ∈L(d′);

14. If 〈∃P.C, C, n〉 ∈L(d), 〈〈d, d′〉, B′,m〉 ∈ E(R) for some R v∗ P with Trans(R)
=True and 〈B′,m〉 is conjugated with 〈C, n〉, then 〈∃R.C, C, n〉 ∈ L(d′);

15. If 〈〈d, d′〉, ./, n〉 ∈ E(R), then 〈〈d′, d〉, ./, n〉 ∈ E(Inv(R));
16. If 〈〈d, d′〉, B, n〉 ∈ E(R) and R v∗ P , then 〈〈d, d′〉, B, n〉 ∈ E(P);
17. If a : C ./ n ∈ A, then 〈C, ./, n〉 ∈ L(V(a));
18. If 〈a, b〉 : R ./ n ∈ A, then 〈〈V(a),V(b)〉, ./, n〉 ∈ E(R).

Discrete tableau is an extension of fuzzy tableau [7] with additional condi-
tions (condition 3) to deal with general TBoxes. For any C v D ∈ T , since any
membership degree in the discrete model belongs to S, for any individuals d, let
d : C = n1 and d : D = n2, where n1, n2 ∈ S and n1 ≤ n2. Obviously, there must
be some n ∈ S satisfying n1 ≤ n ≤ n2. Then we add 〈C,≤, n〉 and 〈D,≥, n〉 in
L(d). For other conditions, conditions 1 and 2 prevent tableau from containing
any clash; condition 4-16 are necessary for the completeness of discrete tableaus;
and condition 17-18 ensure the correctness of individual mapping function V().

Theorem 2 For any K =< T ,R,A > and any discrete degree set S w.r.t K,
K has a discrete model within S iff it has a discrete tableau T within S.

Proof. ⇐) Let S = {n0,m1, n1, . . . , ns−1,ms, ns} and T = 〈O, L, E , V〉 be a
discrete tableau within S. We define a sign function h(): S → {1, 2, . . . , 2s+1}.
For any 0 ≤ i ≤ s, h(ni) = 2i+1 and h(mi) = 2i. Obviously, for any x ∈ S, x is
the h(x)-th minimal element in S. And we define g() as the inverse function of
h(). Based on T, we construct a discrete model Ic = 〈∆Ic , ·Ic〉 of K within S:

• The interpretation domain ∆Ic is defined as follows: ∆Ic = O;

• The interpretation function ·Ic is defined as follows: for any individual a,
aIc = V(a); for any concept name A any d ∈ ∆Ic :

AIc(d) = max{ 0, max{n|〈A,≥, n〉 ∈ L(d)},
h(g(max{n|〈A,>, n〉 ∈ L(d)}) + 1) }

And for any role name R and d, d′ ∈ ∆Ic , let

R∗(d, d′) = max{ 0, max{n|〈〈d, d′〉,≥, n〉 ∈ E(R)},
h(g(max{n|〈〈d, d′〉, >, n〉 ∈ E(R)}) + 1) }

For any k ≥ 0, let

R∗
k(d, d′) = supx1,...,xk∈∆Ic{min(R∗(d, x1), R

∗(x1, x2), . . . ,

R∗(xk−1, xk), R
∗(xk, d

′))}

RIc(d, d′) =

{
supk≥0{R∗

k(d, d′)} if Tran(R) = True
R∗(d, d′) otherwise

46 Long Papers

From above, AIc(d) are defined as the minimal value to satisfy constraints
in both ≥ and > cases. Note that, in order to be greater than all values
in S∗ = {n|〈A,>, n〉 ∈ L(d)}, AIc(d) must be greater than or equal to
the subsequence value h(g(max S∗) + 1) of the maximal value of S∗ in S.
And similarly for RIc(d, d′). And for any complex concept C and inverse
role R−, their interpretation are recursively defined based on membership
degree functions AIc() and RIc() of concept names and role names.

1. We show, for any C and d with 〈C, ./, n〉 ∈ L(d), CIc(d) ./ n.

– Case A: from the definition of AIc(), for any 〈A, B, n〉 ∈ L(d), obvi-
ously AIc(d)Bn. And for any 〈A, C, n〉 ∈ L(d), here we only focus on
≤ cases. Assume AIc(d) > n, (1) if AIc(d) is max{n|〈A,≥, n〉 ∈ L(d)}
or h(g(max{n|〈A,>, n〉 ∈ L(d)})+1), then there must be two conju-
gated triples in L(d), which is contrary to condition 1 of the discrete
tableaus; or (2) if AIc(d) is 0, then n < 0 holds which is contrary to
assumption n ∈ [0, 1].

– Case complex concepts: the proof is similar to case A.

2. Similarly, for any R and d, d′ with 〈〈d, d′〉, ./, n〉 ∈ E(R), RIc(d, d′) ./ n.

3. We show Ic is a fuzzy model of K.

– Case R ∈ R+: from the construction of Ic, for any d, d′ ∈ ∆Ic ,

RIc(d, d′) ≥ supx∈∆Ic{RIc(d, x), RIc(x, d′)}
– Case C v D ∈ T : from condition 3 of discrete tableaus, for any

d ∈ ∆Ic there must be some n ∈ S with 〈C,≤, n〉 and 〈D,≥, n〉 in
L(d). And from 1, CIc(d) ≤ n and DIc(d) ≥ n hold. Therefore, Ic

satisfies C v D

– Case R v S ∈ R: the proof is similar to case C v D;

– Case α ./ n ∈ A: here we only focus on a : C ./ n. From condition
17 of discrete tableau, 〈C, ./, n〉 ∈ L(V(a)). And from aIc = V(a)
and 1, we get CIc(aIc) ./ n.

⇒) Let Ic = 〈∆Ic , ·Ic〉 be a discrete model within S. And we construct a
discrete tableau T = 〈O, L, E , V〉 from Ic:

• O: O = ∆Ic ;

• L: for any d ∈ O, L(d) = {〈C, ./, n〉|CIc(d) ./ n, n ∈ S};
• for any R ∈ RK, E(R) = {〈〈d, d′〉, ./, n〉|RIc(d, d′) ./ n, n ∈ S};
• V : for any a ∈ OK, V(a) = aIc .

Proceedings of DL 2006 47

From definition, 〈C, ./, n〉 ∈ L(d) ⇔ CIc(d) ./ n and 〈〈d, d′〉, ./, n〉 ∈ E(R) ⇔
RIc(d, d′) ./ n. We show T is a discrete tableau of K within S: here we give the
proof of that T satisfies condtion 3 and 4:

3. if C v D ∈ T , for any d, CIc(d) ≤ DIc(d). Let CIc(d) = n and obviously
n ∈ S. From the construction of T, 〈C,≤, n〉 and 〈D,≥, n〉 ∈ L(d).

4. if 〈C, ./, n〉 ∈ L(d), then CIc(d) ./ n. And for the semantics of negation,
nnf(¬C)Ic(d) ./− 1− n, then 〈nnf(¬C), ./−, 1− n〉 ∈ L(d).

From above, T is a discrete tableau of K within S. ¤
From theorem 1 and 2, an algorithm that constructs a discrete tableau of

K within S can be considered as a decision procedure for the satisfiability of
K. The discrete tableau algorithm works on a completion forest FK, where each
node x is labelled with L(x) ⊆ M = sub(K)× {≥, >,≤, <} × S; and each edge
〈x, y〉 is labelled L(〈x, y〉)={〈R, ./, n〉}, for some R ∈ RK and n ∈ S.

The tableau algorithm initializes FK to contain a root node xa for each
individual a in OK and labels xa with L(xa) = {〈C, ./, n〉|a : C ./ n ∈ A}.
Moreover, for any pair 〈xa, xb〉, L(〈xa, xb〉) = {〈R, ./, n〉|〈a, b〉 : R ./ n ∈ A}.
The algorithm expands the forest FK either by extending L(x) for the current
node x or by adding new leaf node y with expansion rules in table 2.

In table 2, we adopt an optimized way to reduce ”C rules”: for any ”C” triple
〈C, C, n〉 ∈ L(x), we use ¬./ rules to add its equivalence 〈nnf(C), C−, 1− n〉 to
L(x), and then deal it with B rules.

Edges and nodes are added when expanding triples 〈∃R.C, B, n〉, 〈≥ pR, B, n〉
in L(x). A node y is called a R-successor of another node x and x is called a
R-predecessor of y, if 〈R, ./, n〉 ∈ L(〈x, y〉). Ancestor is the transitive clo-
sure of predecessor. And for any two connected nodes x and y, we define
DR(x, y)={〈B, n〉|P v∗ R, 〈P, B, n〉 ∈ L(〈x, y〉) or 〈Inv(P), B, n〉 ∈ L(〈y, x〉)}⋃
{〈C, n〉|R v∗ P, 〈P, C, n〉 ∈ L(〈x, y〉) or 〈Inv(P), C, n〉 ∈ L(〈y, x〉)}. If DR(x, y)
6= ∅, y is called a R-neighbor of x. As inverse role is allowed in FSHI, we
make use of dynamic blocking technique [3] to ensure the termination and cor-
rectness of our tableau algorithm. A node x is directly blocked by its ancestor
y iff x is not a root node and L(x) = L(y). A node x is indirectly blocked if its
predecessor is blocked. A node x is blocked iff it is either directly or indirectly
blocked.

A completion forest FK is said to contain a clash, if for a node x in FK,
L(x) contains two conjugated triples or an inconsistent triple (see condition 2
of discrete tableaus). A completion forest FK is clash-free if it does not contain
any clash, and it is complete if none of the expansion rules are applicable.

From dynamic blocking technique, the worst-case complexity of our tableau
algorithm is 2NEXPTIME [4]. And the soundness and completeness of our
tableau algorithm are guaranteed by the following theorem.

48 Long Papers

Table 2: Expansion rules of discrete Tableau

Rule name Description

KB rule: if C v D ∈ T and there is no n with 〈C,≤, n〉 and 〈D,≥, n〉 in L(x);
then L(x) → L(x) ∪ {〈C,≤, n〉, 〈D,≥, n〉} for some n ∈ S.

The following rules are applied to nodes x which is not indirectly blocked.
¬./ rule: if 〈C, ./, n〉 ∈ L(x) and 〈nnf(¬C), ./−, n〉 /∈ L(x);

then L(x) → L(x) ∪ {〈nnf(¬C), ./−, n〉}.
uB rule: if 〈C uD, B, n〉 ∈ L(x), and 〈C, B, n〉 or 〈D, B, n〉 /∈ L(x);

then L(x) → L(x) ∪ {〈C,B, n〉, 〈D, B, n〉}.
tB rule: if 〈C tD, B, n〉 ∈ L(x), and 〈C, B, n〉, 〈D, B, n〉 /∈ L(x)

then L(x) → L(x) ∪ {T}, for some T ∈ {〈C, B, n〉, 〈D, B, n〉}
∀B rule: if 〈∀R.C, B, n〉 ∈ L(x), there is a R-neighbor y of x with 〈B′,m〉 ∈ DR(x, y),

which is conjugated with 〈B−, 1− n〉, and 〈C, B, n〉 /∈ L(y);
then L(y) → L(y) ∪ {〈C,B, n〉}.

∀+B rule: if 〈∀P.C, B, n〉 ∈ L(x), there is a R-neighbor y of x with R v∗ P , Trans(R)=True
and 〈B′,m〉 ∈ DR(x, y), 〈B′,m〉 is conjugated with 〈B−, 1− n〉
L(y) → L(y) ∪ {〈∀R.C, B, n〉}.

The following rules are applied to nodes x which is not blocked.
∃B rule: if 〈∃R.C, B, n〉 ∈ L(x); there is not a R-neighbor y of x with 〈B, n〉 ∈ DR(x, y)

and 〈C, B, n〉 ∈ L(y).
then add a new node z with 〈R, B, n〉 ∈ L(〈x, z〉) and 〈C, B, n〉 ∈ L(z).

Theorem 3 For any K = 〈T ,R,A〉 and any discrete degree set S w.r.t K, K
has a discrete tableau within S iff the tableau algorithm can construct a complete
and clash-free completion forest.

Proof.(Sketch) Here we only focus on ⇐). The proof of ⇒) is similar to
the one given in [3]. Let FK a complete and clash-free completion forest. We
construct a discrete tableau T = 〈O, L, E , V〉 from FK:

• O: O = {x |x is a node in FK, and it is not blocked};
• L: for any x ∈ O, L(x) = the labelling set L(x) of nodes x in FK;

• E : for any R ∈ RK,

E(R) = {〈〈x, y〉, ./, n〉| 1. y is R-neighbor of x and 〈./, n〉 ∈ DR(x, y);or

2. y blocks z, and 〈./, n〉 ∈ DR(x, z);or

3. x blocks z, and 〈./, n〉 ∈ DInv(R)(y, z) }
• V : for any a ∈ OK, V(a) = the initialized node xa of a in FK.

We can follow the similar steps in theorem 2 to prove that T is a discrete tableau
of K within S.

Proceedings of DL 2006 49

5 Conclusion

This paper presents the discretization technique to reduce fuzzy models of
FSHI and proposes a discrete tableau algorithm to solve satisfiability of FSHI
KBs with general TBoxes. This discretization technique supports a new way to
achieve reasoning with general TBoxes in fuzzy DLs. We will try to extend this
discretization technique in more complex fuzzy DLs and design corresponding
tableau algorithms for reasoning with them. Moreover, we plan to apply it in
complexity research of reasoning problems in fuzzy DLs.

References

[1] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, 2001.

[2] S. Höldobler, H.P. Sötr, T.D. Khang, and N.H. Nga. The subsumption prob-
lem in the fuzzy description logic alcfh. In Proceedings of the Tenth Interna-
tional Conference of Information Processing and Managment of Uncertainty in
Knowledge-Based Systems, pages 243–250, Perugia, Italy, 2004.

[3] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9:385–410, 1999.

[4] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive descrip-
tion logics. In Proceedings of of LPAR99, 1999.

[5] Y.H. Li, B.W. Xu, J.J. Lu, and D.Z. Kang. Witnessed models of fuzzy description
logcis. Paper in preparation.

[6] D. Sanchez and G. Tettamanzi. Generalizing quantification in fuzzy description
logic. In Proceedings of the 8th Fuzzy Days, Dortmund, Germany, 2004.

[7] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrock. A Fuzzy Descrip-
tion Logic for Multimedia Knowledge Representation. In Proc. of the Interna-
tional Workshop on Multimedia and the Semantic Web, 2005.

[8] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrocks. Fuzzy owl:
Uncertainty and the semantic web. In Proceedings of International Workshop of
OWL: Experiences and Directions, Galway, 2005.

[9] U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial
Intelligence Researc, 14:137–166, 2001.

[10] U. Straccia. Fuzzy alc with fuzzy concrete domains. In Proceeedings of the In-
ternational Workshop on Description Logics (DL-05), pages 96–103, Edinburgh,
Scotland, 2005. CEUR.

[11] U. Straccia. Towards a fuzzy description logic for the semantic web. In Proceedings
of the 2nd European Semantic Web Conference, Heraklion, Greece, 2005.

50 Long Papers

Epistemic First-Order Queries over Description Logic

Knowledge Bases∗

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3
39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract

Querying Description Logic knowledge bases has received great attention in
the last years. The need of coping with incomplete information is the distinguish-
ing feature with respect to querying databases. Due to this feature, we have to
deal with two conflicting needs: on the one hand, we would like to query the
knowledge base with sophisticated mechanisms provided by full first-order logic
as in databases; on the other hand, the presence of incomplete information makes
query answering a much more difficult task than in databases. In this paper we
advocate the use of an epistemic first-order query language, which is able to incor-
porate closed-world reasoning on demand, as a means for expressing sophisticated
queries over Description Logic knowledge bases. We show that through a subset
of this language, called EQL-Lite, we are able to formulate full first-order queries
over Description Logic knowledge bases, while keeping computational complexity
of query answering under control. In particular, we show that EQL-Lite queries
over DL-Lite knowledge bases are first-order reducible (i.e., can be compiled into
SQL) and hence can be answered in LogSpace through standard database tech-
nologies.

1 Introduction

Querying Description Logic (DL) knowledge bases has received great attention in the
last years. Indeed, the definition of suitable query languages, and the design of query
answering algorithms is arguably one of the crucial issues in applying DLs to ontology
management and to the Semantic Web [9].

Answering queries in DLs must take into account the open-world semantics of
such logics, and is therefore much more difficult than in Databases. For example,
∗This research has been partially supported by FET project TONES (Thinking ONtologiES),

funded by the EU under contract number FP6-7603, by project HYPER, funded by IBM through
a Shared University Research (SUR) Award grant, and by MIUR FIRB 2005 project “Tecnologie
Orientate alla Conoscenza per Aggregazioni di Imprese in Internet” (TOCAI.IT).

Proceedings of DL 2006 51

while First Order Logic (FOL) is the basis of any query language (e.g., relational
algebra and SQL) for relational databases [1], it is well-known that answering FOL
queries posed to DL knowledge bases is undecidable1. More precisely, to the best of
our knowledge, the most expressive class of queries that go beyond instance checking,
and for which decidability of query answering has been proved in DLs, is the class
of union of conjunctive queries [5, 14, 15]. This restriction on the query language
may constitute a serious limitation to the adoption of DLs technology in information
management tasks, such as those required in Semantic Web applications.

The open-world semantics of DLs on one hand is essential for representing incom-
plete information, but on the other hand may complicate the task of interpreting the
answers by the users, or may call for the need of reasoning about the incompleteness
of the knowledge base. For example, knowing that there are no parents with only
female children, one might become interested in asking for all parents whose known
chidren are all female. Note that querying mechanisms such as the one mentioned in
the example go beyond FOL.

To summarize, due to the need of coping with incomplete information in DL knowl-
edge bases, two conflicting requirements arise in querying: on one hand, we would like
to query the knowledge base with powerful mechanisms that are able to reason about
incompleteness, and on the other hand we aim at query languages that are both close
in expressive power to FOL, and decidable (and, possibly, computationally tractable).

This paper presents the following contributions:

• We define a new query language for DL knowledge bases, called EQL (see Sec-
tion 2), based on a variant of the well-known first-order modal logic of knowl-
edge/belief [12, 17, 13]. The language incorporates a modal operator K, that
is used to formalize the epistemic state of the knowledge base. Informally, the
formula Kφ is read as “φ is known to hold (by the knowledge base)”. Using this
operator, we are able to pose queries that reason about the incompleteness of
information represented by the knowledge base. For instance, a user can express
queries that are able to incorporate closed-world reasoning on demand.

• We show (see Section 3) that through a subset of this language, called
EQL-Lite(Q), we are able to formulate queries that are interesting both from
the expressive power point of view, and from the computational complexity per-
spective. Queries in EQL-Lite(Q) have atoms that are expressed using a specific
query language Q, and enjoy the property that they can be evaluated essentially
with the same data complexity (i.e., measured wrt the size of the ABox only)
as Q.

• We investigate the properties of EQL-Lite(Q) for the cases ofALCQI (Section 4)
and DL-Lite (Section 5) knowledge bases, under the assumption that Q is the
language of unions of conjunctive queries. We study the data complexity of query
answering for both cases. In particular, we show that answering such queries
over DL-Lite knowledge bases is LogSpace, and, notably, can be reduced to

1Indeed, query answering can be easily reduced to validity checking in FOL.

52 Long Papers

evaluating FOL queries over the ABox, when considered as a database. It follows
that query processing in this setting can be done through standard database
technologies.

2 Epistemic query language

We make use of a variant of the well-known first-order modal logic of knowl-
edge/belief [12, 16, 13] (see also [7, 11]), here called EQL. The language EQL is a
first-order modal language with equality and with a single modal operator K, con-
structed from concepts, interpreted as unary predicates, and roles/relations, inter-
preted as binary/n-ary predicates, and an infinitely countable set of disjoint constants
(a.k.a., standard names [13]) corresponding to elements of an infinite countable fixed
domain ∆. In EQL, the modal operator is used to formalize the epistemic state of the
knowledge base. Informally, the formula Kφ should be read as “φ is known to hold
(by the knowledge base)”.

Under this view, a DL knowledge base corresponds to a finite set of FOL sentences
(i.e., closed FOL formulas), capturing what is known about the world. We query such
information by using (possibly open) EQL formulas possibly involving K.

In the following, we use the symbol c (possibly with subscript) to denote a constant,
the symbol x to denote a variable, and φ, ψ to denote arbitrary formulas.

A world is a first-order interpretation (over ∆). An epistemic interpretation is a
pair E,w, where E is a (possibly infinite) set of worlds, and w is a world in E. We
inductively define when a sentence (i.e., a closed formula) φ is true in an interpretation
E,w (or, is true in w and E), written E,w |= φ, as follows:2

E,w |= c1 = c2 iff c1 = c2

E,w |= P (c1, . . . , cn) iff w |= P (c1, . . . , cn)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E,w |= φ2

E,w |= ¬φ iff E,w 6|= φ
E,w |= ∃x.ψ iff E,w |= ψxc for some constant c
E,w |= Kψ iff E,w′ |= ψ for every w′ ∈ E

Formulas without occurrences of K are said to be objective since they talk about
what is true. Observe that in order to establish if E,w |= φ, where φ is an objective
formula, we have to look at w but not at E: we only need the FOL interpretation w.
All assertions in the DL knowledge base are indeed objective sentences.

Instead, formulas where each occurrence of predicates and of the equality is in the
scope of the K operator are said to be subjective, since they talk about what is known
to be true. Observe that for a subjective sentence φ, in order to establish if E,w |= φ
we do not have to look at w but only at E. We use such formulas to query what the
knowledge base knows. In other words, through subjective sentences we do not query
information about the world represented by the knowledge base; instead, we query
the epistemic state of the knowledge base itself. Obviously there are formulas that

2For a formula φ with free variables x1, . . . , xn, we use φx1,...,xn
c1,...,cn to denote the formula obtained from

φ by substituting each free occurrence of the variable xi with the constant ci, for each i ∈ {1, . . . , n}.

Proceedings of DL 2006 53

are neither objective nor subjective. For example ∃x.P (x) is an objective sentence,
K(∃x.P (x) ∧ ¬KP (x)) is a subjective sentence, while ∃x.P (x) ∧ ¬KP (x) is neither
objective nor subjective.

In our setting, among the various epistemic interpretations, we are interested in
specific ones that guarantee minimal knowledge over a DL knowledge base. Namely:
let Σ be a DL knowledge base (TBox and ABox), and let Mod(Σ) be the set of
all FOL-interpretations that are models of Σ. Then a Σ-EQL-interpretation is an
epistemic interpretation E,w where E = Mod(Σ). We say that a sentence φ is Σ-
EQL-satisfiable if there exists a Σ-EQL-model for φ, i.e., a Σ-EQL-interpretation
E,w such that E,w |= φ. Otherwise, we say that φ is Σ-EQL-unsatisfiable. Observe
that for objective formulas this notion of satisfiability becomes the standard notion of
FOL-satisfiability (relative to Σ). A sentence φ is EQL-logically implied by Σ, written
Σ |=EQL φ, if every Σ-EQL-interpretation is a Σ-EQL-model of φ.

It is worth mentioning some characterizing properties of EQL.

Proposition 1 For every DL knowledge base Σ and every EQL sentence φ we have:

Σ |=EQL Kφ ⊃ φ
Σ |=EQL Kφ ⊃ KKφ
Σ |=EQL ¬Kφ ⊃ K¬Kφ

These are the standard S5 axioms of modal logic. The first one expresses that “what is
known is true” (knowledge is accurate), and the latter two express that the knowledge
base has “complete knowledge on what is known and not known”.

Proposition 2 For every DL knowledge base Σ and every objective EQL sentence φ
we have:

Σ |= φ iff Σ |=EQL Kφ
Σ 6|= φ iff Σ |=EQL ¬Kφ

The above proposition relates knowledge to FOL logical implication. It says that
if an objective sentence φ is logically implied then it is known, and vice-versa, that
if φ is not logically implied then it is not known. Notably, the latter property is a
consequence of the minimal knowledge semantics that we are adopting. Observe also
that, as a consequence of this, every objective sentence is either known or not known
by a DL knowledge base.

Proposition 3 For every subjective EQL formula φ with free variables x1, . . . , xn
there is another subjective EQL formula φ′, with free variables x1, . . . , xn, such that:
(i) every occurrence of a subformula of the form Kψ in φ′ is such that ψ is a non-
subjective formula and Kψ occurs in φ; (ii) for every epistemic interpretation E,w,
we have that E,w |= ∀x1, . . . , xn.φ ≡ φ′.

The above proposition says that we do not gain expressive power by putting in
the scope of the K operator a formula that is already subjective. In other words,
if we start from formulas of the form Kψ, where ψ is not subjective, as the basic
building blocks of the language, then applying the full EQL constructs actually gives

54 Long Papers

the same expressive power as applying the first-order constructs only. By the way, to
get the sentence φ′ from φ we simply need to “push inward” the K operators through
subjective subformulas, stopping when we get to subformulas that are not subjective,
and simplifying KKψ to Kψ whenever possible.

Finally we provide the definition of EQL-queries.

Definition 4 An EQL-query is an EQL-formula q with free variables x1, . . . , xn, for
n ≥ 0, written q[x1, . . . , xn].

Given a Σ-EQL-interpretation E,w, we say that an n-tuple (c1, . . . , cn) of constants
in ∆ satisfies an EQL-query q[x1, . . . , xn] in E,w, written E,w |= q[c1, . . . , cn], if
E,w |= qx1,...,xn

c1,...,cn . A tuple (c1, . . . , cn) of constants in ∆ is a certain answer to q over
Σ, denoted Σ |=EQL q[c1, . . . , cn], if E,w |= q[c1, . . . , cn] for every Σ-EQL-interpretation
E,w.

Given two EQL-queries q[x1, . . . , xn] and q′[x1, . . . , xn] we say that q[x1, . . . , xn]
is contained in (resp., equivalent to) q′[x1, . . . , xn] if for every Σ-EQL-interpretation
E,w and every n-tuple (c1, . . . , cn) of constants in ∆ we have that E,w |= q[c1, . . . , cn]
implies (resp., if and only if) E,w |= q[c1, . . . , cn].

Example 5 Consider the DL knowledge base Σ constituted by the following TBox
T and ABox A:

T = { Male v ¬Female }
A = { Female(mary),Female(ann),Female(jane),Male(bob),

Male(john),Male(paul),PARENT(bob,mary),PARENT(bob, ann),
PARENT(john, paul),PARENT(mary, jane) }

Suppose we want to know the set of males that have only female children. This
corresponds to the following first-order query q1:

q1[x] = Male(x) ∧ ∀y.PARENT(x, y)→ Female(y)

It is easy to verify that the set of certain answers of q1 over Σ is empty. In particular,
bob is not a certain answer to the above query, since (due to the open-world semantics
of DLs) there are models of Σ in which the interpretation of PARENT contains pairs
of elements of the form (bob, x) and the interpretation of Male contains the element
x.

Suppose now that we want to know who are the persons all of whose known children
are female. This can be expressed by the following EQL query q2:

q2[x] = Male(x) ∧ ∀y.(KPARENT(x, y))→ Female(y)

It is immediate to verify that the certain answers over Σ of the query q2 are bob
and paul. In fact, for each Σ-EQL-interpretation E,w (we recall that E = Mod(Σ)),
(bob,mary) and (bob, ann) are the only pairs (x, y) such that Σ |=EQL KPARENT(x, y);
moreover, paul is a certain answer because he is male and has no known children.
Analogously, it can be seen that no other constant is in the set of certain answers of
q2 over Σ.

Proceedings of DL 2006 55

Example 6 Suppose now that we want to know who are the single children according
to what is known, i.e., the known children who have no known sibling. This can be
expressed by the following EQL query q3:

q3[x] = ∃y.(KPARENT(y, x)) ∧ ∀z.(KPARENT(y, z))→ z = x

It is immediate to verify that the certain answers over Σ of the query q3 are paul and
jane.

3 EQL-Lite(Q)

We introduce now the query language EQL-Lite(Q). Such a language is parameterized
with respect to a basic query language Q, which is a subset of EQL. Informally, EQL-
Lite(Q) is the first-order query language with equality whose atoms are formulas of
the form Kq where q is a Q-query, i.e., a query in Q.

To define EQL-Lite(Q) formally, we first need to introduce the notion of domain
independence for first-order queries, which is the semantical restriction on first-order
logic that is needed to get the equivalence to relational algebra [1]. A first-order query
q is domain independent if for each pair of FOL interpretations I1 and I2, respectively
over domains ∆I1 ⊆ ∆ and ∆I2 ⊆ ∆, for which P I1 = P I2 for all atomic relations P ,
we have that qI1 = qI2 3.

Given a subset Q of EQL, we call epistemic atom in Q an expression of the form
Kq[x1, . . . , xn], where q[x1, . . . , xn] is a Q-query.

Definition 7 An EQL-Lite(Q) query is a formula ψ that:

• is constructed according to the following syntax:

ψ ::= a | x1 = x2 | ψ1 ∧ ψ2 | ¬ψ | ∃x.ψ,

where a is an epistemic atom in Q, and

• is domain-independent, when we consider epistemic atoms as atomic formulas.

Observe that in EQL-Lite(Q) we do not allow for nesting of the K operator outside
the expressions of the basic query languageQ. Indeed, we now show that allowing such
nested occurrences of the epistemic operator does not actually increase the expressive
power of EQL-Lite(Q).

Proposition 8 Let EQL-Lite(Q)+ be the extension of EQL-Lite(Q) obtained by
adding to the abstract syntax for EQL-Lite(Q) formulas the rule

ψ ::= Kψ

For each query q ∈ EQL-Lite(Q)+, there exists a query q′ ∈ EQL-Lite(Q) such that q
is equivalent to q′.

3For an interpretation I over domain ∆I and a FOL query q[x1, . . . , xn], we use qI to denote
the result of the evaluation of q in I, i.e., the set of tuples (c1, . . . , cn) of constants in ∆I such that
φx1,...,xn
c1,...,cn is true in I.

56 Long Papers

The above property is an immediate consequence of Proposition 3, since EQL-Lite(Q)
queries are subjective EQL formulas, where the K operator is applied to non subjective
(in fact objective) subformulas only, and hence each EQL-Lite(Q)+ query can be
reduced to an equivalent EQL-Lite(Q) query by pushing inward the K operator,
stopping in front of the epistemic atoms, and simplifying KKψ to Kψ whenever
possible.

In spite of its expressive richness, EQL-Lite(Q) enjoys an interesting complexity
characterization of query answering. In the rest of the paper, when we speak about
the computational complexity of the query answering problem we actually refer to
the computational complexity of the recognition problem associated with query an-
swering [1]. Let Q be a query language and L a DL language, and let us assume
that the query language Q over L-knowledge bases has data complexity CQ,L, i.e., the
complexity of answering queries in Q over L-knowledge bases measured in the size of
the data of the knowledge base is CQ,L.

Let us further consider the following restriction over queries and knowledge bases.

Definition 9 Given a knowledge base Σ in L, a query q in Q is Σ-range-restricted,
if the certain answers of q over Σ contain only elements of adom(Σ), where adom(Σ)
denotes the set of constants occurring in Σ. By extension, an EQL-Lite(Q) query is
Σ-range-restricted if each of its epistemic atoms involves a Σ-range-restricted query.

The class of Σ-range-restricted queries is perfectly natural in this setting: indeed, it
can be shown that if the set of certain answers of a query q on a knowledge base Σ
contains elements that are not in adom(Σ), then the set of certain answers is infinite.

Example 10 The following in an EQL-Lite(Q) query, where Q is the language of
atomic queries:

q4[x] = (KMale(x)) ∧ ∀y.(KPARENT(x, y))→ (KFemale(y))

It is easy to verify that for the knowledge base Σ given in Example 5, q4 is Σ-range-
restricted.

Observe that, by Proposition 2, we have complete information on each instantiation
of the epistemic atoms of an EQL-Lite(Q) query, i.e., either the instantiated epistemic
atom is entailed by Σ or its negation is entailed by Σ. Now, answering a Σ-range-
restricted EQL-Lite(Q) query amounts to evaluating a domain independent first-order
query whose variables range over adom(Σ) and whose instantiated epistemic atoms
Kq[c1, . . . , cn] can be checked by verifying whether (c1, . . . , cn) is a certain answer
of q over the knowledge base. We know that evaluating a first-order query over
a given database is in LogSpace in data complexity [1], and, by our assumption,
computing whether a tuple of elements of adom(Σ) is in the relation corresponding to
the extension of an epistemic atom, can be done in CQ,L in data complexity. Hence, we
immediately derive the following result on the data complexity of answering Σ-range-
restricted EQL-Lite(Q)-queries, where we denote with CC2

1 the class of languages
recognized by a C1-Turing Machine that uses an oracle in C2.

Proceedings of DL 2006 57

Theorem 11 Let Q be a query language over L-knowledge bases that is in CQ,L with
respect to data complexity. Let Σ be an L-knowledge base, and q a Σ-range-restricted
EQL-Lite(Q) query. Then, answering q over Σ is in LogSpaceCQ,L with respect to
data complexity.

Among the various choices of the basic query languageQ in EQL-Lite(Q), a promi-
nent role is played by unions of conjunctive queries (UCQs). In fact, the language
of UCQs is currently the most expressive subset of first-order logic for which query
answering over DL knowledge bases is known to be decidable [5, 15]. Consequently, in
the following we will focus on EQL-Lite(UCQ), and will call such a language simply
EQL-Lite.

4 Answering EQL-Lite queries over ALCQI knowledge
bases

As a consequence of the properties shown in the previous section, we now provide
a computational characterization of answering Σ-range-restricted EQL-Lite queries
in ALCQI. It is known that answering unions of conjunctive queries over ALCQI
knowledge bases is coNP-complete with respect to data complexity [15]. Based on
this characterization and on Theorem 11, we are able to show the following result.

Theorem 12 Let Σ be an ALCQI-knowledge base, and q a Σ-range-restricted EQL-
Lite query. Then, answering q over Σ is in Θp

2 with respect to data complexity.

We recall that Θp
2 = ∆p

2[O(log n)] = PNP [O(logn)] [10, 8], i.e., Θp
2 is the class of

the decision problems that can be solved in polynomial time through a logarithmic
number of calls to an NP-oracle. Such a class is considered as “mildly” harder than
the class NP, since a problem in Θp

2 can be solved by solving “few” (i.e., a logarithmic
number of) instances of problems in NP. Consequently, answering EQL-Lite queries in
ALCQI (and in all the DLs in which answering UCQs is a coNP-complete problem)
is “mildly harder” than answering UCQs.

5 Answering EQL-Lite queries over DL-Lite knowledge
bases

In this section we study EQL-Lite queries posed over DL-Lite knowledge bases. DL-
Lite [6, 3] is a DL specifically tailored to capture basic ontology languages, while
keeping low complexity of reasoning, in particular, polynomial in the size of the in-
stances in the knowledge base. Answering UCQs in DL-Lite is in LogSpace with
respect to data complexity4. Moreover all UCQs in DL-Lite are Σ-range-restricted.
As a consequence of Theorem 11 we get that moving from UCQs to EQL-Lite does
not blow up computational complexity of the query answering problem.

4It is easy to see that all results for CQs in [6, 3] can be extended to UCQs.

58 Long Papers

Theorem 13 Answering EQL-Lite queries over DL-Lite knowledge bases is in
LogSpace with respect to data complexity.

We point out that membership in LogSpace for the problem of answering UCQs
over DL-Lite knowledge bases follows from a notable property of such a DL language,
namely, FOL-reducibility of query answering [4]. Intuitively, FOL-reducibility means
that query answering can be reduced to evaluating queries over the database corre-
sponding to the ABox of a DL knowledge base, which therefore can be maintained in
secondary storage. More formally, given an ABox A involving membership assertions
on atomic concept and roles only, we define IA as the interpretation constructed as
follows:

– aIA = a for each constant a,
– AIA = {a | A(a) ∈ A} for each atomic concept A, and
– P IA = {(a1, a2) | P (a1, a2) ∈ A} for each atomic role P .

Then, query answering in a DL L is FOL-reducible if for every query q (of a given
language) and every TBox T expressed in L, there exists a FOL query q1 such that for
every ABox A, we have that (T ,A) |=EQL q[c1, . . . , cn] if and only if (c1, . . . , cn)IA ∈
qIA1 . In other words, q1 is evaluated over the ABox A considered as a database.
Observe that FOL-reducibility is a very nice property from a practical point of view.
Indeed, in all such cases in which query answering can be reduced to evaluation of
a suitable domain independent FOL query q1, then q1 can be expressed in relational
algebra, i.e., in SQL. Therefore, query answering can take advantage of optimization
strategies provided by current DBMSs (which are in charge of properly managing
ABoxes in secondary storage).

Now, it turns out that FOL-reducibility is also at the basis of the membership
in LogSpace of answering EQL-Lite queries over DL-Lite knowledge bases, as the
following theorem shows.

Theorem 14 Answering EQL-Lite queries in DL-Lite is FOL-reducible. Further-
more, the resulting FOL-queries are domain independent.

Proof (sketch). We make use of the algorithm for FOL-reducibility of UCQs over DL-
Lite knowledge bases presented in [3]. More precisely, given a DL-Lite TBox T and
an EQL-Lite query ψ over T , we execute the algorithm of [3] for each epistemic atom
Kq[x1, . . . , xn] of ψ, giving as inputs to each such execution the union of conjunctive
queries q[x1, . . . , xn] and the DL-Lite TBox T . Then, we substitute to each epistemic
atom Kq[x1, . . . , xn] of ψ the union of conjunctive queries q′[x1, . . . , xn] produced by
the corresponding execution of the rewriting algorithm, thus obtaining (provided some
further syntactic transformations) a FOL query q1. Now, it is possible to show that
q1 is domain independent, and that for every ABox A, (T ,A) |=EQL q[c1, . . . , cn] iff
(c1, . . . , cn)IA ∈ qIA1 , thus proving the claim.

As a consequence, to perform query answering of EQL-Lite queries in DL-Lite, we
can rely on traditional relational DBMSs.

Proceedings of DL 2006 59

Recently, different versions of DL-Lite have been considered, and an entire family
of “lite” DLs, namely, the DL-Lite family, has been defined [4]. Roughly speaking,
DLs of such a family differ one another for the set of constructs allowed in the right-
hand side and in the left-hand side of inclusion assertions between concepts and/or
roles specified in the TBox (e.g., allowing in certain cases for the presence of existential
qualified quantification on the right-hand side, or conjunctions of concepts in the left-
hand side), as well as the possibility of specifying functionality assertions on roles,
inclusion assertions between roles, and n-any relationships in addition to binary roles.
Notably, the DLs of the DL-Lite family are the maximal logics allowing for FOL-
reducibility of answering unions of conjunctive queries [4]. As for answering EQL-Lite
queries, we point out that Theorem 14 also holds for all the DLs belonging to the
DL-Lite family.

6 Conclusions

Motivated by various needs related to querying DL knowledge bases, we have proposed
the query language EQL, based on a variant of the well-known first-order modal
logic of knowledge/belief. Then, we have studied a subset of this language, called
EQL-Lite(Q), arguing that it allows for formulating queries that are interesting both
from the expressive power point of view, and from the computational complexity
perspective. Finally, we have investigated the properties of EQL-Lite(Q) for the cases
of ALCQI and DL-Lite knowledge bases, under the assumption thatQ is the language
of unions of conjuntive queries. In particular, we have shown that answering EQL-
Lite(Q) in the latter setting is LogSpace in data complexity, and, notably, can be
done through standard database technologies.

We are working specifically on EQL-Lite(Q) for DL-Lite knowledge bases, for the
case where Q is the query language whose queries are either a UCQ or a comparison
atom involving values taken from a set of given domains. We are currently implement-
ing such an extended language with the goal of enhancing the querying capabilities of
the QuOnto system [2].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley
Publ. Co., 1995.

[2] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri,
and R. Rosati. QuOnto: Querying ontologies. In Proc. of the 20th Nat. Conf.
on Artificial Intelligence (AAAI 2005), pages 1670–1671, 2005.

[3] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int.

60 Long Papers

Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006),
2006.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. DL-
Lite: Practical reasoning for rich DLs. In Proc. of the 2004 Description
Logic Workshop (DL 2004). CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/Vol-104/, 2004.

[7] B. F. Chellas. Modal Logic: An introduction. Cambridge University Press, 1980.

[8] T. Eiter and G. Gottlob. The complexity class Θp
2: Recent results and applica-

tions in AI and modal logic. In Proc. of the 11th Int. Symp. on Fundamentals
of Computation Theory (FCT’97), volume 1279 of Lecture Notes in Artificial
Intelligence, pages 1–18. Springer, 1997.

[9] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL: A language for deductive query
answering on the semantic web. J. of Web Semantics, 2(1), 2005.

[10] G. Gottlob. NP trees and Carnap’s modal logic. J. of the ACM, 42(2):421–457,
1995.

[11] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen,
London (United Kingdom), 1984.

[12] H. J. Levesque. Foundations of a functional approach to knowledge representa-
tion. Artificial Intelligence, 23:155–212, 1984.

[13] H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. The MIT
Press, 2001.

[14] M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for
conjunctive query answering in expressive description logics. In Proc. of the 21st
Nat. Conf. on Artificial Intelligence (AAAI 2006), 2006.

[15] M. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of answering unions of
conjunctive queries in SHIQ. In Proc. of the 2006 Description Logic Workshop
(DL 2006). CEUR Electronic Workshop Proceedings, http://ceur-ws.org/,
2006.

[16] R. Reiter. What should a database know? J. of Logic Programming, 14:127–153,
1990.

[17] R. Reiter. Narratives as programs. In Proc. of the 7th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2000), pages 99–108, 2000.

Proceedings of DL 2006 61

Data Complexity of Answering Unions of Conjunctive

Queries in SHIQ∗

Magdalena Ortiz1,2, Diego Calvanese1, Thomas Eiter2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3, Bolzano, Italy
calvanese@inf.unibz.it,

magdalena.ortiz@stud-inf.unibz.it

2 Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, Vienna, Austria
eiter@kr.tuwien.ac.at

Abstract

The novel context of accessing and querying large data repositories through
ontologies that are formalized in terms of expressive DLs requires on the one
hand to consider query answering as the primary inference technique, and on the
other hand to optimize it with respect to the size of the data, which dominates
the size of ontologies. While the complexity of DLs has been studied extensively,
data complexity in expressive DLs has been characterized only for answering
atomic queries, and was still open for more expressive query languages, such
as unions of conjunctive queries (UCQs). In this paper we advocate the need
for studying this problem, and provide a significant technical contribution in
this direction. Specifically, we prove a tight coNP upper bound for answering
UCQs over SHIQ knowledge bases, for the case where the queries do not contain
transitive roles. We thus establish that for a whole range of DLs from AL to
SHIQ, answering such UCQs has coNP-complete data complexity. We obtain our
result by a novel tableaux-based algorithm for checking query entailment, inspired
by the one in [20], but which manages the technical challenges of simultaneous
inverse roles and number restrictions (which leads to a DL lacking the finite model
property).

1 Introduction

Description Logics (DLs) [2] provide the formal foundations for the standard Web
ontology languages [11]. In fact, OWL-Lite and OWL-DL are syntactic variants of
the DLs SHIF(D) and SHOIN (D), respectively [12, 22]. In the Semantic Web
and domains such as Enterprise Application Integration and Data Integration [19],
ontologies provide a high-level, conceptual view of the relevant information. However,
they are increasingly seen also as a mechanism to access and query data repositories.
∗This work was partially supported by the Austrian Science Funds (FWF) project P17212, by

the European Commission project REWERSE (IST-2003-506779), and by the European Commission
FET project TONES (FP6-7603).

62 Long Papers

This novel context poses an original combination of challenges both in DLs/ontologies
and in related areas such as data modeling and querying in databases:

(i) On the one hand, data repositories can be very large and are usually much
larger than the intensional level expressing constraints on the data. Therefore, the
contribution of the extensional data to inference complexity must be singled out, and
one must pay attention to optimizing inference techniques with respect to data size,
as opposed to the overall size of the knowledge base. In databases, this is accounted
for by data complexity of query answering [26], where the relevant parameter is the
size of the data, as opposed to combined complexity, which additionally considers the
size of the query and of the schema.

(ii) On the other hand, the data underlying an ontology should be accessed using
well established and flexible mechanisms such as those provided by database query
languages. This goes well beyond the traditional inference tasks involving objects in
DL-based systems, like instance checking [10, 23]. Indeed, since explicit variables are
missing, DL concepts have limited possibility for relating specific data items to each
other. Conjunctive queries (CQs) and unions of CQs (UCQs) provide a good tradeoff
between expressive power and nice computational properties, and thus are adopted as
core query language in several contexts, such as data integration [19].

(iii) Finally, the considered DLs should have sufficient expressive power to capture
common constructs used in data modeling [4]. This calls for expressive DLs [5], such
as SHIQ [13, 15], featuring besides full Booleans also number restrictions, inverse
and transitive roles, and role hierarchies.

As for data complexity of DLs, [10, 23] showed that instance checking is coNP-
hard already in the rather weak DL ALE , and [7] that CQ answering is coNP-hard
in the yet weaker DL AL. For suitably tailored DLs, answering UCQs is polynomial
(actually LogSpace) in data complexity [6, 7]; see [7] for an investigation of the
NLogSpace, PTime, and coNP boundaries.

For expressive DLs (with the features above, notably inverse roles), TBox+ABox
reasoning has been studied extensively using techniques ranging from reductions to
Propositional Dynamic Logic (PDL) (see, e.g., [8, 5]) over tableaux [3, 15] to automata
on infinite trees [5, 25]. For many such DLs, the combined complexity of TBox+ABox
reasoning is ExpTime-complete, including ALCQI [5, 25], DLR [8], and SHIQ [25].
However, until recently, little attention has been explicitly devoted to data complexity
in expressive DLs. An ExpTime upper bound for data complexity of UCQ answering
in DLR follows from the results on UCQ containment and view-based query answering
in [8, 9]. They are based on a reduction to reasoning in PDL, which however prevents
to single out the contribution to the complexity coming from the ABox. In [20] a tight
coNP upper bound for CQ answering in ALCNR is shown. However, this DL lacks
inverse roles and is thus not suited to capture semantic data models or UML. In [17, 18]
a technique based on a reduction to Disjunctive Datalog is used for ALCHIQ. For
instance checking, it provides a (tight) coNP upper bound for data complexity, since it
allows to single out the ABox contribution. The result can immediately be extended to
tree shaped conjunctively queries, since these admit a representation as a description
logic concept (e.g., by making use of the notion of tuple-graph of [8], or via rolling
up [16]). However, this is not the case for general CQs, resulting in a non-tight

Proceedings of DL 2006 63

2ExpTime upper bound (matching also combined complexity).
Summing up, a precise characterization of data complexity for UCQ answering

in expressive DLs was still open, with a gap between a coNP lower-bound and an
ExpTime upper bound. We close this gap, thus simultaneously addressing the three
challenges identified above. Specifically, we make the following contributions:

• Building on techniques of [20, 15], we devise a novel tableaux-based algorithm
for answering UCQs where all roles are simple over SHIQ knowledge bases.
Technically, to show its soundness and completeness, we have to deal both with
a novel blocking condition (inspired by the one in [20], but taking into account
inverse and transitive roles), and with the lack of the finite model property.

• This novel algorithm provides us with a characterization of data complexity for
UCQ answering in expressive DLs. Specifically, we show that data complexity
of answering such an UCQ over SHIQ knowledge bases is in coNP, and thus
coNP-complete for all DLs ranging from AL to SHIQ.

For space reasons, proofs are omitted here; they can be found in [21].

2 Preliminaries

We only briefly recall SHIQ and refer to the literature (e.g., [13, 15]) for details and
background. We denote by C, R, R+ (where R+ ⊆ R), and I the sets of concept
names, role names, transitive role names, and individuals respectively. A role R is
either an atomic role name P or its inverse P−. A concept C is either an atomic
concept name A or one of C u D, C t D, ¬C, ∀R.C, ∃R.C, ≥ nS.C, or ≤ nS.C,
where C and D denote concepts, R a role, S a simple role (see later), and n ≥ 0
an integer. A knowledge base is a triple K = 〈T ,R,A〉, where the TBox T is a set
of concept inclusion axioms C1 v C2; the role hierarchy R is a set of role inclusion
axioms R1 v R2; and the ABox A is a set of assertions A(a), P (a, b), and a 6= b,
where A (resp., P) is an atomic concept (resp., role) and a and b are individuals.

A role S is simple, if for no role R ∈ R+ we have that R v∗ S, where v∗ denotes
the reflexive and transitive closure of the subrole relation v over R ∪ {Inv(R1) v
Inv(R2) | R1 v R2 ∈ R}. Without loss of expressivity, we assume that all concepts
in K are in negation normal form (NNF). For a concept C, clos(C) is the smallest
set of concepts containing C that is closed under subconcepts and their negation (in
NNF); and clos(K) denotes the union of all clos(C) for each C occurring in K. We
will use K to denote a knowledge base 〈T ,R,A〉, RK the roles occurring in K and
their inverses, and IK the individuals occurring in A.

The semantics of K is defined in terms of first-order interpretations I = (∆I , ·I),
where ∆I is the domain and ·I the valuation function, as usual (without unique names
assumption;1 see [2]). I is a model of K, denoted I |= K, if it satisfies T , R and A.

1The unique names assumption can be easily emulated using 6≈.

64 Long Papers

Example 1 As a running example, we use the knowledge base

K = 〈 {A v ∃P1.A, A v ∃P2.¬A }, {}, {A(a) }〉.

We assume that K has an associated set of distinguished concept names, denoted
Cq, which are the concepts that can occur in queries.

Definition 1 (Union of Conjunctive Queries) A conjunctive query (CQ) Q over
a knowledge base K is a set of atoms of the form {p1(Y1), . . . , pn(Yn)} where each pi
is either a role name in RK or a concept in Cq, and Yi is a tuple of variables or
individuals in IK matching its arity. A union of CQs (UCQ) U is defined as an
expression of the form Q1 ∨ · · · ∨Qm where Qi is a CQ for each i ∈ {1, . . . ,m}.

For short, a query is either a CQ or a UCQ. We will restrict our attention to
queries where each role occurring in some pi(Yi) is a simple role, i.e., transitive roles
and super-roles of transitive roles are disallowed in queries. We denote by varind(Q)
the set of variables and individuals in query Q. An interpretation I is a model of a CQ
Q, denoted I |= Q, if there is a substitution σ : varind(Q)→ ∆I such that σ(a) = aI

for each individual a ∈ varind(Q) and I |= p(σ(Y)), for each p(Y) in Q. For a UCQ
U = Q1 ∨ · · · ∨Qm, I |= U is defined as I |= Qi for some i ∈ {1, . . . ,m}. We say that
K entails query Q, denoted K |= Q, if I |= Q for each model I of K.

Example 2 Let Cq = {A}. We consider the CQs Q1 = {P1(x, y), P2(x, z), A(y)} and
Q2 = {P2(x, y), P2(y, z)} and the UCQ U = Q1 ∨ Q2. Note that K |= Q1. Indeed,
for an arbitrary model I of K, we can map x to aI , y to an object connected to
aI via role P1 (which by the inclusion axiom A v ∃P1.A exists and is an instance
of A), and z to an object connected to aI via role P2 (which exists by the inclusion
A v ∃P2.¬A). Also, K 6|= Q2. A model I of K that is not a model of Q2 is the
one with ∆I = {o1, o2}, aI = o1, AI = {o1}, P I1 = {〈o1, o1〉}, and P I2 = {〈o1, o2〉}.
Finally, since K |= Q1, then also K |= U .

Query answering for a certain DL L is in a complexity class C, if given any knowl-
edge base K in L and query Q, deciding K |= Q is in C; this is also called combined
complexity. The data complexity of query answering is the complexity of deciding
K |= Q where Q and all of K except A is fixed.

We only consider Boolean queries (i.e., yes/no queries, with no free variables), to
which queries with distinguished variables are reducible as usual. Note that query
answering is not reducible to knowledge base satisfiability, since the negated query is
not expressible within the knowledge base.

3 The Query Answering Algorithm

In this section, Q denotes a CQ and U a UCQ. As mentioned, we assume that all roles
occurring in queries are simple. We first describe our method for deciding K |= Q, and
then how it is extended to K |= U . Our technique builds on the SHIQ satisfiability
algorithm in [15]. The adaption to query answering is inspired by [20], yet we deal
with DLs that have no finite model property.

Proceedings of DL 2006 65

a

P2P2P2P2

v1

L1 L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2
v2 v4 v6 v8

P1P1P1 P1

T1

a

P2P2P2P2

v1

L1 L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2
v2 v4 v6 v8

P1P1P1 P1

L1 L1

P1 P1

P2 P2

L2 L2
v10 v12

v9 v11

T2

Figure 1: Trees and completion forests for the example knowledge base

We use completion forests, which are finite relational structures capturing sets of
models of K. Roughly speaking, the models of K are represented by an initial comple-
tion forest FK . By applying tableaux-style expansion rules repeatedly, new completion
forests are generated non-deterministically where also new individuals might be in-
troduced. Each model of K is preserved in some of the resulting forests. Therefore,
checking K |= Q equals checking F |= Q for each completion forest F . The blocking
conditions on the rules, which ensure that expansion terminates, are more involved
than those in [15]. They require a depth parameter n (depending on Q) that ensures
a sufficient expansion of each forest F , in such a way that semantical entailment of Q
in F can be checked effectively via a syntactic mapping of the variables in Q to the
nodes in F . Thus, to witness that K 6|= Q, it is sufficient to (nondeterministically)
construct a large enough forest F to which Q cannot be mapped.

A variable tree T is a tree whose nodes are variables except the root, which might
be also an individual, and where each node v is labeled with a set of concepts L(v)
and each arc v→w is labeled with a set of roles L(v→w). For any integer n ≥ 0, the
n-tree of a node v in T , denoted Tnv , is the subtree of T rooted at v that contains all
descendants of v within distance n. Variables v and v′ in T are n-tree equivalent in T ,
if Tnv and Tnv′ are isomorphic (i.e., there is a bijection from the nodes of Tnv to those of
Tnv′ which preserves all labels). If, for such v and v′, v′ is an ancestor of v in T and v
is not in Tnv′ , then we say that Tnv′ tree-blocks Tnv . A completion forest (cf. [15]) for K
is constituted by (i) a set of variable trees whose roots are the individuals in IK and
can be arbitrarily connected by arcs; and (ii) a binary relation 6≈ on the individuals
in IK , implicitly assumed to be symmetric.

Example 3 Consider the variable tree T1 in Figure 1, with a as root, L1 = {A,
¬A t ∃P1.A, ¬A t ∃P2.¬A, A t ¬A, ∃P1.A, ∃P2.¬A}, and L2 = {¬A, ¬A t ∃P1.A,
¬At∃P2.¬A, At¬A}. Then, v1 and v5 are 1-tree equivalent in T1 and T1

1
v1

tree-blocks
T1

1
v5

.

Now we introduce the initial completion forest for K. We use a set of global
concepts gcon(K, Cq) = {¬C tD | C v D ∈ T } ∪ {C t ¬C | C ∈ Cq}. Informally, by
requiring that each individual belongs to all global concepts, satisfaction of the TBox

66 Long Papers

is enforced and, by case splitting, each individual can be classified with respect to the
distinguished concepts (i.e., those appearing in queries).

The initial completion forest for K, denoted FK , is defined as follows:2

• The nodes are the individuals a ∈ IK , and L(a) = {A | A(a) ∈ A}∪gcon(K, Cq).
• The arc a→ a′ is present iff A contains some assertion P (a, a′), and L(a→ a′) =
{P | P (a, a′) ∈ A}.
• a 6≈ a′ iff a 6= a′ ∈ A.

Example 4 In our running example, FK contains only the node a which has the label
L(a) := {A, ¬A t ∃P1.A, ¬A t ∃P2.¬A, A t ¬A}.

In the expansion rules, we use a notion of blocking that depends on a depth
parameter n: a node is n-blocked if it’s a leaf of a tree-blocked n-tree in F . Note
that if v is n-blocked, then it is m-blocked for each m ≤ n. For n ≥ 1, n-blocking
implies blocking as in [15], and for n = 0 amounts to blocking by equal node labels.
Starting from FK , we can generate a set FK of new completion forests by applying
expansion rules. The rules are analogous to those in [15], but they use “n-blocking”
and initialize newly introduced nodes with a label containing gcon(K, Cq). When
applying the expansion rules, a clash may arise in some F , i.e., two complementary
concepts C and ¬C occur in a node label, or a node that should satisfy a number
restriction ≤ nS.C has more than n distinct S successors marked C. If this is not the
case, then F is clash free. We call a completion forest n-complete, if (under n-blocking)
no rule can be applied to it. We denote by ccfn(FK) the set of n-complete and clash
free completion forests in FK . For the set of expansion rules and more details, see [21].

Example 5 Consider the completion forest F1 with the variable tree T1 from Exam-
ple 3 and with empty 6≈. F1 is 1-blocked. Analogously, consider F2 that has T2 in
Figure 1 and where 6≈ is also empty. F2 is 2-blocked. Both F1 and F2 can be obtained
from FK by applying the expansion rules. They are both complete and clash-free, so
F1 ∈ ccf1(FK) and F2 ∈ ccf2(FK).

Models of a completion forest

Viewing variables in a completion forest F as individuals, we can define models of F
as models of K (over an extended vocabulary). An interpretation I is a model of a
completion forest F for K, denoted I |= F , if I |= K and for all nodes v, w in F it
holds that (i) vI ∈ CI if C ∈ L(v), (ii) 〈vI , wI〉 ∈ RI if F has an arc v→w and
R ∈ L(〈v, w〉), and (iii) vI 6= wI if v 6≈ w ∈ F .

Clearly, the models of the initial completion forest FK and of K coincide, and
thus FK semantically represents K. Then, each time an expansion rule is applied,
all models are preserved in some resulting forest. As a consequence, it holds that for
each model I of K, there exists some F ∈ ccfn(FK) and a model of F which extends I
(for any n ≥ 0). Since the set of n-complete and clash-free forests for K semantically

2If A = ∅, then FK contains a single node a with L(a) = gcon(K, Cq).

Proceedings of DL 2006 67

captures K (modulo new individuals), we can transfer query entailment K |= Q to
logical consequence of Q from completion forests as follows. For any completion forest
F and CQ Q, let F |= Q denote that I |= Q for every model I of F .

Proposition 1 Let Q be a CQ in which all roles are simple and let n ≥ 0 be arbitrary.
K |= Q iff F |= Q for each F ∈ ccfn(FK).

Now we will show that, if n is sufficiently large, we can decide F |= Q for an
F ∈ ccfn(FK) by syntactically mapping the query Q into F . We say that Q can
be mapped into F , denoted Q ↪→F , if there is a mapping µ from the variables and
individuals in varind(Q) into the nodes of F , such that (i) for each individual a,
µ(a) = a; (ii) for each atom C(x) in Q, C ∈ L(µ(x)); and (iii) for each atom R(x, y)
in Q, there is an arc µ(x)→µ(y) whose label contains R′ or an arc µ(y)→µ(x) whose
label contains the inverse of R′ for some R′ v∗ R.

Example 6 Q1 ↪→F2 holds, as witnessed by the mapping µ(x) = a, µ(y) = v2, and
µ(z) = v1. Note that there is no mapping of Q2 into F2 satisfying the above conditions.

It is clear that if Q can be mapped to F via µ, then Q is satisfied in each model
I = (∆I , ·I) of F by assigning to each variable x in Q the value of its image µ(x)I .
Thus Q ↪→F implies F |= Q. To prove that the converse also holds, we have to show
that if n is large enough, a mapping of Q into F ∈ ccfn(FK) can be constructed from
a distinguished canonical model of F .

The canonical model IF of F is constructed by unraveling the forest F in the
standard way, where the blocked nodes act like ‘loops’. Its domain comprises the set
of all paths from some root in F to some node of F (thus, it can be infinite). Note
that in order for IF to be a model, F must be in ccfn(FK) for some n ≥ 1. The
formal definition of IF is then straightforward yet complex, and we must refer to the
extended report [21] for the details. Instead, we provide an example.

Example 7 By unraveling F2, we obtain a model IF2 that has as domain the infinite
set of paths from a to each vi. Note that a path actually comprises a sequence of pairs
of nodes, in order to witness the loops introduced by blocked variables. When a node
is not blocked, like v1, the pair v1

v1
is added to the path. Since T 2

v1
tree-blocks T 2

v7
, every

time a path reaches v11, which is a leaf of a blocked tree, we add v5
v11

to the path and
‘loop’ back to the successors of v5. In this way, we obtain the following infinite set of
paths:

p0 = [aa], p7 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v7
v7

],
p1 = [aa ,

v1
v1

], p8 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v8
v8

],
p2 = [aa ,

v2
v2

], p9 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v7
v7
, v9
v9

],
p3 = [aa ,

v1
v1
, v3
v3

], p10 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v7
v7
, v10
v10

],
p4 = [aa ,

v1
v1
, v4
v4

], p11 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v7
v7
, v9
v9
, v5
v11

],
p5 = [aa ,

v1
v1
, v3
v3
, v5
v5

], p12 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v7
v7
, v9
v9
, v12
v12

],
p6 = [aa ,

v1
v1
, v3
v3
, v6
v6

], p13 = [aa ,
v1
v1
, v3
v3
, v5
v5
, v7
v7
, v9
v9
, v5
v11
, v7
v7

],
p14 = [aa ,

v1
v1
, v3
v3
, v5
v5
, v7
v7
, v9
v9
, v5
v11
, v8
v8

],
...

68 Long Papers

This set of paths is the domain of IF2. The extension of each concept C is determined
by the set all pi such that C occurs in the label of the last node in pi. For the extension
of each role R, we consider the pairs 〈pi, pj〉 such that the last node in pj is an R-
successor of pi (the extension of the roles in R+ are transitively expanded). Therefore
p0, p1, p3, . . . are in AIF2 , and 〈p0, p1〉, 〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are all in P

IF2
1 .

In the following, let nQ denote the number of role atoms in Q, and let n ≥ nQ.
For any forest F that is n-complete, a mapping µ of Q into F can be obtained from
any mapping σ of varind(Q) into IF satisfying Q. If we see the image of Q under σ
as a graph G (considering only the edges that correspond to simple roles), then the
length of a path connecting the images σ(x) and σ(y) of any two variables x and y in
Q will be at most nQ. Since F contains at least two non-overlapping trees of size n,
it is big enough to ensure that for each path in G there is an isomorphic one in F .

Proposition 2 Let Q be a CQ in which all roles are simple, let F ∈ ccfn(FK), with
n ≥ nQ, and let IF |= Q. Then Q ↪→F .

Example 8 IF2 models Q1, as witnessed by the substitution σ(x) = p7, σ(y) = p9 and
σ(z) = p10. From it we can obtain the mapping µ(x) = v7, µ(y) = v9 and µ(z) = v10,
which shows that Q1 ↪→F2. Note that nQ1 = 2 and the image of Q1 under σ has no
paths of length > 2.

The results given above can be extended straightforwardly to a UCQ U . As before,
we will use F |= U to denote that F semantically entails U (i.e., every model of F
is a model of U), and U ↪→F to denote syntactical mappability, which is defined as
Qi ↪→F for some Qi in U . We already know that to decide K |= U it is sufficient
to verify whether F |= U for every F in ccfn(FK) for an arbitrary n ≥ 0 (in fact,
Proposition 1 holds for any kind of query). It is only left to prove that for a suitable
n, F |= U can be effectively reduced to U ↪→F .

Again, one direction is trivial. If U ↪→F , then by definition there is some Qi in U
such that Qi ↪→F , and as this implies F |= Qi, we also have that F |= U .

Example 9 Since Q1 ↪→F2 (see Examples 6 and 8), we have U ↪→F2. F2 |= Q1

implies F2 |= U .

The other direction is also quite straightforward. Consider nU as the maximal nQi
for all Qi in U . For each F ∈ ccfn(FK), with n ≥ nU , if IF |= U , then IF |= Qi for
some Qi in U . Since n ≥ nU ≥ nQi , by Proposition 2 we know that Qi ↪→F and then
U ↪→F . Thus IF |= U implies U ↪→F as well.

Finally, we establish our key result: answering K |= U for a UCQ U reduces to
finding a mapping of U into every F ∈ ccfn(FK) for any n ≥ nU .

Theorem 3 Let U be a UCQ in which all roles are simple and let n ≥ nU . Then
K |= U iff U ↪→F holds for each F ∈ ccfn(FK).

Proceedings of DL 2006 69

4 Complexity of Query Answering

In the following, ‖K,Q‖ denotes the total size of the string encoding a given knowledge
base K and a query Q. As shown in [21], for a CQ Q, branching in each variable
tree in a completion forest F ∈ ccfn(FK) is polynomially bounded in ‖K,Q‖, and
the maximal depth of a variable is double exponential in ‖K,Q‖ if n is polynomial
in ‖K,Q‖. Therefore, F has at most triple exponentially many nodes. Since each
rule can be applied only polynomially often to a node, the expansion of the initial
completion forest FK into some F ∈ ccfn(FK) terminates in nondeterministic triple
exponential time in ‖K,Q‖ for n = nQ.

Theorem 4 Given a SHIQ knowledge base K and a union of conjunctive queries U
in which all roles are simple, deciding whether K |= U is in co-3NExpTime.

Proof (Sketch). It is sufficient to check for every F ∈ ccfnU (FK) whether U ↪→F ,
i.e., Qi ↪→F for some CQ Qi in U . The size of F is at most triple exponential in
‖K,Qi∗‖, where Qi∗ is such that nQi∗ = nU , thus also in ‖K,U‖. Furthermore,
Qi ↪→F can be checked by naive methods in triple exponential time in ‖K,Qi∗‖ and
thus in ‖K,U‖ as well. (We stress that this test is NP-hard even for fixed F .) 2

Notice that the result holds for binary encoding of number restrictions in K. An
exponential drop results for unary encoding if Q is fixed.

Under data complexity, U and all components of K = 〈T ,R,A〉 except for the
ABox A are fixed. Therefore, nU is constant. Thus every completion forest F ∈
ccfn(FK) has linearly many nodes in |A|, and any expansion of FK terminates in
polynomial time. Furthermore, deciding whether U ↪→F is polynomial in the size of
F by simple methods. As a consequence,

Theorem 5 For a knowledge base K in SHIQ and a union of conjunctive queries
U in which all roles are simple, deciding K |= U is in coNP w.r.t. data complexity.

Matching coNP-hardness follows from the respective result for ALE [24], which
has been extended later to DLs even less expressive than AL [7]. Thus we obtain the
following main result.

Theorem 6 On knowledge bases in any DL from AL to SHIQ, answering unions of
conjunctive queries in which all roles are simple is coNP-complete w.r.t. data com-
plexity.

This result not only exactly characterizes the data complexity of UCQs for a
range of DLs, but also extends two previous coNP-completeness results w.r.t. data
complexity which are not obvious: the result on CQs over ALCNR given in [20] to
SHIQ, and the result in [18] for atomic queries in SHIQ to UCQs.

5 Discussion and Conclusion

By the correspondence between query containment and query answering [1], our algo-
rithm can also be applied to decide containment of two UCQs over a SHIQ knowledge

70 Long Papers

base. Also, the technique is applicable to the DL SHOIQ, which extends SHIQ with
nominals, i.e., concepts denoting single individuals, by tuning of the SHOIQ tableaux
rules [14]. It remains open whether the proposed technique can be applied to even
more expressive logics, for example, containing reflexive-transitive closure in the TBox
(in the style of PDL), or to more expressive query languages.

Several issues remain for further work. The restriction of the query languages
to allow only simple roles is also adopted in [18]. To the best of our knowledge,
it is yet unknown whether conjunctive query answering remains decidable in SHIQ
when this constraint is relaxed. It remains unclear whether the algorithm which we
have presented here can be exploited, since the presence of transitive roles imposes
difficulties in establishing a bound on the depth of completion forests which need to
be considered for answering a given query. Also the combined complexity of UCQs
remains for further study. As follows from [17], it is in 2ExpTime, and thus Theorem 4
gives not a tight bound. However, we can use a more relaxed blocking condition in
our algorithm, where the root of the blocked tree is not necessarily an ancestor of
the blocked one. This lowers the worst-case size of a forest exponentially, leading
to a co-2NExpTime upper bound, which is not optimal either. We want to point
out that such blocking could be similarly used in the standard tableau algorithms for
satisfiability checking, but might be inconvenient from an implementation perspective.

References

[1] S. Abiteboul and O. Duschka. Complexity of answering queries using material-
ized views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’98), pages 254–265, 1998.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[3] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, 2001.

[4] A. Borgida and R. J. Brachman. Conceptual modeling with description logics.
In Baader et al. [2], chapter 10, pages 349–372.

[5] D. Calvanese and G. De Giacomo. Expressive description logics. In Baader et al.
[2], chapter 5, pages 178–218.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006),
2006.

Proceedings of DL 2006 71

[8] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

[9] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
over description logics knowledge bases. In Proc. of the 17th Nat. Conf. on
Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[10] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept
languages: From subsumption to instance checking. J. of Logic and Computation,
4(4):423–452, 1994.

[11] J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE
Intelligent Systems, 16(2):54–59, 2001.

[12] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7–26,
2003.

[13] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

[14] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 448–453,
2005.

[15] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the de-
scription logic SHIQ. In D. McAllester, editor, Proc. of the 17th Int. Conf. on
Automated Deduction (CADE 2000), volume 1831 of Lecture Notes in Computer
Science, pages 482–496. Springer, 2000.

[16] I. Horrocks and S. Tessaris. A conjunctive query language for description logic
ABoxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),
pages 399–404, 2000.

[17] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision proce-
dures by resolution-based calculi. In Proc. of the 11th Int. Conf. on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2004), pages 21–35,
2004.

[18] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very
expressive description logics. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005), pages 466–471, 2005.

[19] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

72 Long Papers

[20] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[21] M. M. Ortiz de la Fuente, D. Calvanese, and T. Eiter. Data complexity of answer-
ing unions of conjunctive queries in SHIQ. Technical report, Faculty of Computer
Science, Free University of Bozen-Bolzano, Mar. 2006. Available at http://www.
inf.unibz.it/~calvanese/papers/orti-calv-eite-TR-2006-03.pdf%.

[22] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Lan-
guage semantics and abstract syntax – W3C recommendation. Technical report,
World Wide Web Consortium, Feb. 2004. Available at http://www.w3.org/TR/
owl-semantics/.

[23] A. Schaerf. On the complexity of the instance checking problem in concept lan-
guages with existential quantification. J. of Intelligent Information Systems,
2:265–278, 1993.

[24] A. Schaerf. Query Answering in Concept-Based Knowledge Representation Sys-
tems: Algorithms, Complexity, and Semantic Issues. PhD thesis, Dipartimento
di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1994.

[25] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany, 2001.

[26] M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th
ACM SIGACT Symp. on Theory of Computing (STOC’82), pages 137–146, 1982.

Proceedings of DL 2006 73

PSpace Automata for Description Logics

Jan Hladik∗

Rafael Peñaloza†

Abstract

Tree automata are often used for satisfiability testing in the area of
description logics, which usually yields ExpTime complexity results. We
examine conditions under which this result can be improved, and we de-
fine two classes of automata, called segmentable and weakly-segmentable,
for which emptiness can be decided using space logarithmic in the size of
the automaton (and thus polynomial in the size of the input). The use-
fulness of segmentable automata is demonstrated by reproving the known
PSpace result for satisfiability of ALC concepts with respect to acyclic
TBoxes.

1 Introduction

Tableau- and automata-based algorithms are two mechanisms which are widely
used for testing satisfiability in description logics (DLs). Aside from consid-
erations regarding implementation (most of the efficient implementations are
tableau-based) and elegance (tableaus for expressive logics require a blocking
condition to ensure termination), there is also a difference between the complex-
ity results which can be obtained “naturally”, i.e. without using techniques with
the sole purpose of remaining in a specific complexity class. With tableaus, the
natural complexity class is usually NExpTime, e.g. for SHIQ [HST00, BS01]
or SHIQ(D) [Lut04], although this result is not optimal in the former case.
With automata, one usually obtains an ExpTime result, e.g. for ALC with
general TBoxes [Sch94].

Previously, we examined which properties of a NExpTime tableau algo-
rithm make sure that the logic is decidable in ExpTime, and we defined a
class of tableau algorithms for which an ExpTime automata algorithm can be
automatically derived [BHLW03]. For ExpTime automata, a frequently used

∗Automata Theory, TU Dresden (jan.hladik@tu-dresden.de)
†Intelligent Systems, Uni Leipzig (rpenalozan@yahoo.com)

74 Long Papers

method to obtain a lower complexity class is testing emptiness of the language
accepted by the automaton on the fly, i.e. without keeping the entire automaton
in the memory at the same time. Examples for DLs can be found in [HST00]
for SI and in [BN03] for ALCN . Furthermore, the inverse method [Vor01] for
the modal logic K can be regarded as an optimised emptiness test of the cor-
responding automaton [BT01], and also the “bottom up” version of the binary
decision diagram based satisfiability test presented in [PSV02] can be considered
as an on-the-fly emptiness test.

In this paper, our aim is to generalise these results by finding properties of
ExpTime automata algorithms which guarantee that the corresponding logic
can be decided in PSpace, and to develop a framework which can be used to
automatically obtain PSpace results for new logics.

2 Preliminaries

We will first define the automata which in the following will be used to decide
the satisfiability problem for DLs. These automata operate on infinite k-ary
trees, for which the root node is identified by ε and the i-th successor of a node
n is identified by n · i for 1 ≤ i ≤ k. Thus, the set of all nodes is {1, . . . , k}∗,
and in the case of labelled trees, we will refer to the labelling of the node n in
the tree t by t(n).

The following definition of automata does not include an alphabet for la-
belling the tree nodes, because in order to decide the emptiness problem, we are
only interested in the existence of a model and not in the labelling of its nodes.

Definition 1 (Automaton, run, accepted language.) A Büchi automaton
over k-ary trees is a tuple (Q, ∆, I, F), where Q is a finite set of states, ∆ ⊆ Qk+1

is the transition relation, I ⊆ Q is the set of initial states, and F ⊆ Q is the set
of final states.

A looping automaton is a Büchi automaton where all states are accepting,
i.e. F = Q. For simplicity, it will be written (Q, ∆, I).

A run of an automaton A = (Q, ∆, I, F) on a k-ary tree t is a labelled
k-ary tree r such that r(ε) ∈ I and, for all w ∈ {1, . . . , k}∗, it holds that
(r(w), r(w ·1), . . . , r(w ·k)) ∈ ∆. A run r is accepting if every path of r contains
a final state infinitely often.

The language accepted by A, L(A), is the set of all trees t such that there
exists an accepting run of A on t.

For the DL ALC [SS91], it is well-known that looping automata can be
used to decide satisfiability of a concept C: we define a looping automaton
AC = (Q, ∆, I), where the set of states Q consists of (propositionally expanded
and clash-free) sets of subformulas of C, and the transition relation ∆ ensures

Proceedings of DL 2006 75

that the successor states of a state q contain those concepts which are required
by the universal and existential concepts in q. Since #Q, the cardinality of Q, is
exponential in the size of C and T (because it is bounded by the number of sets
of subformulas of C and T) and the emptiness test is linear [BT01, VW86] in
the cardinality of Q, this yields an ExpTime algorithm. This result is optimal
for ALC with general TBoxes, but not for ALC with acyclic (or empty) TBoxes.

In the following, we will define this algorithm in detail. We assume that
acyclic TBoxes are sets of concept definitions Ai

.
= Ci, for concept names Ai

and concept terms Ci, where there is at most one definition for a concept name
and there is no sequence of concept definitions A1

.
= C1, . . . , An

.
= Cn such

that Ci contains Ai+1 for 1 ≤ i < n and Cn contains A1. In contrast, general
TBoxes can additionally contain general concept inclusion axioms (GCIs) of
the kind Ci v Di for arbitrary concept terms Ci and Di. For the sake of
simplicity, we will assume that all concepts are in negation normal form (NNF),
i.e. negation appears only directly before concept names. All ALC concepts
can be transformed into NNF in linear time using de Morgan’s laws and their
analogues for universal and existential formulas. We will denote the NNF of a
concept C by nnf(C) and nnf(¬C) by vC.

The data structures that will serve as models for ALC concepts are Hin-
tikka trees, a special kind of trees whose nodes are labelled with propositionally
expanded and clash-free sets of ALC concepts.

Definition 2 (Sub-concept, Hintikka set, Hintikka tree.) Let C be an
ALC concept term. The set of sub-concepts of C, sub(C), is the minimal set
S which contains C and has the following properties: if S contains ¬A for a
concept name A, then A ∈ S; if S contains D t E or D u E, then {D,E} ⊆ S;
if S contains ∃r.D or ∀r.D, then D ∈ S.

For a TBox T , sub(C, T) is defined as follows:

sub(C) ∪
⋃

A
.
=D∈T

(A ∪ sub(D) ∪ sub(vD)) ∪
⋃

CvD∈T

sub(vC t D)

A set H ⊆ sub(C, T) is called a Hintikka set for C if the following three
conditions are satisfied: if D u E ∈ H, then {D,E} ⊆ H; if D t E ∈ H, then
{D,E} ∩ H 6= ∅; there is no concept name A with {A,¬A} ⊆ H.

For a TBox T , a Hintikka set S is called T -expanded if for every GCI C v
D ∈ T , it holds that vC tD ∈ S, and for every concept definition A

.
= C ∈ T ,

it holds that if A ∈ S then C ∈ S and if ¬A ∈ S then vC ∈ S. We will refer to
this technique of handling definitions as lazy unfolding because, in contrast to
GCIs, we use the definition only if A or ¬A is explicitly present in a node label.

For a concept term C and TBox T , fix an ordering of the existential concepts
in sub(C, T) and let ϕ : {∃r.D ∈ sub(C, T)} → {1, . . . , k} be the corresponding

76 Long Papers

ordering function. Then the tuple (S, S1, . . . , Sk) is called C, T -compatible if,
for every existential formula ∃r.D ∈ sub(C, T), it holds that if ∃r.D ∈ S, then
Sϕ(∃r.D) contains D and every concept Ei for which there is a universal formula
∀r.Ei ∈ S.

A k-ary tree t is called a Hintikka tree for C and T if, for every node n ∈
{1, . . . , k}∗, t(n) is a T -expanded Hintikka set and the tuple (t(n), t(n·1), . . . , t(n·
k)) is C, T -compatible.

Note that in a Hintikka tree t, the k-th successor of a node n stands for the
individual satisfying the k-th existential formula D if D ∈ t(n). We can use
Hintikka trees to test the satisfiability in ALC:

Lemma 3 An ALC concept term C is satisfiable w.r.t. a TBox T iff there is a
C, T -compatible Hintikka tree t with C ∈ t(ε).

Proof sketch. The proof is similar to the one presented for ALC¬ in [LS00]
where the “if” direction is shown by defining a model (∆I , ·I) from a Hintikka
tree in the following way:

• ∆I := {n ∈ {1, . . . , k}∗ | n = ε or n = m · ϕ(∃r.D) for some m with
∃r.D ∈ t(m)};

• for a role name r, rI := {(n, n · i) | ∃r.C ∈ t(n) and ϕ(∃r.C) = i};

• for a concept name A, AI := {n | A ∈ t(n)};

• the function ·I is extended to concept terms in the natural way.

For our Hintikka trees, we have to modify the definition of AI for concept
names A in order to deal with TBoxes. For a GCI C v D, it follows immediately
from the definition of T -expanded that a node whose label contains C also
contains D. However, concept definitions need special consideration because due
to the lazy unfolding of A

.
= C, a node label might contain C but not A, thus

we have to modify the definition of AI . To this end, we define a hierarchy ≺ on
concept names in such a way that if a concept name A appears in the definition
of B, then A ≺ B. As the concept definitions are acyclic, this hierarchy is well-
founded. When we define the interpretation of concept names, we start with the
lowest ones in the hierarchy, i.e. the primitive concepts, and define AI := {n ∈
∆I | A ∈ t(n)}. Then we move gradually up in the hierarchy and define, for a
defined concept B

.
= C, BI = {n ∈ ∆I | B ∈ t(n)} ∪ {n ∈ ∆I | n ∈ CI}. This

is well-defined because the interpretation of all concept names appearing in C
has already been defined.

Our Hintikka trees differ from those in [LS00] in that, if an existential formula
∃r.D is not present in a node n, we do not require that n · ϕ(∃r.D) is labelled
with ∅. However, it can still be shown that if a concept term C is contained in

Proceedings of DL 2006 77

the label of a node n of the Hintikka tree, then n ∈ CI , because in the definition
of the interpretation for the role names, we consider only the successors that will
satisfy the existential restrictions of a node, and pay no attention to any other
possible successors. The universal restrictions are then immediately satisfied by
the definition of C,T -compatible.

The “only-if” direction does not require significant modifications, because if
there is a model for a concept C and a TBox T , the node labels of the Hintikka
tree constructed as in [LS00] can easily be extended to reflect the constraints
imposed by the TBox. n

With this result, we can use automata operating on Hintikka trees to test
for the existence of models. As mentioned before, we can omit the labelling of
the tree, since we are only interested in the existence of a model and all relevant
information to answer this question is kept in the transition relation.

Definition 4 (Automaton AC,T .) For a concept C and a TBox T , let
k be the number of existential formulas in sub(C, T). Then the loop-
ing automaton AC,T = (Q, ∆, I) is defined as follows: Q = {S ⊆
sub(C, T) | S is a T -expanded Hintikka set}; ∆ = {(S, S1, . . . , Sk) |
(S, S1, . . . , Sk) is C, T -compatible}; I = {S ∈ Q | C ∈ S}.

Using AC,T , we can reduce the satisfiability problem for ALC to the (non-)
emptiness problem of L(AC,T). Since these results are well known, they will not
be formally proved.

Theorem 5 The language accepted by the automaton AC,T is empty iff C is
unsatisfiable w.r.t. T .

Corollary 6 Satisfiability of ALC concepts w.r.t. general TBoxes is decidable
in ExpTime.

For general TBoxes, this complexity bound is tight [Spa93], but in the special
case of an empty or acyclic TBoxes, it can be improved to PSpace. Usually, this
is proved using a tableau algorithm, but in the next section we will show how
the special properties of acyclic TBoxes can be used to perform the emptiness
test of the automaton with logarithmic space.

3 Segmentable automata

In this section we will show how the space efficiency for the construction and
the emptiness test of the automaton can be improved under specific conditions.
The idea is to define a hierarchy of states and ensure that the level of the state
decreases with every transition. In Section 4 we will then show how the role
depth of concepts can be used to define this hierarchy.

78 Long Papers

1: guess an initial state q ∈ I
2: if there is a transition from q then
3: guess a transition (q, q1, . . . , qk) ∈ ∆
4: else
5: return “empty”
6: end if
7: push (SQ, (q1, . . . , qk)); push (SN, 0)
8: while SN is not empty do
9: (q1, . . . , qk) := pop (SQ)

10: n := pop (SN) + 1
11: if n ≤ k then
12: push(SQ,(q1, . . . , qk))
13: push(SN,n)
14: if qn /∈ Q0 then
15: if there is a transition from qn then
16: guess a transition (qn, q

′
1, . . . , q

′
k)

17: else
18: return “empty”
19: end if
20: push(SQ,(q′1, . . . , q

′
k))

21: push(SN,0)
22: end if
23: end if
24: end while
25: return “not empty”

Figure 1: Emptiness test for segmentable automata

Definition 7 (Q0-looping, m-segmentable.) Let A = (Q, ∆, I, F) be a
Büchi automaton over k-ary trees and Q0 ⊆ F . We call A Q0-looping if for every
q ∈ Q0 there exists a set of states {q1, . . . , qk} ⊆ Q0 such that (q, q1, . . . , qk) ∈ ∆.

An automaton A = (Q, ∆, I, F) is called m-segmentable if there exists
a partition Q0, Q1, . . . , Qm of Q such that A is Q0-looping and, for every
(q, q1, . . . , qk) ∈ ∆, it holds that if q ∈ Qn, then qi ∈ Q<n for 1 ≤ i ≤ k,
where Q<n denotes Q0 ∪

⋃n−1
j=1 Qj.

Note that it follows immediately from this definition that for every element
q of Q0 there exists an infinite tree with q as root which is accepted by A. The
hierarchy Qm, . . . , Q0 ensures that Q0 is reached eventually.

Our algorithm performing the emptiness test for m-segmentable Büchi au-
tomata is shown in Figure 1. Essentially, we perform a depth-first traversal of
a run. Since A is m-segmentable, we do not have to go to a depth larger than

Proceedings of DL 2006 79

�

q5

�

q4
�

q4
�

q0

�

q3
�

q2
�

q2

�

q1
�

q0
	

q1

SQ SN

(q4, q4, q0) 1

(q3, q2, q2) 3

(q1, q0, q1) 1

Figure 2: state of SQ, SN and the associated run, at an iteration of the algorithm

m. Moreover, since the different branches of the tree are independent, we only
have to keep one of them in memory at a time. Note that the construction
of the automaton is interleaved with the emptiness test, so we also never keep
the whole automaton in memory, but only the states which are relevant for the
current branch.

In order to remember the backtracking information for the depth first traver-
sal, we use two data structures: SQ is a stack storing, for every predecessor of
the current node, the transition which led to that node, and thus it contains the
required node labels for the nodes of the current branch and their siblings. SN

is another stack recording the current path by storing, for every level of the tree,
the number of the node on the current path. If we refer to the elements in SN

by SN(1)(the bottom element), . . . , SN(d)(the top element), the next node to be
checked is SN(1) ·SN(2) · . . . ·SN(d)+1 (d is the depth of SN). Thus, SQ ∈ (Qk)∗,
because every transition is a k-ary tuple, and SN ∈ {1, . . . , k}∗.

Figure 2 shows the values stored in each of the stacks SQ and SN at the
beginning of an iteration, and their relation with the traversal of the run. The
circled nodes represent the path followed to reach the node about to be checked.
The values of the elements of the stack are shown next to the depth in the run
to which they correspond. For this reason, the stacks appear backwards, with
their bottom element at the top of the figure, and vice versa.

After starting the algorithm, we first guess an initial transition. If we can
find one, we push the labels of the nodes 1, . . . , k onto SQ and the number 0 onto
SN. Then we enter the while loop. As long as the stacks are not empty, we take
the top elements of both stacks. If n > k in line 11, this indicates that we have
checked all nodes on this level, and we backtrack without pushing anything on
the stacks, which means that we will continue at the next upper level in the next
loop. Otherwise, we store the information that we have to check our next sibling

80 Long Papers

by pushing the same tuple of states onto SQ and the incremented number n onto
SN. If the current node belongs to Q0 (line 14), we backtrack, which means that
we will continue with the next sibling. Otherwise, we try to guess a transition
from this node, and if we can find one, we push the required node labels for the
children of the current node onto SQ and the value 0 onto SN (line 20), which
means that we will descend to the first child of the current node in the next
loop.

Theorem 8 The emptiness problem of the language accepted by an m-
segmentable Büchi automaton A = (Q, ∆, I, F) over k-ary trees can be decided
by a non-deterministic algorithm using space O(log(#Q) · m · k).

Proof. In order to show soundness, we will prove the claim “if the algorithm
processes a node n or backtracks without descending into n, then there is a run
r in which n is labelled with the same state as in the algorithm” by induction
over the iterations of the while loop. Initially, if the algorithm does not answer
“empty”, there is a transition (q0, q1, . . . , qk) from an initial state, which can
serve as root of the run r, and for which the states 1, . . . , k of r can be labelled
with q1, . . . , qk.

If the algorithm has reached a node n = n0·n1·. . .·n` without failing, it follows
by induction hypothesis that each of the previously visited nodes corresponds
to a node in r. Now there are two possibilities: firstly, if r(n) ∈ Q0, then,
since A is Q0-looping, there exists a k-ary subtree rooted at n all of whose
states are accepting. Otherwise, since the algorithm does not answer “empty”,
there is a transition (r(n), q′1, . . . , q

′
k), and we can use the same transition in the

construction of a run.
In order to show completeness, we will prove the claim “if there exists a run,

the algorithm can reach or skip every node in {1, . . . , k}∗ without failing” by
induction over the structure of the run r. Since there is a run, we can guess
an initial transition, and the nodes of the first level have the same labels in the
algorithm as in r. If we have reached a node n which corresponds to the node
n in r with r(n) = q, there are again two possibilities: if q ∈ Q0, the algorithm
will backtrack and skip over all successor nodes of n. Otherwise, since r is a
run, there exists a transition (q, q′1, . . . , q

′
k), which the algorithm can guess, and

therefore it will not fail.
Regarding memory consumption, observe that the SQ stack contains, for

every level, k states, each of which can be represented using space logarithmic
in the number of states, e.g. by using binary coding. Since A is m-segmentable,
there can be at most m tuples before the current state qn belongs to Q0, thus
the size of SQ is bounded by log(#Q) · m · k. SN stores at most m numbers
between 0 and k, so the algorithm uses space logarithmic in the size of A. n

Proceedings of DL 2006 81

The condition that an automaton A is m-segmentable is rather strong since it
requires the transition relation to reduce the class with every possible transition,
and thus e.g. the automaton AC,T in Definition 4 cannot easily be proved to
be segmentable even if the TBox is empty. The reason for this is that AC,T

does not require the Hintikka sets of the successor states to use only a lower
quantification depth. However, in order to test emptiness, we only need the
existence of such a transition. This is the idea behind the generalisation in the
following definition.

Definition 9 (Weakly-m-segmentable, reduced.) A Büchi automaton
A = (Q, ∆, I, F) is called weakly-m-segmentable if there exists a partition
Q0, Q1, . . . , Qm of Q such that A is Q0-looping and for every q ∈ Q there exists
a function fq : Q → Q which satisfies the following conditions:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆, and if q ∈ Qn, then
fq(qi) ∈ Q<n for all 1 ≤ i ≤ k;

2. if (q′, q1, . . . , qk) ∈ ∆, then (fq(q
′), fq(q1), . . . , fq(qk)) ∈ ∆.

If A = (Q, ∆, I, F) is a weakly-m-segmentable automaton, then Ar, the
reduced automaton of A, is defined as follows: Ar = (Q, ∆′, I, F) with ∆′ =
{(q, q1, . . . , qm) ∈ ∆ | if q ∈ Qn then qi ∈ Q<n for 1 ≤ i ≤ k}.

Note that the reduced automaton Ar is m-segmentable by definition. Intu-
itively, condition 1 ensures that that the class decreases for the first transition,
and condition 2 ensures that there are still transitions for all nodes after modi-
fying the node labels according to fq.

We can transfer the complexity result from segmentable to weakly-
segmentable automata:

Theorem 10 Let A = (Q, ∆, I, F) be a weakly-m-segmentable automaton.
Then L(A) is empty iff L(Ar) is empty.

Proof. Since every run of Ar is also a run of A, L(A) can only be empty if
L(Ar) is empty, thus the “only if” direction is obvious. For the “if” direction,
we will show how to transform an accepting run r of A into an accepting run
s of Ar. To do this, we traverse r breadth-first, creating an intermediate run
r̂, which initially is equal to r. At every node n ∈ {1, . . . , k}∗, we replace the
labels of the direct and indirect successors of n with their respective fn values
(see Definition 9). More formally, at node n, we replace r̂(p) with fn(r̂(p)) for
all p ∈ {n · q | q ∈ {1, . . . , k}+}, where for a set S, S+ denotes S∗ \ {ε}. By
definition 9, r̂ is still a run after the replacement, and all direct successors of
n are in a lower class than n (or Q0 if r̂(n) ∈ Q0). Note that the labels of
n’s successors are not modified anymore after n has been processed. We can

82 Long Papers

therefore define s(n) as the value of r̂(n) after n has been processed. As argued
before, s is a run in which every node is in a lower class than its father node
(or both are in class 0). Consequently, all transitions used in s belong to the
transition relation of Ar. n

Corollary 11 The emptiness problem for weakly-m-segmentable automata is
in NLogSpace.

4 An application to ALC with acyclic TBoxes

In order to apply our framework to ALC with acyclic TBoxes, we will use the
role depth to define the different classes. The following definition of role depth
considers concept definitions:

Definition 12 (Expanded role depth.) For an ALC concept C and an
acyclic TBox T , the expanded role depth rdT (C) is inductively defined as fol-
lows: for a primitive role name A, rdT (A) = 0; for a concept definition
A

.
= C, rdT (A) = rdT (C); rdT (¬A) = rdT (A); rdT (D u E) = rdT (D t E) =

max{rdT (D), rdT (E)}; rdT (∀r.D) = rdT (∃r.D) = rdT (D) + 1. For a set of con-
cepts S, rdT (S) is defined as max{rdT (D) | D ∈ S}.

The set sub<n(C, T) is defined as {D ∈ sub(C, T) | rdT (D) ≤ max{0, n−1}}.

Again, note that rdT is well-defined because T is acyclic.
The intuition behind using the role depth is that, for a node q in a Hintikka

tree, any concept having a higher role depth than q is superfluous in successors
of q and thus the tuple without these formulas is also in the transition relation.

Lemma 13 Let C be an ALC concept, T an acyclic TBox, (S, S1, . . . , Sk)
a C,T -compatible tuple, and n = rdT (S). Then (S, sub<n(C, T) ∩ S1,
. . ., sub<n(C, T) ∩ Sk) is C,T -compatible, and for every m ≥ 0, the tuple
(sub<m(C, T) ∩ S, sub<m(C, T) ∩ S1, . . ., sub<m(C, T) ∩ Sk) is C,T -compatible.

Proof. We need to show that the conditions in Definition 2 are satisfied
for both tuples. In the case of the first tuple suppose that ∃r.D ∈ S. Then,
Sϕ(∃r.D) contains D and every concept Ei for which there is a universal formula
∀r.Ei ∈ S. But since rdT (D) < rdT (∃.rD) ≤ n and rdT (Ei) < rdT (∀r.Ei) ≤ n,
it holds that sub<n(C, T) ∩ Sϕ(∃r.D) contains D and each of the Ei concepts.

For the second tuple, if ∃r.D ∈ sub<m(C, T) ∩ S, then rdT (∃r.D) < m and
D ∈ Sϕ(∃r.D). If additionally there is a concept term Ei such that the universal
formula ∀r.Ei ∈ sub<m(C, T) ∩ S, then again rdT (Ei) < m and Ei ∈ Sϕ(∃r.D).
Hence, sub<m(C, T) ∩ Sϕ(∃r.D) contains D and each such concept Ei. n

Proceedings of DL 2006 83

Theorem 14 Let C be an ALC concept, T an acyclic TBox and m =
max{rdT (D) | D ∈ sub(C, T)}. Then AC,T is weakly-m-segmentable.

Proof. We have to give the segmentation of Q and the functions fq and show
that they satisfy the conditions in Definition 9. Define the classes Qi := {S ∈
Q | rdT (S) = i}, 0 ≤ i ≤ m and fq(q

′) := q′ ∩ sub<n(C, T), where n = rdT (q) for
every q, q′ ∈ Q. By this definition, it is obvious that for every q ′, fq(q

′) is in a
lower class than q (or in Q0 if q ∈ Q0). Lemma 13 shows that conditions 1 and
2 of Definition 9 are satisfied. It remains to show that AC,T is Q0-looping. If
q ∈ Q0, there are no existential formulas in q, and therefore (q, ∅, . . . , ∅) ∈ ∆.

n

Although our algorithm in Figure 1 is non-deterministic, we can obtain a
deterministic complexity class by using Savitch’s theorem [Sav70].

Corollary 15 Satisfiability of ALC concepts with respect to acyclic TBoxes is
in PSpace.

5 Conclusion

We have introduced segmentable and weakly-segmentable Büchi automata, two
classes of automata for which the emptiness problem of the accepted language
is decidable in NLogSpace, whereas in general the complexity class of this
problem for Büchi automata is P. The complexity bound is proved by testing
the possibility of a model on the fly using depth-first search. This generalises
previous results of on-the-fly emptiness tests for several modal and description
logics. As an example, we showed how our framework can be used to obtain
the PSpace upper complexity bound for ALC with acyclic TBoxes in an easy
way. We hope that this framework will make it easier to prove a PSpace upper
bound also for new logics.

Acknowledgements

We would like to thank Franz Baader for fruitful discussions. We also thank the
reviewers for suggesting improvements of this paper.

References

[BHLW03] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to
automata for description logics. Fundamenta Informaticae, 57:1–33,
2003.

84 Long Papers

[BN03] F. Baader and W. Nutt. The Description Logic Handbook, chapter
2: Basic Description Logics. Cambridge University Press, 2003.

[BS01] F. Baader and U. Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69, 2001.

[BT01] F. Baader and S. Tobies. The inverse method implements the au-
tomata approach for modal satisfiability. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of IJCAR-01, volume 2083 of LNAI.
Springer-Verlag, 2001.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very
expressive description logics. Logic Journal of the IGPL, 8(3):239–
264, 2000.

[LS00] C. Lutz and U. Sattler. Mary likes all cats. In F. Baader and U. Sat-
tler, editors, Proceedings of DL 2000, CEUR Proceedings, 2000.

[Lut04] C. Lutz. NExpTime-complete description logics with concrete do-
mains. ACM Transactions on Computational Logic, 5(4):669–705,
2004.

[PSV02] G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures
for K. In Proceedings of the Conference on Automated Deduction,
volume 2392 of Lecture Notes in Artificial Intelligence, 2002.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of computer and system sciences,
4(2):177–192, 1970.

[Sch94] K. Schild. Terminological cycles and the propositional µ-calculus.
In J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of
KR-94. Morgan Kaufmann, 1994.

[Spa93] E. Spaan. Complexity of Modal Logics. PhD thesis, University of
Amsterdam, 1993.

[SS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[Vor01] A. Voronkov. How to optimize proof-search in modal logics: new
methods of proving reduncancy criteria for sequent calculi. ACM
transactions on computational logic, 2(2), 2001.

[VW86] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for
modal logics of programs. J. of Computer and System Science,
32:183–221, 1986.

Proceedings of DL 2006 85

Binary Absorption in Tableaux-Based Reasoning for

Description Logics

Alexander K. Hudek and Grant Weddell
David R. Cheriton School of Computer Science

University of Waterloo
{akhudek,gweddell}@cs.uwaterloo.ca

1 Introduction

A fundamental problem in Description Logics (DLs) is satisfiability, the problem of
checking if a given DL terminology T remains sufficiently unconstrained to enable at
least one instance of a given DL concept C to exist. It has been known for some
time that lazy unfolding is an important optimization technique in model building
algorithms for satisfiability [2]. It is also imperative for large terminologies to be
manipulated by an absorption generation process to maximize the benefits of lazy
unfolding in such algorithms, thereby reducing the combinatorial effects of disjunction
in underlying chase procedures [5]. In this paper, we propose a generalization of
the absorption theory and algorithms developed by Horrocks and Tobies [6, 7]. The
generalization, called binary absorption, makes it possible for lazy unfolding to be used
for parts of terminologies not handled by current absorption algorithms and theory.

The basic idea of binary absorption is to avoid the need to internalize (at least
some of the) terminological axioms of the form

(A1 uA2) v C,

where the Ai denote primitive concepts and C a general concept. This idea, cou-
pled with equivalences and another idea relating to “role absorptions” developed by
Tsarkov and Horrocks [8], makes it possible for an algorithm to absorb, e.g., the
definition

SPECIALCLIENT .= CLIENT u
(∃Buy.(EXPENSIVE t PROFITABLE)) u
(∃Recommend−.TRUSTEDCLIENT)

as the set of axioms

86 Long Papers

SPECIALCLIENT v CLIENT u
(∃Buy.(EXPENSIVE t PROFITABLE)) u
(∃Recommend−.TRUSTEDCLIENT)

EXPENSIVE v A1
PROFITABLE v A1

A1 v ∀Buy−.A2
CLIENT uA2 v A3

TRUSTEDCLIENT v ∀Recommend.A4
A3 uA4 v SPECIALCLIENT

in which the primitive concepts A1, A2, A3 and A4 are new internal primitive concepts
introduced by the absorption algorithm.

There is another reason that binary absorption proves useful, beyond the well-
documented advantages of reducing the need for internalization of general termino-
logical axioms. In particular, Palacios has explored the possibility of a tighter inte-
gration of conjunctive query optimization and DL consistency checking in which a
query is mapped to a concept in such a way that view integration becomes an auto-
matic consequence of an initial chase phase for optimization [4, 9]. When used for
such purposes, it becomes crucial for DL reasoners to support special case (and likely
incomplete) deterministic modes of model building. Binary absorption enables such
modes to incorporate reasoning about materialized views in a terminology, such as
SPECIALCLIENT above.

The organization of the paper is as follows. The next section is a review of the
basic definitions introduced by Horrocks and Tobies [6] for the notion of a DL, of
terminologies and satisfiability, and an important abstraction that relates to model
building algorithms for satisfiability: the notion of a witness. In Section 3, we define
binary absorptions, and give a related lemma that establishes an additional sufficiency
condition for correct binary absorptions. (Note that existing sufficiency conditions
given by Horrocks and Tobies [6, 7] for correct non-binary absorptions are inherited
in our formulation.) In Section 4, we present an absorption algorithm for binary
absorptions that derives from earlier procedures [1, 6, 7]. Our summary comments
follow in Section 5.

2 Preliminaries

The definitions and lemmas in this section are largely reproduced from Horrocks and
Tobies [7]. The main difference is in our formulation of a description logic immediately
following in which we have an additional stipulation that the logic includes the concept
forming operations of ALCI.

Definition 2.1. (Description Logic) Let L be a DL based on infinite sets of atomic
concepts NC and atomic roles NR. We identify L with the set of its well-formed con-
cepts and require L to be closed under sub-concepts and the concept forming operations
of dialect ALCI: we require that if NR contains R and L contains C1 and C2, then L
also contains ¬C1, C1 u C2, C1 t C2, >, ⊥, ∃R.C1, ∃R−.C1, ∀R.C1 and ∀R−.C1.

Proceedings of DL 2006 87

An interpretation I is a pair I = (∆I , ·I), where ∆I is a non-empty set and ·I
is a function mapping NC to subsets of ∆I and NR to subsets of ∆I ×∆I . Each L
is associated with a set Int(L) of admissible interpretations that (1) must be closed
under isomorphisms, and that (2) satisfies I ∈ Int(L) ⇔ I ′ ∈ Int(L) for any two
interpretations I and I ′ that agree on NR. Each L must also come with a semantics
that allows any I ∈ Int(L) to be extended to each concept C ∈ L in a way that satisfies
the following conditions:

(I1) the concept forming operations of ALCI are mapped in the standard way,
and

(I2) the interpretation CI of a compound concept C ∈ L depends only on the
interpretation of those atomic concepts and roles that appear syntactically in C.

Definition 2.2. (TBox, Satisfiability) A TBox T for L is a finite set of axioms
of the form C1 v C2 or C1

.= C2 where Ci ∈ L. If T contains A v C or A .= C for
some A ∈ NC, then we say that A is defined in T .

Let L be a DL and T a TBox. An interpretation I ∈ Int(L) is a model of T ,
written I |= T , iff CI1 ⊆ CI2 holds for each C1 v C2 ∈ T , and CI1 = CI2 holds for each
C1

.= C2 ∈ T . A concept C ∈ L is satisfiable with respect to a TBox T iff there is an
I ∈ Int(L) such that I |= T and such that CI 6= ∅.

A TBox T is called primitive iff it consists entirely of axioms of the form A
.= C

with A ∈ NC, each A ∈ NC appears in at most one left hand side of an axiom, and
T is acyclic. Acyclicity is defined as follows: A1 ∈ NC directly uses A2 ∈ NC if
A1

.= C ∈ T and A2 occurs in C; uses is the transitive closure of “directly uses”.
Then T is acyclic if there is no A ∈ NC that uses itself.

Model building algorithms for checking the satisfaction of a concept C operate by
manipulating an internal data structure (e.g., in the form of a node and edge labelled
rooted tree with “back edges”). The data structure “encodes” a partial description of
(eventual) interpretations I for which CI will be non-empty. Such a partial descrip-
tion will almost always abstract details on class membership for hypothetical elements
of ∆I and on details relating to the interpretation of roles. To talk formally about ab-
sorption and lazy evaluation, it is necessary to codify the idea of a partial description.
Horrocks and Tobies have done this by introducing the following notion of a witness,
of an interpretation that stems from a witness, and of what it means for a witness to
be admissible with respect to a given terminology.

Definition 2.3. (Witness) Let L be a DL and C ∈ L a concept. A witness W =
(∆W , ·W ,LW) for C consists of a non-empty set ∆W , a function ·W that maps NR to
subsets of ∆W ×∆W , and a function LW that maps ∆W to subsets of L such that:

(W1) there is some x ∈ ∆W with C ∈ LW(x),

(W2) there is an interpretation I ∈ Int(L) that stems from W, and

(W3) for each interpretation I ∈ Int(L) that stems from W, x ∈ CI if C ∈
LW(x).

88 Long Papers

An interpretation I = (∆I , ·I) is said to stem from W if ∆I = ∆W , ·I |NR = ·W , and
for each A ∈ NC, A ∈ LW(x) implies x ∈ AI and ¬A ∈ LW(x) implies x /∈ AI .

A witness W is called admissible with respect to a TBox T if there is an interpre-
tation I ∈ Int(L) that stems from W with I |= T .

The important properties satisfied by a witness are captured by the following lemmas
by Horrocks and Tobies [7].

Lemma 2.1. Let L be a DL. A concept C ∈ L is satisfiable w.r.t. a TBox T iff it has
a witness that is admissible w.r.t. T .

Lemma 2.2. Let L, C, T andW be a DL, a concept in L, a TBox for L and a witness
for C, respectively. Then W is admissible w.r.t. T if, for each x ∈ ∆W :

C1 v C2 ∈ T implies ¬C1 t C2 ∈ LW(x),
C1

.= C2 ∈ T implies ¬C1 t C2 ∈ LW(x) and
C1

.= C2 ∈ T implies C1 t ¬C2 ∈ LW(x).

3 Binary Absorptions

Our generalization of the notion of an absorption developed by Horrocks and Tobies [6,
7] is given as follows.

Definition 3.1. (Binary Absorption) Let L and T be a DL and a TBox, respec-
tively. A binary absorption of T is a pair of TBoxes (Tu, Tg) such that T ≡ Tu ∪ Tg
and Tu contains only axioms of the form A1 v C, the form ¬A1 v C or the form
(A1 uA2) v C, where A1 and A2 are primitive concepts occurring in NC.

A binary absorption (Tu, Tg) of T is called correct if it satisfies the following con-
dition. For each witness W and x ∈ ∆W , if

(A1 uA2) v C ∈ Tu and {A1, A2} ⊆ LW(x) implies C ∈ LW(x),
A v C ∈ Tu and A ∈ LW(x) implies C ∈ LW(x),

¬A v C ∈ Tu and ¬A ∈ LW(x) implies C ∈ LW(x),
C1 v C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x),
C1

.= C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x) and
C1

.= C2 ∈ Tg implies C1 t ¬C2 ∈ LW(x),

(1)

then W is admissible w.r.t. T . A witness that satisfies (1) will be called unfolded.

The distinguishing feature of binary absorption is the addition of the first implication
in condition (1). This allows additional axioms in Tu to be dealt with in a deterministic
manner, as we illustrate in our introductory example. If a label of a node contains
neither primitive concept A1 nor A2, then nothing further is required. There is,
however, a new requirement for computing the intersection of sets of primitive concepts
during model building when a new primitive concept is added to a node. (For this
problem, we refer the reader to algorithms developed by Demaine, Lopez-Ortiz and
Munro [3].)

The next three lemmas by Horrocks and Tobies [7] hold without modification.

Proceedings of DL 2006 89

Lemma 3.1. Let (Tu, Tg) be a correct binary absorption of T . For any C ∈ L, C has
a witness that is admissible w.r.t. T iff C has an unfolded witness.

Lemma 3.2. Let T be a primitive TBox and Tu defined as

{A v C,¬A v ¬C | A .= C ∈ T }.

Then (Tu, ∅) is a correct absorption of T .

Lemma 3.3. Let (Tu, Tg) be a correct absorption of a TBox T .

1. If T ′ is an arbitrary TBox, then (Tu, Tg ∪T ′) is a correct absorption of T ∪T ′.

2. If T ′ is a TBox that consists entirely of axioms of the form A v C, where
A ∈ NC and A is not defined in Tu, then (Tu ∪ T ′, Tg) is a correct absorption of
T ∪ T ′.

The main benefit of binary absorptions is that they allow the following additional
sufficiency condition for correct absorptions.

Lemma 3.4. Let (Tu, Tg) be a correct absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms of the form (A1 u A2) v C, where {A1, A2} ⊆ NC and
where neither A1 nor A2 is defined in Tu, then (Tu ∪ T ′, Tg) is a correct absorption of
T ∪ T ′.

Proof. Observe that Tu∪Tg ∪T ′ ≡ T ∪T ′ holds trivially. Let C ∈ L be a concept and
W be an unfolded witness for C w.r.t. the absorption (Tu ∪ T ′, Tg). From W, define
a new witness W ′ for C by setting ∆W

′
= ∆W , ·W ′ = ·W , and defining LW ′ to be the

function that, for every x ∈ ∆W
′
, maps x to the set

LW(x) ∪ {¬A1,¬A2 | (A1 uA2) v C ′ ∈ T ′, {A1, A2} ∩ LW(x) = ∅}
∪ {¬A1 | (A1 uA2) v C ′ ∈ T ′, A1 /∈ LW(x), A2 ∈ LW(x)}
∪ {¬A2 | (A1 uA2) v C ′ ∈ T ′, A1 ∈ LW(x), A2 /∈ LW(x)}.

It is easy to see that W ′ is also unfolded w.r.t. the absorption (Tu ∪ T ′, Tg). This
implies thatW ′ is also unfolded w.r.t. the (smaller) absorption (Tu, Tg). Since (Tu, Tg)
is a correct absorption of T , there exists an interpretation I stemming from W ′ such
that I |= T . We show that I |= T ′ also holds. Assume I 6|= T ′. Then there is an
axiom (A1 u A2) v C1 ∈ T ′ and an x ∈ ∆I such that x ∈ (A1 u A2)I but x /∈ CI1 .
By construction of W ′, x ∈ (A1 uA2)I implies {A1, A2} ⊆ LW

′
(x) because otherwise

{¬A1,¬A2} ∩ LW
′
(x) 6= ∅ would hold in contradiction to (W3). Then, since W ′ is

unfolded, C1 ∈ LW
′
(x), which, again, by (W3), implies x ∈ CI1 , a contradiction.

Hence, we have shown that there exists an interpretation I stemming from W ′
such that I |= Tu ∪T ′ ∪Tg. By construction of W ′, any interpretation stemming from
W ′ also stems from W, hence W is admissible w.r.t. T ∪ T ′.

90 Long Papers

4 A Binary Absorption Algorithm

In this section, we present a two-phase algorithm for generating binary absorptions
that derives from the absorption algorithm for the FaCT system outlined in earlier
work [1, 6, 7]. Our algorithm also incorporates role absorption, similar to the work
of Tsarkov and Horrocks [8]. The notable differences in our algorithm happen in the
second phase during which

• an opportunity for unary absorption now has a very low priority,

• binary absorption replaces unary absorption in becoming a high priority, and

• primitive concepts are introduced by the procedure to enable further binary
absorptions and to absorb existential role restrictions.

The algorithm is given a TBox T containing arbitrary axioms, and proceeds by con-
structing four TBoxes, Tg, Tprim, Tuinc, and Tbinc, such that: T ≡ Tg ∪ Tprim ∪ Tuinc ∪
Tbinc, Tprim is primitive, Tuinc consists only of axioms of the form A1 v C, and Tbinc
consists only of axioms of the form (A1 uA2) v C, where {A1, A2} ⊆ NC and neither
A1 nor A2 are defined in Tprim. Here, Tuinc contains unary absorptions and Tbinc
contains binary absorptions.

In the first phase, we move as many axioms as possible from T into Tprim. We
initialize Tprim = ∅ and process each axiom X ∈ T as follows.

1. If X is of the form A
.= C, A is not defined in Tprim, and Tprim∪{X} is primitive,

then move X to Tprim.

2. If X is of the form A
.= C, then remove X from T and replace it with axioms

A v C and ¬A v ¬C.

3. Otherwise, leave X in T .

In the second phase, we process axioms in T , either by simplifying them or by
placing absorbed components in either Tuinc or Tbinc. We place components that can-
not be absorbed in Tg. To ease axiom manipulation, we introduce a set representation.
We let G = {C1, . . . , Cn} represent the axiom > v (C1 t . . . t Cn). When removing
an axiom from T , we automatically convert it to a set G. Similarly, when adding G
to T , we automatically convert it out of set notation. Details are as follows.

1. If T is empty, then return the binary absorption

({A v C,¬A v ¬C | A .= C ∈ Tprim} ∪ Tuinc ∪ Tbinc, Tg).

Otherwise, remove an axiom G from T .

2. Try to simplify G.

(a) If there is some ¬C ∈ G such that C is not a primitive concept, then add
(G∪NNF(¬C) \ {¬C} to T , where the function NNF(·) converts concepts
to negation normal form. Return to Step 1.

Proceedings of DL 2006 91

(b) If there is some C ∈ G such that C is of the form (C1uC2), then add both
(G ∪ {C1}) \ {C} and (G ∪ {C2}) \ {C} to T . Return to Step 1.

(c) If there is some C ∈ G such that C is of the form C1 t C2, then apply
associativity by adding (G∪{C1, C2}) \ {C1 tC2} to T . Return to Step 1.

3. Try to partially absorb G.

(a) If {¬A1,¬A2} ⊂ G, (A3uA4) v A1 ∈ Tbinc, and A2 is not defined in Tprim,
then do the following. If there is an axiom of the form (A1 u A2) v A′

in Tbinc, add G ∪ {¬A′} \ {¬A1,¬A2} to T . Otherwise, introduce a new
internal primitive concept A′, add (G∪{¬A′})\{¬A1,¬A2} to T , and add
(A1 uA2) v A′ to Tbinc. Return to Step 1.

(b) If {¬A1,¬A2} ⊂ G, and neither A1 nor A2 are defined in Tprim, then do
the following. If there is an axiom of the form (A1 uA2) v A′ in Tbinc, add
G∪{¬A′}\{¬A1,¬A2} to T . Otherwise, introduce a new internal primitive
concept A′, add (G ∪ {¬A′}) \ {¬A1,¬A2} to T , and add (A1 u A2) v A′

to Tbinc. Return to Step 1.
(c) If ∀R.C ∈ G, then do the following. Introduce a new internal primitive

concept A′ and add both ¬C v ∀R−.A′ and (G ∪ {¬A′}) \ {∀R.C} to T .
Return to Step 1.

(d) If ∀R−.C ∈ G, then do the following. Introduce a new internal primitive
concept A′ and add both ¬C v ∀R.A′ and (G ∪ {¬A′}) \ {∀R−.C} to T .
Return to Step 1.

4. Try to unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is an axiom A
.= C

in Tprim, then substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ¬C), and add G
to T . Return to Step 1.

5. Try to absorb G. If ¬A ∈ G and A is not defined in Tprim, add A v C to Tuinc
where C is the disjunction of all the concepts in G \ {¬A}. Return to Step 1.

6. If none of the above are possible (G cannot be absorbed), add G to Tg. Return
to Step 1.

Termination of our procedure can be established by a straightforward counting
argument involving concept constructors in T . We now prove the correctness of our
algorithm using induction. We use the following four lemmas in our induction step.
The first two lemmas prove, in combination, that both Step 3(a) and Step 3(b) of
our algorithm is correct. The last two lemmas prove Step 3(c) and Step 3(d) correct
respectively.

Lemma 4.1. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, and A a
primitive concept not used in C or T . If T1 is of the form

T1 = T ∪ {(C1 u C2 u C3) v C4},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = T ∪ {(C1 u C2) v A, (A u C3) v C4}.

92 Long Papers

Proof. First we prove the if direction. Assume C is satisfiable with respect to T1. For
each interpretation I such that I |= T1 and CI 6= ∅, we extend to an interpretation I ′
such that I ′ |= T2 and CI

′ 6= ∅. First, set I ′ = I. For each x ∈ ∆I such that x ∈ CI1
and x ∈ CI2 , add x to AI

′
. Then, I ′ |= T2.

For the only if direction, assume C is satisfiable with respect to T2. For each
interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, we show that I |= T1. The
proof is by contradiction. Assume I 6|= T1. It must be the case that (C1 u C2 u
C3) v C4 ∈ T1 does not hold, since the rest of T1 is a subset of T2. Therefore, there
exists x ∈ ∆I such that x ∈ CI1 ∩ CI2 ∩ CI3 , and x /∈ CI4 . But, in this case either
(C1 u C2) v A ∈ T2 or (A u C3) v C4 ∈ T2 must not hold. A contradiction.

The following lemma proves that instead of introducing a new primitive concept
every time we execute Step 3(a) (or Step 3(b)) of our algorithm, we may instead reuse
a previously introduced primitive concept. We use H to denote an arbitrary axiom.

Lemma 4.2. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and A1, A2, primitive concepts introduced by
Step 3(a) (or Step 3(b)) of our algorithm modified such that a new primitive is always
introduced. If T1 is of the form

T1 = T ∪ {(C1 u C2) v A1, (C1 u C2) v A2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = {(C1 u C2) v A} ∪ {H where A is substituted for A1 and A2 | H ∈ T }.

Proof. First we prove the if direction. We have two cases.

• Let I be an interpretation such that I |= T1, CI 6= ∅, and AI1 = AI2 . We
construct an interpretation I ′ from I such that I ′ |= T2 and CI

′ 6= ∅. First, set
I ′ = I. Then, set AI

′
= AI1 and remove any references to A1 and A2 in I ′.

• Let I be an interpretation such that I |= T1, CI 6= ∅, and AI1 6= AI2 . We
construct an interpretation I ′ from I such that I ′ |= T1, CI

′ 6= ∅, and AI1 = AI2 .
For x ∈ ∆I such that x ∈ AI1 ∪ AI2 and x 6∈ AI1 ∩ AI2 , we show that we can
remove x from either AI1 or AI2 so that x /∈ AI1 ∪AI2 without causing any axiom
in T1 to fail to hold. Without loss of generality, assume x ∈ AI1 and x 6∈ AI2 . If
x ∈ C1 and x ∈ C2, then we have a contradiction. Otherwise, we remove x from
AI1 . Since either x 6∈ CI1 or x 6∈ CI2 , the axiom (C1 u C2) v A1 holds. No other
axiom in T1 has A1 on the right hand side, therefore removing x from AI1 does
not cause any other axiom to fail to hold. Since the above is true for all x such
that x is in only one of AI1 and AI2 , we may remove individuals from AI1 and AI2
until AI1 = AI2 . Then the first case applies.

Now we prove the only if direction. Let I be an interpretation such that I |= T2 and
CI 6= ∅. We construct an interpretation I ′ from I such that I ′ |= T1 and CI

′ 6= ∅.
First set I ′ = I. Then, set AI

′
1 = AI

′
2 = AI . Due to the construction of T2, I ′ |= T1

and CI
′ 6= ∅.

Proceedings of DL 2006 93

Lemma 4.3. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and R a role. If T1 is of the form

T1 = T ∪ {∃R.C1 v C2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 v ∀R−.A,A v C2}.

Proof. First we prove the if direction. Assume C is satisfiable with respect to T1.
For an interpretation I ∈ Int(L) such that I |= T1 and CI 6= ∅, we extend I to an
interpretation I ′ such that I ′ |= T2 and CI

′ 6= ∅. First set I ′ = I. For each x ∈ ∆I

such that x ∈ (∃R.C1)I ∩ CI2 , we add x to AI
′
. Then, I ′ |= T2 and CI

′ 6= ∅.
Now we prove the only if direction. Assume C is satisfiable with respect to T2.

For each interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, it is also the case
that I |= T1. The proof is by contradiction. Assume I 6|= T1. It must be the case that
axiom ∃R.C1 v C2 does not hold as all other axioms in T1 are also in T2. Then there
exists x ∈ ∆I such that x ∈ (∃R.C1)I and x /∈ CI2 . However, this implies that there
exists y ∈ ∆I such that (x, y) ∈ RI and y ∈ C1. From axiom C1 v ∀R−.A, it must
be the case that x ∈ AI . From axiom A v C2, it must be the case that x ∈ CI2 . A
contradiction.

Lemma 4.4. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and R a role. If T1 is of the form

T1 = T ∪ {∃R−.C1 v C2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 v ∀R.A,A v C2}.

The proof of this lemma is similar to that of Lemma 4.3.

Theorem 4.1. For any TBox T , the binary absorption algorithm computes a correct
absorption of T .

Proof. The proof is by induction on the number of iterations of our algorithm. We
define an iteration to end when we return to Step 1. We abbreviate the pair

({A v C,¬A v ¬C | A .= C ∈ Tprim} ∪ Tuinc ∪ Tbinc, Tg ∪ T)

as T and claim that this pair is always a correct binary absorption.
Initially, Tuinc, Tbinc, and Tg are empty, primitive axioms are in Tprim, and the

remaining axioms are in T . By Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.4,
T is a correct binary absorption at the start of our algorithm.

Assume we just finish iteration i and now perform iteration i+1. By our induction
hypothesis, T is a correct binary absorption. We have a number of possible cases.

94 Long Papers

• If we perform Step 3(a) or Step 3(b) then iteration i+ 1 is finished. Due to the
ordering of Step 3(a) and Step 3(b), newly introduced primitive concepts are
absorbed first. Therefore, a newly introduced primitive concept only appears on
the right hand side of an axiom once and Lemma 4.1 and Lemma 4.2 apply. We
conclude that T is a correct binary absorption.

• If we perform Step 3(c), then iteration i+ 1 is finished and by Lemma 4.3, T is
a correct binary absorption.

• If we perform Step 3(d), then iteration i+ 1 is finished and by Lemma 4.4, T is
a correct binary absorption.

• If we perform any of Steps 1, 2, 5, or 6, then T is a correct binary absorption
at the end of iteration i + 1. This is because Steps 1, 2, 5, and 6 use only
equivalence preserving operations.

After the final iteration of our algorithm, T is a correct binary absorption by
mathematical induction.

5 Summary

We have proposed a simple and straightforward generalization of the absorption theory
and algorithms pioneered by Horrocks and Tobies [6, 7]. Called binary absorption, the
basic idea is to allow terminological axioms of the form

(A1 uA2) v C

to qualify for lazy unfolding in model building satisfaction procedures for description
logics. An important issue for future work is to evaluate the efficacy of our binary
absorption algorithm on real-world problems. Our immediate plans in this direction
are to measure the reductions in the number of disjunctions in comparison to (basic)
absorption for publicly accessible OWL DL ontologies.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge Univserity Press, 2003.

[2] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems, or:
Making KRIS get a move on. Applied Artificial Intelligence, 4:109–132, 1994.

[3] E. D. Demaine, A. Lopez-Ortiz, and I. Munro. Adaptive set intersections, unions,
and differences. In SODA ’00: Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, pages 743–752, Philadelphia, PA, USA, 2000.
Society for Industrial and Applied Mathematics.

Proceedings of DL 2006 95

[4] A. Deutsch, L.Popa, and V. Tannen. Query reformulation with constraints. ACM
SIGMOD Record, 35(1):65–73, 2006.

[5] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In A. G.
Cohn, L. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Sixth International Conference (KR’98),
pages 636–647. Morgan Kaufmann Publishers, San Francisco, California, 1998.

[6] I. Horrocks and S. Tobies. Optimisation of terminological reasoning. In Proc. of
the 2000 Description Logic Workshop (DL 2000), pages 183–192, 2000.

[7] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), pages 285–296, 2000.

[8] D. Tsarkov and I. Horrocks. Efficient reasoning with range and domain constraints.
In Volker Haarslev and Ralf Möller, editors, Description Logics, volume 104 of
CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[9] J. A. P. Villa. CGU: A common graph utility for DL reasoning and conjunc-
tive query optimization. Master’s thesis, David R. Cheriton School of Computer
Science, University of Waterloo, 2005.

96 Long Papers

A Description Logic of Change

Alessandro Artale University of Bolzano, IT artale@inf.unibz.it
Carsten Lutz University of Dresden, DE clu@tcs.inf.tu-dresden.de
David Toman University of Waterloo, CA david@uwaterloo.ca

Abstract

We combine the modal logic S5 with the description logic (DL) ALCQI.
In this way, we obtain a multi-dimensional DL, S5ALCQI , whose purpose
is reasoning about change. S5ALCQI is capable of expressing that concepts
and roles change over time, but cannot discriminate between changes in
the past and in the future. Our main technical result is that S5ALCQI
concept satisfiability with respect to terminologies of general concepts in-
clusions (GCIs) is decidable and 2-ExpTime-hard. We also provide a
scenario based on temporal conceptual models with timestamping con-
straints in which the logic can be used.

1 Introduction

An important application of Temporal Description Logics (TDLs) is the rep-
resentation of and reasoning about temporal conceptual models [1, 3, 4]. The
general idea is that such models are translated into an appropriate TDL, and
that TDL reasoning is then used to detect inconsistencies and implicit IS-A re-
lations in the temporal model [2, 4, 6]. However, a serious obstacle for putting
this general idea to work is posed by the fact that, for many natural temporal
conceptual formalisms and their associated TDLs, reasoning turns out to be
undecidable.

The most prominent witness of this problem is constituted by temporal
entity-relationship (TER) models used to design temporal databases [8]. TERs
are classical ER data models extended with two classes of constraints that model
the temporal behavior of an application domain [13], i.e., evolution constraints—
to govern object migration, i.e., the inability, possibility, and necessity of objects
to change membership from one entity to another—and timestamping—to dis-
tinguish between temporal and atemporal components of a TER model.

In this paper, we are interested in devising a logic able to fully capture TER
with timestamping constraints and study its computational properties. Indeed,

Proceedings of DL 2006 97

timestamping are temporal constructs supported by almost all temporal concep-
tual models proposed in the literature [10, 11, 13, 14]. It has be implemented
either by marking entities (i.e., classes), relationships and attributes as snapshot
or temporary, or leaving them un-marked. Then, objects belong to a snapshot
entity either never or at all times, no object may belong to a temporary entity
at all times, and there are no (temporal) assumptions about instances of un-
marked entities. The meaning of timestamps for relationships and attributes is
analogous.

It has been observed in [4] that TER models with timestamping and evo-
lution constraints can be translated into the TDL DLRUS . In the same paper,
undecidability of DLRUS was established. Later, it was shown in [1] that these
computational problems are not due to the translation to description logics: even
direct reasoning with the (less powerful) TER models is undecidable. There ap-
pear to be two ways around this problem. First, one can restrict timestamping.
Indeed, it has been shown in [4] that giving up timestamping of both relation-
ships and attributes (in the sense that all relationships and attributes are left
un-marked) re-establishes decidability of DLRUS , and thus also of TER models
with both restricted timestamping and evolution constraints. Second, one can
allow for full timestamping but avoiding evolution constraints.

This second alternative is pursued in the current paper. We devise a multi-
dimensional description logic S5ALCQI that is obtained by combining modal S5
with the standard DL ALCQI. The S5 modality can be applied to both con-
cepts and roles but not in front of axioms—terminological axioms are interpreted
globally. This logic may be viewed as a description logic of change, as it allows
to state that concept and role memberships change in time, but does not allow
to discriminate between changes in the past and changes in the future. We show
that TER models with full timestamping (i.e., timestamping on entities, rela-
tionships and attributes) but without evolution constraints can be captured by
S5ALCQI terminologies. The main result of this paper is to show that reason-
ing in S5ALCQI is decidable and 2-ExpTime-hard. While a decidability result
was obtained for the simpler modal DL, S5-ALC [9], this is the first time that
the more complex S5ALCQI is showed to have a decidable reasoning problem.
Thus, dropping evolution constraints indeed recovers decidability. However, it
is surprising that adding change, a rather weak form of temporality, pushes the
complexity of ALCQI from ExpTime-complete to 2-ExpTime-hard.

2 The Logic S5ALCQI

The logic S5ALCQI is a combination of the epistemic modal logic S5 and the de-
scription logic ALCQI. It is similar in spirit to the multi-dimensional descrip-
tion logics proposed, e.g., in [9, 16]. Let NC and NR be disjoint and countably

98 Long Papers

infinite sets of concept names and role names. We assume that NR is parti-
tioned into two countably infinite sets Nglo and Nloc of global role names and
local role names. The set ROL of roles is defined as {r, r−, ♦r, ♦r−, �r, �r−},
with r ∈ NR. The set of concepts CON is defined inductively: NC ⊆ CON; if
C, D ∈ CON, r ∈ ROL, and n ∈ N, then the following are also in CON: ¬C,
C uD, (> n r C), and ♦C. A TBox is a finite set of general concept inclusions
(GCIs) C v D with C, D ∈ CON.

The concept constructors C t D, ∃r.C, (6 n r C), (= n r C), ∀r.C, �C,
>, and ⊥ are defined as abbreviations in the usual way. Concerning roles, note
that we allow only single applications of boxes and diamonds, while inverse
is applicable only to role names. It is easily seen that any role obtained by
nesting modal operators and inverse in an arbitrary way can be converted into an
equivalent role in this restricted form: multiple temporal operators are absorbed
and inverse commutes over temporal operators [5].

An S5ALCQI-interpretation I is a pair (W, I) with W a non-empty set of
worlds and I a function assigning to each w ∈ W an ALCQI-interpretation
I(w) = (∆, ·I,w), where the domain ∆ is a non-empty set and ·I,w is a function
mapping each A ∈ NC to a subset AI,w ⊆ ∆ and each r ∈ NR to a relation
rI,w ⊆ ∆ ×∆, such that if r ∈ Nglo, then rI,w = rI,v for all w, v ∈ W . We can
extend the mapping ·I,w to complex roles and concepts as follows:

(r−)I,w := {(y, x) ∈ ∆×∆ | (x, y) ∈ rI,w}
(♦r)I,w := {(x, y) ∈ ∆×∆ | ∃v ∈ W : (x, y) ∈ rI,v}
(�r)I,w := {(x, y) ∈ ∆×∆ | ∀v ∈ W : (x, y) ∈ rI,v}
(¬C)I,w := ∆ \ CI,w

(C uD)I,w := CI,w ∩DI,w

(> n r C)I,w := {x ∈ ∆ |]{y ∈ ∆ | (x, y) ∈ rI,w and y ∈ CI,w} ≥ n}
(♦C)I,w := {x ∈ ∆ | ∃v ∈ W : x ∈ CI,v}

An S5ALCQI-interpretation I = (W, I) is a model of a TBox T iff it satisfies
CI,w ⊆ DI,w for all C v D ∈ T and w ∈ W . It is a model of a concept C if
CI,w 6= ∅ for some w ∈ W .

Note that S5ALCQI does not have the finite model property: there are con-
cepts and TBoxes that are only satisfiable in models with both an infinite set
of worlds and an infinite domain. For example, this is true for the concept ¬C
w.r.t. the TBox {¬C v ♦C, C v ∃r.¬C, ¬C v ∀r.¬C}, where r ∈ Nglo.

3 Capturing Conceptual Schemas

It is known that the TDL ALCQIUS is able to capture the temporal concep-
tual model ERV T , a TER model that supports timestamping and evolution

Proceedings of DL 2006 99

constraints, IS-A links, disjointness and covering constraints, participation con-
straints [3]. In ERV T , timestamping is implemented using a marking approach
as sketched in the introduction. Since the translation of atemporal constructs
is similar to the one using ALCQIUS the reader must refer to [3] for full de-
tails and examples. In the following, after recalling the translation of atemporal
constructs, we show that S5ALCQI is sufficient to capture the fragment of ERV T

that has timestamping as the only temporal construct.
When translating ERV T to TDLs, entities E—denoting sets of abstract

objects—are mapped into concept names AE while attributes P—denoting func-
tions associating mandatory concrete properties to entities—are mapped into
roles names rP that are enforced to be interpreted as total functions using GCIs:
> v (= 1 rP >). In S5ALCQI , un-marked entities and attributes need no special
treatment, while entities and attributes being of type snapshot or temporary
can be expressed as follows:

AE v �AE snapshot entity
AE v ♦¬AE temporary entity
AE v ∃�rP .> snapshot attribute
AE v ∀�rP .⊥ temporary attribute

Relationships—denoting n-ary relations between abstract objects—are trans-
lated by reification, i.e., each n-ary relationship R is translated into a concept
name AR with n global role names r1, . . . , rn. Intuitively, for each instance
x ∈ AI,w

R , the tuple (y1, . . . , yn) with (x, yi) ∈ rI,w
i is a tuple in the relationship

R at time point w. To ensure that every instance of AR gives rise to a unique
tuple in R, we use GCIs > v (= 1 ri >), for 1 ≤ i ≤ n. Now, to capture snap-
shot relationships, we simply put AR v �AR, while for temporary relationships,
we put AR v ♦¬AR.

Note that, the latter GCI does not fully capture temporary relationships. As
an example, consider the interpretation I = ({w1, w2}, I), with ∆ = {a, a′, b, c},
AI,w1

R = {a}, AI,w2

R = {a′}, rI,w1

1 = {(a, b)}, rI,w1

2 = {(a, c)}, rI,w2

1 = {(a′, b)},
and rI,w2

2 = {(a′, c)}. Although the GCI AR v ♦¬AR (expressing temporary
relationships) is satisfied, (b, c) is constantly in the temporary relationship R.
This is due to a mismatch between the models of an ERV T schema and the mod-
els of its translation into S5ALCQI . In particulars, in models of ERV T , tuples
belonging to relationships are unique while in models of the reified translation
there may be two distinct objects connected through the ri global roles to the
same objects, thus representing the same tuple, e.g., the distinct objects a, a′ in
the above interpretation. Then, S5ALCQI models verifying the above situation
do not correspond directly to an ERV T model. However, similarly to [7], it is
possible to show that: (i) there are so called safe models of S5ALCQI that are
in one-to-one correspondence with ERV T models, (ii) every satisfiable S5ALCQI
concept is also satisfied in a safe model. Since we are interested in reasoning

100 Long Papers

about ERV T schemas we can thus forget about non-safe models. An S5ALCQI
interpretation I = (W, I) is safe for an ERV T schema if, for every n-ary rela-
tionship R reified with the global functional roles ri, and every w ∈ W we have
the following:

∀x, y, x1, . . . , xn∈∆ : ¬((x, x1) ∈ rI,w
1 ∧ (y, x1) ∈ rI,w

1 ∧ . . . ∧
(x, xn) ∈ rI,w

n ∧ (y, xn) ∈ rI,w
n).

It is not hard to see that: (1) the model in the example above is not safe, (2)
given a safe model, the above GCI for temporary relationships correctly capture
the safety property.

4 Decidability of Reasoning in S5ALCQI

We show that the satisfiability problem is decidable for S5ALCQI . For simplicity,
throughout this section we assume that only local role names are used. This
can be done w.l.o.g. since global role names can be simulated by �r, where r
is a fresh local role name. To prove decidability, we start with devising tree
abstractions of S5ALCQI models. Then we show how, given a concept C0 and
TBox T , we can construct a looping tree automaton accepting exactly the tree
abstractions of models of C0 and T .

Let C0 and T be a concept and a TBox whose satisfiability is to be decided.
We first introduce the following notation. For roles r, we use Inv(r) to denote
r− if r ∈ NR, s if r = s−, ♦Inv(s) if r = ♦s, and �Inv(s) if r = �s. We use
rol(C0, T) to denote the smallest set that contains all roles used in C0 and T , and
that is closed under Inv. We use cl(C0, T) to denote the smallest set containing
all sub-concepts appearing in C0 and T closed under negation, if C ∈ cl(C0, T)
and “¬” is not the top level operator in C, then ¬C ∈ cl(C0, T).

4.1 Tree Abstractions of S5ALCQI models

The goal of this section is to develop tree abstractions of general S5ALCQI models:
for a given model I of C0 and T , we develop a tree abstraction called (C0, T)-tree.
The root node corresponds to the object that realizes C0 in I, descendants of the
root correspond to further objects in I that can be reached by traversing roles
in some S5 world staring from the root object. For the abstractions to capture
the essence of the S5ALCQI models, we need to attach additional information to
the nodes of the tree and to constrain the parent-child relationships. To this
end we develop the notions of an extended quasistate and matching successor.
In the rest of this section we formalize the above intuition.

We first introduce types and quasistates. Intuitively, a type describes the
concept memberships of a domain element x ∈ ∆ in a single S5 world.

Proceedings of DL 2006 101

Definition 1 (Type). A type t for C0, T is a subset of cl(C0, T) such that

¬C ∈ t iff C 6∈ t for all ¬C ∈ cl(C0, T)

C uD ∈ t iff C ∈ t and D ∈ t for all C uD ∈ cl(C0, T)

C ∈ t implies D ∈ t for all C v D ∈ T

We use tp(C0, T) to denote the set of all types for C0, T . To describe the concept
memberships of a domain element in all S5 worlds, we use quasistates:

Definition 2 (Quasistate). Let W be a set and f : W → tp(C0, T) a function
such that for all w ∈ W we have:

♦C ∈ f(w) iff C ∈ f(v) for some v ∈ W .

We call the pair (W, f) a quasistate witness and the set {f(v) | v ∈ W} a
quasistate.

In particular, quasistates capture constraints implied by the S5 modalities on
concept membership of an object in all worlds. To check whether a set of
types, {t1, . . . , tn}, is a quasistate we simply check whether the pair (W, f),
with W = {t1, . . . , tn} and f the identity function is a quasistate witness. Note,
however, that each quasistate has many witnesses.

To abstract the role structure of a model we define the notion of an extended
quasistate. This abstraction is realized by a pair of quasistates in a (C0, T)-trees
and captures how two objects are related by a particular role.

Definition 3 (Extended Quasistate). Let W be a set, f, g : W → tp(C0, T),
and h : W → rol(C0, T) ∪ {ε} for ε 6∈ rol(C0, T) such that

1. (W, f) and (W, g) are quasistate witnesses;

2. if ♦r = h(w) for some w ∈ W , then r = h(v) for some v ∈ W ;

3. if r = h(w) for some w ∈ W , then ♦r = h(v) or r = h(v) for all v ∈ W ;

4. it is not the case that r = h(w) for all w ∈ W ;

5. if �r = h(w) for some w ∈ W , then �r = h(v) for all v ∈ W .

We call (W, f, g, h) an extended quasistate witness and the set of triples

Q(W, f, g, h) = {(f(v), g(v), h(v)) | v ∈ W}

an extended quasistate.

We say that Q(W, f, g, h) realizes a concept C if: C ∈ f(w) for some w ∈ W ;
we say that Q(W, f, g, h) is root if: h(w) = �ε for all w ∈ W .

102 Long Papers

The extended quasistates therefore enforce S5 modalities when applied to roles.
In thee tree-shaped model abstraction we also use extended quasistates capture
the idea that each object has exactly one parent: by convention we assume
that the object abstracted by f has a parent abstracted by g. The two objects
are connected by a role r that is abstracted by h in those worlds w in which
h(w) ∈ {r, �r}. For uniformity, we use the ε dummy role for the root object1.
We define an ordering between modalities of a basic role r as ♦r ≤ r ≤ �r, this
arrangement allows us to use a single role in the extended quasistate to capture
all the implied modalities. It is again immediate to verify whether a set of triples
forms an extended quasistate.

The last ingredient needed in the tree abstractions is the ability to properly
capture the effects of number restrictions. These constraints, given an object in a
model, impact what and how many other objects can be connected to this object
via roles (and in which worlds). In the tree abstraction this yields restrictions
on which extended quasistates can possibly be children of a given quasistate.
This intuition is captured by the notion of a matching successor:

Definition 4 (Matching Successor). Let W and O be sets, o an element
such that o 6∈ O; f, g : (O ∪ {o}) → W → tp(C0, T), and h : (O ∪ {o}) → W →
rol(C0, T) functions such that (W, f(p), g(p), h(p)) is an extended quasistate wit-
ness for all p ∈ O ∪ {o} and f(o) = g(p) for all p ∈ O. We call (W, O, o, f, g, h)
a matching successor witness if for all w ∈ W :

1. if (> n r C) ∈ f(o)(w) and C 6∈ g(o)(w) or Inv(r) 6≤ h(o)(w) then
|{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n,

2. if (> n r C) ∈ f(o)(w), then |{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n−1,

3. if (> n r C) ∈ cl(T , C0), C ∈ g(o)(w), and Inv(r) ≤ h(o)(w), and
|{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n− 1 then (> n r C) ∈ f(o)(w),

4. if (> n r C) ∈ cl(T , C0) and |{p ∈ O | r ≤ h(p)(w), C ∈ f(p)(w)}| ≥ n
then (> n r C) ∈ f(o)(w),

We call the pair (Q(W, f(o), g(o), h(o)), {Q(W, f(p), g(p), h(p)) | p ∈ O}) a
matching successor. We say that two matching successor witnesses are equivalent
if they define the same matching successor.

1Note that each node in the abstraction is labeled by an extended quasistate describing
the corresponding object, its parent, and the role that connects them. This arrangement is
needed in order to keep track of how inverses interact with number restrictions and is similar
to the so-called double-blocking technique.

Proceedings of DL 2006 103

The intuition behind this definition is as follows: the object o stands for the
parent node and the set of objects O for all its children in the tree abstraction.
Each of these objects is labeled by an extended quasistate in a consistent way
(i.e., the parent parts of the extended quasistates labeling the children match
the quasistate attached to the parent). A matching successor witness is then a
witness that the extended quasistates attached to o and to all elements of O can
potentially be used to build a part of a model of C0 and T without violating
any constraints in T . Thus we can use matching successors to define the sought
after tree shaped abstraction of models of C0 and T .

Definition 5 ((C0, T)-tree). Let T = (n0, N,E) be an ordinal tree with root
n0 ∈ N and G a mapping of T ’s nodes to extended quasistates. We say that T
is a (C0, T)-tree if:

1. C0 is realized in G(n0),

2. G(n0) is root,

3. for all n ∈ N the pair (G(n), {G(m) | (n,m) ∈ E}) is a matching successor.

To be able to eventually construct a model from our abstraction we use the
following lemma that allows us to concatenate matching successor witnesses
along branches of such a tree abstraction:

Lemma 6. Let (W, O, o, f, g, h) be a matching successor witness for (q, Q) and
α an infinite cardinal. Then there is an equivalent matching successor witness
(W ′, O, o, f ′, g′, h′) such that

|{w ∈ W ′ | (f ′(p)(w), g′(p)(w), h′(p)(w)) is a constant triple}| = α

for all p ∈ O ∪ {o}.
This can always be achieved by replicating elements of W sufficiently many
times. These witnesses are convenient as whenever the associated extended
quasistate match they can be plugged one into the bottom of another just by
permuting the set W .

The intuitions behind Definitions 4 and 5 is as follows: when given a model
I of C0 and T , we use the object o ∈ ∆ that realizes C0 in I to define the
extended quasistate for the root of our tree abstraction; we then collect all the
extended quasistates for all successors of o in I and make them children of the
root quasistate. Repeating this construction yields a (C0, T)-tree: the children
of every node have been extracted from I and thus must satisfy the conditions
on matching successors (the witness comes from the model). Conversely, given
a (C0, T)-tree, we use the fact that for each matching successor, there must be
a witness. We use these witnesses, with the help of Lemma 6, to construct a
model by traversing the (C0, T)-tree top down while concatenating the matching
successor witnesses found along the branches. Thus the existence of a (C0, T)-
tree is equivalent to the existence of a (C0, T) model:

104 Long Papers

Theorem 7. C0 is satisfiable w.r.t. T iff there exists a (C0, T)-tree.

4.1.1 Decidability and Looping Tree Automata

To show decidability, we need to show existence of at least one (C0, T)-tree. We
proceed in two steps:

1. We need to determine whether (q, Q) is a matching successor for each
extended quasistate q and set of extended quasistates Q.

2. We need to show that the matching successors can be arranged into a tree
rooted by a node labeled by an extended quasistate realizing C0.

Thus, we first need to define a procedure that constructs all matching suc-
cessors given C0 and T . To show this, we need the following lemma, where
max(C0, T) :=

∑
(>m r C)∈cl(C0,T) m, and n = |cl(C0, T)|.

Lemma 8. Let (W, O, o, f, g, h) be a matching successor witness for a match-
ing successor (q, Q). Then there is an equivalent matching successor witness
(W ′, O′, o, f ′, g′, h′) such that |O′| ≤ (max(C0, T)+1)·2n22n

and |W ′| ≤ 2|O
′|·(n+1).

Figure 1 illustrates why the bounded matching successor witness required by

o0 o1 · · · ol ol+1 · · · om−1 om · · ·
w t0 t1 tl tl+1 tm−1 tm tn tn+1 · · ·y w is replaced by {v0, . . . , vl}

v0 t0 tm tn tl+1 tm−1

v2 tm t1 tn tl+1 tm−1

...
...

vl tm tn tl tl+1 tm−1

Figure 1: Reducing the size of a Matching Successor Witness.

Lemma 8 must exist: consider that the objects o0, . . . , on+1 . . . ∈ O have been
assigned the same extended quasistate by the current witness and that there are
more than max(C0, T) + 1 of such objects. Now consider a world w depicted
on the top of the Figure. Assume that the (types of the) objects ol+1, . . . , on

are those needed to fulfill a number restriction in the (type of the) parent node
in w. These must be preserved in the new witness after removing superfluous

Proceedings of DL 2006 105

objects. The transformation is depicted in the lower half of the figure: we create
a set of worlds v0, . . . , vl with the same parent label and such that all the types
tl+1, . . . , tn are present in every of the new worlds. Hence the number restriction
in the parent’s type still holds. Moreover, the original type assigned to the
objects o0, . . . , ol is preserved in at least one of the new worlds. This guarantees
that, in the new witness, all the objects are still labeled by the same extended
quasiworld. Thus the new witness is equivalent to the original one. Applying
this procedure to every w ∈ W and every set of objects labeled with the same
extended quasiworld by the original witness removes all the superfluous objects
that were assigned the same extended quasistate; hence the bound holds for the
new witness. Thus we can test all matching successor candidates for witnesses
up to the size defined in Lemma 8—in 4-ExpTime we can check whether a pair
(q, Q) is a matching successor and there are at most 3-Exp of such candidates
to test.

What remains is to check whether a (C0, T)-tree can be constructed using
these matching successors: to this end we define a looping tree automaton AC0,T
that accepts exactly the C0, T -trees. To check satisfiability of C0 w.r.t. T , it then
suffices to check whether this looping automaton accepts at least one tree. We
show that this provides us with a decision procedure for satisfiability in S5ALCQI
as the emptiness problem for looping tree automata is decidable in time linear
in the size of the automaton [15].

Intuitively, we use the matching successors to define the transition relation
of AC0,T . Since in our case the trees do not have a constant branching degree, we
adopt a variant of a looping automaton on amorphous trees [12] (except in our
case we know the branching degree is bounded and thus the transition relation
can be represented finitely in a trivial way).

Definition 9 (Looping Tree Automaton). A looping tree automaton A =
(Q, M, I, δ) for an M -labeled tree is defined by a set Q of states, an alphabet
M , a set I ⊆ Q of initial states, and a transition relation δ ⊆ Q×M × 2Q.

A run of A on an M -labeled tree T = (rT, NT, ET) with a root rT is a mapping
τ : NT → Q such that τ(rT) ∈ I and (τ(α), T(α), {τ(β) | (α, β) ∈ ET}) ∈ δ for
all α ∈ NT. A looping automaton A accepts those M -labeled trees T for which
there exists a run of A on T.

We construct an automaton from C0 and T as follows:

Definition 10. Let C0 be a concept and T a S5ALCQI TBox. We denote with
nl(C0, T) the set of all extended quasistates for C0 and T . A looping automaton
AC0,T = (Q,M, I, δ) is defined by setting M = Q = nl(C0, T), I := {q ∈
Q | q realizes C0, q is root}, and δ to the set of those tuples (q, q, Q) such that
Q ∈ 2Q and (q, Q) is a matching successor for C0 and T .

106 Long Papers

The following lemma states that the obtained looping automata behaves as
expected.

Lemma 11. T is a C0, T -tree iff T is accepted by AC0,T .

The size of AC0,T depends on the size of C0 and T as there are only finitely many
matching successors as shown in Lemma 8. To construct the transition function
of the automaton, we also need to verify that the pair (q, Q) is a matching
successor. From Lemma 8, this can be done in 4-ExpTime. , we obtain that
the proposed algorithm for satisfiability in S5ALCQI runs in 4-ExpTime. A
lower bound can be established by reducing the word problem of exponentially
space-bounded, alternating Turing machines [5].

Theorem 12. Satisfiability in S5ALCQI is decidable and 2-ExpTime-hard.

This result holds regardless of whether numbers inside number restrictions are
coded in unary or in binary.

5 Conclusions

This work introduces the modal description logic S5ALCQI as a logic for repre-
senting and reasoning in temporal conceptual models with timestamping con-
straints only. S5ALCQI was shown to be decidable and 2-ExpTime-hard. This
is the first decidability result for reasoning in temporal schemas with full time-
stamping—i.e., timestamping for entities, relationships, and attributes.

This paper leaves out few interesting open problems for further investigation.
First, a tight complexity bound is not known. The gap between the 2-ExpTime-
hardness and the 4-ExpTime algorithm shown in this paper needs to be closed.
Second, we believe that the converse translation, from TER with full timestamp-
ing to S5ALCQI , is also possible. Once formally proved, this result would allow
us to characterize the complexity of reasoning over TER with timestamping.
Finally, we are interested in checking the limits of expressive power of S5ALCQI
w.r.t. various constraints have appeared in literature on temporal models other
than timestamping.

References
[1] A. Artale. Reasoning on temporal conceptual schemas with dynamic constraints.

In 11th Int. Symposium on Temporal Representation and Reasoning (TIME04).
IEEE Computer Society, 2004. Also in Proc. of DL’04.

[2] A. Artale and E. Franconi. Temporal ER modeling with description logics. In
Proc. of the Int. Conference on Conceptual Modeling (ER’99), volume 1728 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

Proceedings of DL 2006 107

[3] A. Artale, E. Franconi, and F. Mandreoli. Description logics for modelling dy-
namic information. In Jan Chomicki, Ron van der Meyden, and Gunter Saake,
editors, Logics for Emerging Applications of Databases. LNCS, Springer-Verlag,
2003.

[4] A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal descrip-
tion logic for reasoning about conceptual schemas and queries. In Proc. of the
8th Joint European Conference on Logics in Artificial Intelligence (JELIA-02),
volume 2424 of LNAI, pages 98–110. Springer, 2002.

[5] A. Artale, C. Lutz, and D. Toman. A description logic of change. Technical report,
LTCS-Report 05-06, Technical University Dresden, 2002. see http://lat.inf.tu-
dresden.de/research/reports.html.

[6] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229–263. Kluwer, 1998.

[7] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

[8] J. Chomicki and D. Toman. Temporal Databases. In M. Fischer, D. Gabbay,
and L. Villa, editors, Handbook of Temporal Reasoning in Artificial Intelligence,
pages 429–467. Elsevier Foundations of Artificial Intelligence, 2005.

[9] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional
modal logics: theory and applications. Studies in Logic. Elsevier, 2003.

[10] H. Gregersen and J.S. Jensen. Conceptual modeling of time-varying information.
Technical Report TimeCenter TR-35, Aalborg University, Denmark, 1998.

[11] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE Transac-
tions on Knowledge and Data Engineering, 111(1):36–44, 1999.

[12] O. Kupferman and M. Y. Vardi. On bounded specifications. In Proc. of the Int.
Conference on Logic for Programming and Automated Reasoning (LPAR’01),
LNAI, pages 24–38. Springer-Verlag, 2001.

[13] S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time from a conceptual per-
spective. In Int. Conf. on Information and Knowledge Management (CIKM98),
1998.

[14] C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling for-
malism for temporal database applications. Information Systems, 16(3):401–416,
1991.

[15] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183–221, 1986.

[16] F. Wolter and M. Zakharyaschev. Modal descriptiopn logics: modalizing roles.
Fundamentae Informaticae, 39:411–438, 1999.

108 Long Papers

Part II

Regular Papers

Reasoning for A Fuzzy Description Logic with
Comparison Expressions ∗

Dazhou Kang1, Baowen Xu1,2, Jianjiang Lu3 and Yanhui Li1

1School of Computer Science and Engineering, Southeast University,
Nanjing 210096, China

2Jiangsu Institute of Software Quality, Nanjing, 210096, China
3Institute of Command Automation, PLA University of Science and

Technology, Nanjing 210007, China

Abstract

The fuzzy extensions of description logics support representation and
reasoning for fuzzy knowledge. But the current fuzzy description logics
do not support the expression of comparisons between fuzzy membership
degrees. The paper proposes ALCfc, a fuzzy extension of description
logic ALC with comparison expressions. ALCfc defines comparison cut
concepts to express complex comparisons, and integrate them with fuzzy
ALC. The challenges of reasoning in ALCfc is discussed, and a tableau
algorithm is presented. It enables representation and reasoning for ex-
pressive fuzzy knowledge about comparisons.

1 Introduction

Description logics (DLs) [1] are widely used in the semantic web. Fuzzy exten-
sions of description logics import the fuzzy theory to enable the capability of
dealing with fuzzy knowledge [5]. In fuzzy DLs, an individual is an instance of
a fuzzy concept only to a certain degree (called fuzzy membership degree); e.g.
“Tom is tall to a degree greater than 0.8,” where Tall is a fuzzy concept. It is
also a familiar description that “Tom is taller than Mike,” which can be seemed
as a comparison between two degrees without any restrictions on their exact

∗This work was supported by NSFC (60373066, 60425206 and 90412003), National Grand
Fundamental Research 973 Program of China (2002CB312000), Innovation Plan for Jiangsu
High School Graduate Student, Advanced Armament Research Project (51406020105JB8103),
Advanced Research Fund of Southeast University (XJ0609233), and High Technology Research
Project of Jiangsu Province (BG2005032). Email:swws@seu.edu.cn

Proceedings of DL 2006 111

values. Such comparison is important in many fuzzy information systems. For
example, people are often interested in “the cheapest goods with the highest
quality,” disregarding the exact prices and qualities. There are even more com-
plex comparison expressions, e.g. “no close friend of Tom is taller or stronger
than him.” However, the current fuzzy DLs do not support the expression of
comparisons between fuzzy membership degrees. This paper defines compar-
ison cut concepts to express complex comparisons, then presents ALCfc, and
provides its reasoning algorithm. It enables representation and reasoning for
expressive comparisons between fuzzy membership degrees.

2 Comparison expressions

In DLs, an assertion a : C is either true or false (0 or 1). But in fuzzy DLs, any
assertion is true only to a certain degree in [0, 1]. A fuzzy assertion is of the form
〈a : C ./ n〉, where n ∈ [0, 1] is a constant and ./ ∈ {=, 6=, <,≤,≥, >}. In order
to express a comparison that “Tom is taller than Mike,” the most intuitionistic
solution is 〈Tom : Tall > Mike : Tall〉. However, such fuzzy assertion is not
allowed in current fuzzy DLs [3, 5].

There are more complex comparisons, like “Tom is either taller or stronger
than Mike.” We define comparison cut concepts (or cuts for short) to express
such complex comparisons. The idea is as follows: individuals can be divided into
different classes based on basic comparisons; the classes can be represented in
basic cuts; and we can use constructors with such cuts to express more complex
comparisons. Three kinds of basic cuts are defined:

numerical cuts [C ./ n] represents a set of individuals s such that 〈s : C ./ n〉.
For example, [Tall < 0.9] refers to any person that is not very tall.

comparative cuts [C ./ D] represents s such that 〈s : C ./ s : D〉. [Absolutist
< Liberalist] refers to people who prefer liberalism to absolutism.

relative cuts [C ./ D↑] represents any s such that 〈s : C ./ t : D〉 with respect
to an individual t. [C ./] is an abbreviation of [C ./ C↑]. They describe
the comparisons between individuals.

The idea of cuts is not completely innovate. [3] and [6] defined concepts
similar to the numerical cuts. But they do not consider other cuts.

Complex cuts are constructed from basic cuts: if P, Q are cuts, then ¬P ,
P uQ and P tQ are also cuts. More expressive fuzzy concepts can be defined
by importing cuts: for any cuts P, Q and a fuzzy role R, ∃R.P and ∀R.P
are fuzzy concepts. For example, 〈Tom : ∀friend .[Tall ≤] ≥ 0.8〉 means Tom
is tallest among his close friends. Such fuzzy concepts can be used in cuts
again. We use 〈a : P (b)〉 to assert that a is in a cut P with respect to b. Then
〈Tom : Tall ≥ 0.8〉 and 〈Tom : Tall > Mike : Tall〉 can be seemed as aliases of
〈Tom : [Tall ≥ 0.8]〉 and 〈Tom : [Tall >](Mike)〉.

112 Regular Papers

3 The fuzzy description logic ALCfc

Definition 1. Let NI , NC and NR be three disjoint sets of names of individuals,
fuzzy concepts and fuzzy roles respectively. ALCfc-concepts are defined as

• >, ⊥ and A are concepts, where A ∈ NC;

• if C, D are concepts, R ∈ NR, and P is a cut, then ¬C, C t D, C u D,
∃R.C, ∀R.C, ∃R.P and ∀R.P are concepts.

A fuzzy interpretation I =
〈
∆I , ·I

〉
consists a nonempty set ∆I, and a

function ·I maps every a ∈ NI to an element aI ∈ ∆I, maps every A ∈ NC

to a function AI : ∆I → [0, 1], and maps every R ∈ NR to a function RI :
∆I × ∆I → [0, 1]. For ALCfc, ·I also maps every concept C to a function
CI : ∆I → [0, 1] such that for any s ∈ ∆I,

>I(s) = 1;⊥I(s) = 0; (∃R.C)I(s) = supt∈∆I{min(RI(s, t), CI(t))};
(¬C)I(s) = 1− CI(s); (∀R.C)I(s) = inft∈∆I{max(1−RI(s, t), CI(t))};

(C uD)I(s) = max(CI(s), DI(s)); (∃R.P)I(s) = supt∈PI(s) RI(s, t);

(C tD)I(s) = min(CI(s), DI(s)); (∀R.P)I(s) = inft∈(¬P)I(s)(1−RI(s, t)).

Definition 2. The comparison cut concepts are defined as:

• if C, D are concepts, n ∈ [0, 1] and ./ ∈ {=, 6=, >,≥, <,≤}, then [C ./ n],
[C ./ D] and [C ./ D↑] are cuts;

• if P, Q are cuts, then ¬P , P uQ and P tQ are cuts.
The interpretation function ·I of a fuzzy interpretation I =

〈
∆I , ·I

〉
maps,

additionally, every cut P into a function P I : ∆I → 2∆I
:

[C ./ n]I(s) = {t|CI(t) ./ n}; (¬P)I(s) = ∆I\P I(s);

[C ./ D]I(s) = {t|CI(t) ./ DI(t)}; (P uQ)I(s) = P I(s) ∩QI(s);

[C ./ D↑]I./(s) = {t|CI(t) ./ DI(s)}; (P tQ)I(s) = P I(s) ∪QI(s).

For any cut P and a ∈ NI , P (a) is called an absolute cut, and (P (a))I =
P I(aI). If a cut P contains no ↑, then P itself is an absolute cut, and for any
a, we do not distinguish P (a) and P , since they are equivalent in semantics.

Definition 3. An ALCfc knowledge base is composed of a TBox and an ABox:
A TBox is a finite set of axioms of the form C v D or C @ D. An inter-

pretation I satisfies C v D or C @ D iff for any s ∈ ∆I, CI(s) ≤ DI(s) or
CI(s) < DI(s). I is a model of a TBox T iff I satisfies every axiom in T .

An ABox is a finite set of assertions of the form 〈(a, b) : R ./ n〉 or 〈a : P (b)〉,
where n ∈ [0, 1], C is a concept, R is a role, a, b ∈ NI , and P is a cut. An
interpretation I satisfies 〈(a, b) : R ./ n〉 iff RI(aI , bI) ./ n, satisfies 〈a : P (b)〉
iff aI ∈ P I(bI). I is a model of an ABox A iff I satisfies every assertion in A.

The basic inference problem of ALCfc is consistency of ABoxes: an ABox A
is consistent w.r.t. a TBox T , iff there exists a model I of both A and T .

Proceedings of DL 2006 113

4 Reasoning issues

4.1 Challenges

In the current reasoning algorithms for fuzzy DLs [4, 5], they always assume
that for an element s in a model I with (∃R.C)I(s) ≥ n, there is t such that
min(RI(s, t), CI(t)) ≥ n. In [2], the author pointed out that this is an unessen-
tial error. However, it yields a serious problem in ALCfc.

Example 4. Let A = {〈a : ∃R.C ≥ 1〉 , 〈a : ∃R.[c ≥ 1] ≤ 0〉}. For any element
s in a model I with (∃R.[c ≥ 1])I(s) ≤ 0, there cannot be any t such that
min(RI(s, t), CI(t)) ≥ 1. Nevertheless, A is consistent: there can be infinite
elements t1, t2, . . . such that supi=1,2,...{min(RI(s, ti), C

I(ti))} = 1, and for any
i = 1, 2, . . . , min(RI(s, ti), C

I(ti)) < 1.

Another challenge is that current algorithms only consider a finite set of
constants in [0, 1]; but there can be infinite different degrees in ALCfc.

Example 5. Assume T = {C @ ∃R.C}, A = {s0 : C > n}. In a model I of
T and A, it holds n < CI(s0) < (∃R.C)I(s0). For any element si, CI(si) <
(∃R.C)I(si) and there is si+1 with CI(si+1) > CI(si). It also follows CI(si+1) <
(∃R.C)I(si+1). So there must be an infinite path of elements s0, s1, s2, . . . such
that n < CI(s0) < CI(s1) < CI(s2) < · · · .

Because of the above challenges, the current reasoning algorithms for fuzzy
DLs are not capable for ALCfc. The following parts firstly define a novel fuzzy
tableau for ALCfc. The essential difference from the tableau in [4] is P4 and
P6. Then presents a tableau algorithm to overcome the challenges.

Definition 6. Let A be an ABox, T be a TBox, a fuzzy tableau T of A w.r.t.
T is a quadruple T = 〈S,L, E ,V〉 such that

• S is a non-empty set of elements;

• L : S → AC maps each element of S to a set of absolute cuts;

• E : NR × [0, 1] → 2S×S maps each pair of a role name and a number in
[0, 1] to a set of pairs of elements;

• V : IA → S maps individual names occurring in A to elements in S.

P1 If [¬C = n] ∈ L(s), then [C = 1− n] ∈ L(s).
P2 If [CuD = n] ∈ L(s), then {[C = m1], [D = m2]} ⊆ L(s) and min(m1,m2) = n.
P3 If [C tD = n] ∈ L(s), then [¬C u ¬D = 1− n] ∈ L(s)
P4 If [∃R.C = n] ∈ L(s), then for any t with (s, t) ∈ E(R,m1) and m1 > n, it holds

[C = m2] ∈ L(t) and m2 ≤ n, and there are two possible cases:
• there is t ∈ S with (s, t) ∈ E(R, m1), [C = m2] ∈ L(t), min(m1,m2) = n;
• there are t1, t2, · · · ∈ S with for any i = 1, 2, . . . , (s, ti) ∈ E(R,ni), [C =

mi] ∈ L(ti), min(ni,mi) < n, and supi=1,2,...{min(ni,mi)} = n.

114 Regular Papers

P5 If [∀R.C = n] ∈ L(s), then [∃R.¬C = 1− n] ∈ L(s).
P6 If [∃R.P = n] ∈ L(s), then for any t with (s, t) ∈ E(R,m) that m > n, it holds

¬P (s) ∈ L(t), and there are two possible cases:
• there is t ∈ S with (s, t) ∈ E(R, n), P (s) ∈ L(t);
• there are t1, t2, · · · ∈ S with for any i = 1, 2, . . . , (s, ti) ∈ E(R,ni), P (s) ∈
L(ti), ni < n, and supi=1,2,...{ni} = n.

P7 If [∀R.P = n] ∈ L(s), then [∃R.¬P = 1− n] ∈ L(s).
P8 If [C ./ n] ∈ L(s), then [C = m] ∈ L(s) and m ./ n.
P9 If [C ./ D] ∈ L(s), then {[C = m], [D = n]} ⊆ L(s) and m ./ n.

P10 If [C ./ D↑](t) ∈ L(s), then [C = m] ∈ L(s), [D = n] ∈ L(t) and m ./ n.
P11 If (P uQ)(t) ∈ L(s), then {P (t), Q(t)} ⊆ L(s).
P12 If (P tQ)(t) ∈ L(s), then P (t) ∈ L(s) or Q(t) ∈ L(s).
P13 If 〈(a, b) : R ./ n〉 ∈ A, then (V(a),V(b)) ∈ E(R,m) and m ./ n.
P14 If 〈a : P (b)〉 ∈ A, then P (V(b)) ∈ L(V(a)).
P15 If C v D ∈ T , then for any s ∈ S, {[C = m], [D = n]} ⊆ L(s) and m ≤ n.
P16 If C @ D ∈ T , then for any s ∈ S, {[C = m], [D = n]} ⊆ L(s) and m < n.
P17 If [c = n] ∈ L(s), then there is no [c = m] ∈ L(s) such that n 6= m.
P18 If (s, t) ∈ E(R,n), then there is no (s, t) ∈ E(R,m) such that n 6= m.

All concepts and cuts are transformed into negation normal form, where ¬
can only occur in front of a concept name, by pushing negations inwards: ¬[C ./
W] → [C ./	 W];¬(X t Y) → ¬X u ¬Y ;¬(X u Y) → ¬X t ¬Y ;¬(∃R.X) →
∀R.¬X;¬(∀R.X) → ∃R.¬X; where W ∈ {n,D, D↑}, X, Y are concepts or cuts,
and >	= ≤, <	= ≥, ≥	= <, ≤	= >. All elements satisfy [> = 1] and [⊥ = 0].
So >,⊥,¬P are not considered here. It is easy to prove that the existence of a
fuzzy tableau is equivalent with the existence of a model: ∆I = S, AI(s) = n
iff [A = n] ∈ L(s), and RI(s, t) = n iff (s, t) ∈ E(R, n).

Theorem 7. An ALCfc ABox A is consistent w.r.t. a TBox T , iff there is a
fuzzy tableau T of A w.r.t. T .

4.2 A tableau algorithm

Here presents an algorithm to decide the existence of a fuzzy tableau by con-
structing a completion graph. There are three key points in the algorithm:

1. All degrees such as C(x) and R(x, y) are not constants but variables. The
relations between degrees are recorded in a set δ, which is a partially
ordered set (V,≤, 6=). The set of degrees V can be easily mapping to [0, 1].

2. In P4 and P6, there can be infinite elements. We just generate one node
to represent them with a new relation l added into δ by R5 and R8.

3. It is clear that the construction of a completion graph may not terminate if
T 6= ∅. A cycle detection technique called blocking is employed to unravel
a finite completion graph into an infinite fuzzy tableau.

Proceedings of DL 2006 115

Definition 8. A completion graph is T = 〈S, E, L, δ〉, where

• S is a set of nodes in the graph.

• E is a set of edges (pairs of nodes) in the graph.

• L is a function: for every node x ∈ S, L(x) is a set of concepts or absolute
cuts; for every edge (x, y) ∈ E, L(x, y) is a set of roles.

• δ is a set of formulas of the form X ≤ Y , X 6= Y or X l Y , where
X, Y ::= n|C(x)|R(x, y)|1−X such that n ∈ [0, 1], C is a concept, R is a
role, x, y ∈ S, and for any X, 1− (1−X) = X.

Several abbreviations are defined below:

X ≤δ Y =def X ≤ Y ∈ δ, or X ≤δ Y, Y ≤δ Z, or 1− Y ≤δ 1−X

min(X, Y) =δ Z =def Z ≤δ X, Z ≤δ Y,W ≤δ Z for some W ∈ {X, Y };
X 6=δ Y =def X 6= Y ∈ δ; X lδ Y =def X l Y ∈ δ;

X ≥δ Y =def Y ≤δ X; X =δ Y =def X ≤δ Y, Y ≤δ X;

X <δ Y =def X ≤δ Y, X 6=δ Y ; Xδ > Y =def Y ≤δ X, X 6=δ Y.

The completion graph T of an ABox A w.r.t. a TBox T initializes with:
S = {a ∈ NI |a occurs in A}; for any 〈a : P (b)〉 ∈ A, P (b) ∈ L(a); for any
〈(a, b) : R ./ n〉 ∈ A, R ∈ L(a, b) and R ./δ n. Let V0 = {v1, v2, . . . , vk} =
{0, 1, 0.5} ∪ {n ∈ [0, 1]|n or 1− n occurs in A or T }, where 0 = v1 < v2 < · · · <
vk = 1. For any vi < vj, let vi <δ vj.

Then the graph grows up by applying the expansion rules showed in Fig. 1.
If a rule applied to x creates a new node y, then y is a successor of x. Let
descendant be transitive closure of successor.

The lδ relation is used to simulate the infinite supreme. For any a ∈ NI ,
lev(a) = 1. If lev(x) = i, y is a successor of x by updating lδ, then lev(y) = i+1.
For any X of the form C(x), 1 − C(x), R(y, x), or 1 − R(y, x), if lev(x) = i,
then X ∈ Vi. If X lδ Y and Y ∈ Vi, then for any Z ∈ Vj such that j ≤ i,
Z <δ Y → Z <δ X and Z >δ X → Z ≥δ Y . So X lδ Y means X is greater
than any Z < Y such that Z ∈ V0 ∪ V1 ∪ · · · ∪ Vi and Y ∈ Vi. It ensures that
for any given constant ε, we can assign values to the variables in V such that
X − Y < ε without inducing any conflict.

Since there are variables, the blocking condition in ALCfc is different from
classical DLs. It has to consider the comparisons between degrees.

Definition 9. For any x, let δ(x) = {X ./ Y |X ./δ Y , X, Y are of the form
C(x), 1−C(x), or vi. A node x is blocked by y, iff x is an descendant of y, and
δ(x) = [x/y]δ(y), where [x/y]δ(y) means to replace any y in δ(y) by x. Then we
call y blocks x. When x is blocked, all descendants of x is also blocked.

No rules in Fig. 1 can be applied to blocked nodes. T is said to contain a
clash if {X 6=δ Y,X =δ Y } ⊆ δ, or X >δ 1, or X <δ 0. T is said to be clash-free

116 Regular Papers

R1 if ¬C ∈ L(x), and not C(x) =δ 1− (¬C)(x)
then L(x) → L(x) ∪ {C}, and C(x) =δ 1− (¬C)(x)

R2 if C uD ∈ L(x), and not min(C(x), D(x)) =δ (C uD)(x)
then L(x) → L(x) ∪ {C,D}, and min(C(x), D(x)) =δ (C uD)(x)

R3 if C tD ∈ L(x), and not (C tD)(x) =δ 1− (¬C u ¬D)(x)
then L(x) → L(x) ∪ {C tD}, and (C tD)(x) =δ 1− (¬C u ¬D)(x)

R4 if ∃R.C ∈ L(x), and there is y with R ∈ L(x, y)
but not X ≤δ (∃R.C)(x) for some X ∈ {R(x, y), C(x)}

then L(y) → L(y) ∪ {C}, and X ≤δ (∃R.C)(x)
R5 if ∃R.C ∈ L(x), and there is no y with X =δ (∃R.C)(x)

or X lδ (∃R.C)(x), for some X ∈ {R(x, y), C(x)}
then add a new node y with L(x, y) = {R}, L(y) = {C},

and X =δ (∃R.C)(x) or X lδ (∃R.C)(x)
R6 if ∀R.C ∈ L(x), and not (∀R.C)(x)δ = 1− (∃R.¬C)(x)

then L(x) → L(x) ∪ {∃R.¬C}, and (∀R.C)(x) =δ 1− (∃R.¬C)(x)
R7 if ∃R.P ∈ L(x), and there is y with R ∈ L(x, y)

but not R(x, y)δ ≤ (∃R.C)(x) nor ¬P (x)δ ∈ L(y)
then R(x, y) ≤δ (∃R.C)(x), or L(y) → L(y) ∪ {¬P (x)}

R8 if ∃R.P ∈ L(x), and there is no y with P (x) ∈ L(y),
R(x, y) =δ (∃R.C)(x) or R(x, y) lδ (∃R.C)(x)

then add a new node y with L(x, y) = {R}, L(y) = {P (x)},
and R(x, y) =δ (∃R.C)(x) or R(x, y) lδ (∃R.C)(x)

R9 if ∀R.P ∈ L(x), and not (∀R.P)(x) =δ 1− (∃R.¬P)(x)
then L(x) → L(x) ∪ {∃R.¬P}, and (∀R.P)(x) =δ 1− (∃R.¬P)(x)

R10 if [C ./ n] ∈ L(x), and not C(x) ./δ n
then L(x) → L(x) ∪ {C}, and C(x) ./δ n

R11 if [C ./ D] ∈ L(x), and not C(x) ./δ D(x)
then L(x) → L(x) ∪ {C,D}, and C(x) ./δ D(x)

R12 if [C ./ D↑](y) ∈ L(x), and not C(x) ./δ D(y)
then L(x) → L(x) ∪ {C}, L(y) → L(y) ∪ {D}, and C(x) ./δ D(y)

R13 if (P uQ)(y) ∈ L(x), and not {P (y), Q(y)} ⊆ L(x)
then L(x) → L(x) ∪ {P (y), Q(y)}

R14 if (P tQ)(y) ∈ L(x), and {P (y), Q(y)} ∩ L(x) = ∅
then L(x) → L(x) ∪ {X} for some X ∈ {P (y), Q(y)}

R15 if C v D ∈ T , and there is x with no C(x) ≤δ D(x)
then L(x) → L(x) ∪ {C,D}, and C(x) ≤δ D(x)

R16 if C @ D ∈ T , and there is x with no C(x) <δ D(x)
then L(x) → L(x) ∪ {C,D}, and C(x) <δ D(x)

R17 if C ∈ L(x) or R ∈ L(x, y), and let X = C(x) or R(x, y)
there is no i such that vi <δ X <δ vi+1, or X =δ vi

then vi <δ X <δ vi+1 for some vi, vi+1, or X =δ vi for some vi

Figure 1: Expansion rules for ALCfc

Proceedings of DL 2006 117

if it contains no clash. If none of the expansion rules can be applied to T , then
T is said to be complete.

From the blocking condition and the number of concepts in any L(x) is
finite, the algorithm terminates. There is a fuzzy tableau T of A w.r.t. T , iff a
complete and clash-free completion graph can be constructed from A w.r.t. T .
So the above algorithm is a decision procedure for consistency of ALCfc ABoxes
w.r.t. empty TBoxes.

5 Conclusion

This paper presents ALCfc, a fuzzy extension of description logic ALC with
comparison expressions. New challenges of reasoning withinALCfc are discussed
and a reasoning algorithm for ALCfc is proposed to overcome the challenges.
It enables representation and reasoning for expressive fuzzy knowledge about
comparisons. The future work is to extend comparison expressions in more
expressive fuzzy description logics and design their reasoning algorithms.

References

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[2] Petr Hajek. Making fuzzy description logic more general. 2005.

[3] Yanhui Li, Baowen Xu, Jianjiang Lu, Dazhou Kang, and Peng Wang. A
family of extended fuzzy description logics. In Proceedings of the IEEE
29th Annual International Computer Software and Applications Conference,
pages 221–226, Edinburgh, Scotland, 2005.

[4] Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Z. Pan, and Ian
Horrocks. The fuzzy description logic f-shin. In Proceedings of the Interna-
tional Workshop on Uncertainty Reasoning for the Semantic Web, Galway,
Ireland, 2005.

[5] Umberto Straccia. Reasoning within fuzzy description logics. Journal of
Artificial Intelligence Research, 14:137–166, 2001.

[6] Umberto Straccia. Transforming fuzzy description logics into classical de-
scription logics. In Proceedings of the 9th European Conference on Logics in
Artificial Intelligence, number 3229, pages 385–399, Lisbon, Portugal, 2004.

118 Regular Papers

Handling Imprecise Knowledge with Fuzzy
Description Logic

Giorgos Stoilos and Giorgos Stamou
National Technical University of Athens, Greece

gstoil@image.ntua.gr

gstam@softlab.ntua.gr

Jeff Z. Pan
University of Aberdeen, UK

jpan@csd.abdn.ac.uk

Abstract

Fuzzy Description Logics have been proposed in the literature as a
way to represent and reason with vague and imprecise knowledge. Their
decidability, the empirically tractable and efficient reasoning algorithms,
that carry over to fuzzy Description Logics, have attracted the attention
of many research communities and domains that deal with a wealth of
imprecise knowledge and information. In the current paper we present
the syntax and semantics of fuzzy SHOIQ, investigating several proper-
ties of the semantics of transitivity, qualified cardinality restrictions and
reasoning capabilities.

1 Introduction

Although Description Logics (DLs) provide considerable expressive power, they
feature expressive limitations regarding their ability to represent vague and im-
precise knowledge. Consider for example an image processing application. Such
applications can be assisted by the aid of a knowledge base that contains def-
initions of the objects that can be found within an image. For example there
could be a definition of the form,

Body u ∃hasPart.Tail v Animal.

saying that if an object has a body and a part that is a tail then this object
is an animal. Now suppose that we run an image analysis algorithm. Such
algorithms usually segment and label objects that they identify in images. Since

Proceedings of DL 2006 119

the algorithms cannot be certain about the membership or non-membership of
an object to a concept it usually assigns degrees of truth to these labellings. For
example, we could have that the object o1 hasPart o2 to a degree of 0.8, that o1

is a Body to a degree of 0.6 and that o2 is a Tail to a degree of 0.7. From this
knowledge we can deduce that o1 is an Animal to a degree, at-least equal to 0.6.
For that purpose Fuzzy Description Logics (f-DLs), have been proposed in the
literature as a way to represent and reason with vague and imprecise knowledge.
In the current paper we present the f-DL, f-SHOIQ. f-SHOIQ extends f-
SHOIN [10] with qualified cardinality restrictions (QCRs). Furthermore, we
investigate the semantics of f-SHOIQ, showing that it is a sound extension of
SHOIQ, we investigate properties of fuzzy QCRs and transitivity, we provide
the inference problems and investigate reasoning capabilities in f-SHOIQ.

2 Fuzzy Set Theory

Fuzzy set theory and fuzzy logic are widely used for capturing imprecise knowl-
edge [3]. While in classical set theory an element either belongs to a set or not,
in fuzzy set theory elements belong only to a certain degree. More formally,
let X be a set of elements. A fuzzy subset A of X, is defined by a membership
function µA(x), or simply A(x) [3]. This function assigns any x ∈ X to a value
between 0 and 1 that represents the degree in which this element belongs to
X. In this new framework the classical set theoretic and logical operations are
performed by special mathematical functions. More precisely fuzzy complement
is a unary operation of the form c : [0, 1] → [0, 1], fuzzy intersection and union
are performed by two binary functions of the form t : [0, 1]× [0, 1] → [0, 1] and
u : [0, 1]× [0, 1] → [0, 1], called t-norm and t-conorm operations [3], respectively,
and fuzzy implication also by a binary function, J : [0, 1] × [0, 1] → [0, 1]. In
order to produce meaningfull fuzzy complements, conjunctions, disjunctions and
implications, these functions must satisfy certain mathematical properties. For
example the operators must satisfy the following boundary properties, c(0) = 1,
c(1) = 0, t(1, a) = a and u(0, a) = a. Due to space limitations we cannot present
all the properties that these functions should satisfy. The reader is referred to
[3] for a comprehensive introduction. Nevertheless, it worths noting here that
there exist two distinct classes of fuzzy implications, those of S-implications,
given by the equation J (a, b) = u(c(a), b), and those of R-implications, given
by J (a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}. Examples of fuzzy operators are
the Lukasiewicz negation, cL(a) = 1 − a, t-norm, tL(a, b) = max(0, a + b − 1),
t-conorm uL(a, b) = min(1, a + b), and implication, JL(a, b) = min(1, 1− a + b),
the Gödel norms tG(a, b) = min(a, b), uG(a, b) = max(a, b), and implication
JG(a, b) = b if a > b, 1 otherwise, and the Kleene-Dienes implication (KD-
implication), JKD(a, b) = max(1− a, b).

120 Regular Papers

3 Fuzzy Description Logics

3.1 Syntax and Semantics

In this section we introduce the DL f-SHOIQ. As usual we have an alphabet
of distinct concept names (C), role names (R) and individual names (I). f-
SHOIQ-roles and f-SHOIQ-concepts are defined as follows:

Definition 3.1 Let RN ∈ R be a role name and R an f-SHOIQ-role. f-
SHOIQ-roles are defined by the abstract syntax: R ::= RN | R−. The in-
verse relation of roles is symmetric, and to avoid considering roles such as R−−,
we define a function Inv, which returns the inverse of a role, more precisely
Inv(R) := R− and Inv(R−) := R. Let A ∈ C be a concept name, C and D
f-SHOIQ-concepts, p ∈ N, S a simple1 f-SHOIQ-role, o ∈ I and R an f-
SHOIQ-role. f-SHOIQ concepts are defined by the following abstract syntax:

C, D −→ ⊥ | > | A | ¬C | C tD | C uD | ∃R.C | ∀R.C |≤ pS.C |≥ pS.C | {o}

The semantics of f-DLs are provided by a fuzzy interpretation [9]. A fuzzy
interpretation is a pair I = 〈∆I , ·I〉 where the domain ∆I is a non-empty set
of objects, called the domain of interpretation, and ·I is a fuzzy interpretation
function which maps an individual a ∈ I to an element aI ∈ ∆I , a concept
name A ∈ C to a membership function AI : ∆I → [0, 1] and a role name R ∈ R
to a membership function RI : ∆I ×∆I → [0, 1]. The semantics of f-SHOIQ-
concepts and roles are depicted in Table 1. Most of these semantics have been
presented elsewhere [9, 10, 1, 4, 7]. Nevertheless, the semantics of fuzzy QCRs
presented here are a revision of the definition provided in [10]. First, we extend
the semantics of number restriction to qualified number restrictions. Second,
we use arbitrary fuzzy implications to give semantics to at-most QCRs, while
in [10] only S-implications were considered. Extending the definition has the
effect that if ∀R.C is interpreted by means of an R-implication and the fuzzy
complement is the involutive (c(c(a)) = a) precomplement of the R-implication,
then the equivalence ∀R.C ≡≤ 0R.¬C, holds. Since we are using arbitrary fuzzy
implications we have to extend the definition in [10] to consider the equalities
(=) and inequalities (6=) of objects. Please note that this equality and inequality
is usually considered crisp, i.e. either 0 or 1, in the f-DL literature [5]. Finally,
as it is argued in [7] we choose not to fuzzify nominal concepts. The reason
for this choice is that a concept of the form {o} intends to refer to a specific
object of ∆I , i.e. oI and not some real life concept with an arbitrary number of
members.

An f-SHOIQ knowledge base Σ consists of a TBox, an RBox and an ABox.
Let C and D be f-SHOIQ concepts. As with the classical case, an f-SHOIQ

1A role is called simple if it is neither transitive nor has any transitive sub-roles.

Proceedings of DL 2006 121

Table 1: Semantics of f-SHOIQ-concepts and roles
Constructor Syntax Semantics

top > >I(a) = 1
bottom ⊥ ⊥I(a) = 0
general negation ¬C (¬C)I(a) = c(CI(a))
conjunction C uD (C uD)I(a) = t(CI(a), DI(a))
disjunction C tD (C tD)I(a) = u(CI(a), DI(a))
exists restriction ∃R.C (∃R.C)I(a) = supb∈∆I{t(RI(a, b), CI(b))}
value restriction ∀R.C (∀R.C)I(a) = infb∈∆I{J (RI(a, b), CI(b))}
nominal {o} {o}I(a) = 1 if a ∈ {oI}, otherwise {o}I(a) = 0
at-most QCR ≤ pR.C infb1,...,bp+1∈∆I J (tp+1

i=1 {t(RI(a, bi), CI(bi))}, ui<j{bi = bj})
at-least QCR ≥ pR.C supb1,...,bp∈∆I t(tpi=1{t(RI(a, bi), CI(bi))}, ti<j{bi 6= bj})
inverse roles R− (R−)I(b, a) = RI(a, b)

TBox is a finite set of axioms of the form C v D, which are called, fuzzy
inclusion axioms. A fuzzy interpretation I satisfies a fuzzy TBox T if ∀o ∈
∆I , CI(o) ≤ DI(o), for each C v D ∈ T ; in this case, we say that I is a model
of T . Similarly, an f-SHOIQ RBox is a finite set of fuzzy transitive role axioms,
Trans(R), and fuzzy role inclusion axioms, R v S. I satisfies a fuzzy RBox R if
∀a, c ∈ ∆I , RI(a, c) ≥ supb∈∆I{t(RI(a, b), RI(b, c))} for each Trans(R) ∈ R and
∀a, b ∈ ∆I ×∆I , RI(a, b) ≤ SI(a, b), for each R v S ∈ T ; in this case, we say
that I is a model of R. An f-SHOIQ ABox is a finite set of fuzzy assertions [9]
of the form (a : C)./n or (〈a, b〉 : R)./n, where ./ stands for ≥, >,≤ and <.
Formally, I satisfies a fuzzy ABox A, if CI(aI) ≥ n (RI(aI , bI) ≥ n) for each
(a : C) ≥ n ((〈a, b〉 : R) ≥ n) in A; in this case, we say that I is a model of A.
The satisfiability of fuzzy assertions with≤, >, < is defined analogously. Observe
that we can also simulate assertions of the form (a : C) = n by considering the
assertions (a : C) ≥ n and (a : C) ≤ n.

As it has been argued in the literature, fuzzy set theory is an extension of
classical set theory. Hence, the following lemma,

Lemma 3.2 Fuzzy interpretations coincide with crisp interpretations if we re-
strict to the membership degrees of 0 and 1.

In other words in the extreme limits of 0 and 1 the fuzzy operations provide the
results of Boolean algebra. We call such an extention a sound extension.

Since we have defined fuzzy QCRs it is possible that (a : (≥ p1R.C)) ≥ n1

and (a : (≤ p2R.C)) ≥ n2, with p1 > p2 simultaneously hold, without forming a
contradiction. More precisely if t is the Gödel t-norm and J the KD-implication
we have,

Lemma 3.3 Let A = {(a : (≥ p1R.C)) ≥ n1, (a : (≤ p2R.C)) ≥ n2} be a fuzzy
ABox, with n1, n2 ∈ [0, 1], p1, p2 ∈ N, and p2 < p1. Then A is satisfiable iff
n1 + n2 ≤ 1.

122 Regular Papers

In classical DLs, since n1, n2 ∈ {0, 1}, the inequality n1 + n2 ≤ 1 is satisfied if
and only if either n1 = 0 or n2 = 0. Indeed in crisp DLs an individual cannot
simultaneously belong to both such concepts. Please note that investigating this
property when other norm operations are used is an open research issue.

3.2 Logical Properties of Fuzzy DLs

As it is obvious different fuzzy operators specify different f-DLs. For example
the fKD-SHOIQ is obtained from f-SHOIQ when the Lukasiewicz negation,
the Gödel t-norm and t-conorm and the Kleene-Dienes fuzzy implication are
used, while fL-SHOIQ is obtained if we use the Lukasiewicz negation, t-norm,
t-conorm and fuzzy implication. The choice of the operations has an immediate
impact on the logical properties of the resulting f-DL.

For any triple 〈c, t, u〉, due to the standard properties of the fuzzy operators
[3], the following concept equivalences hold: ¬> ≡ ⊥, ¬⊥ ≡ >, C u > ≡ C,
C t ⊥ ≡ C, C t > ≡ > and C u ⊥ ≡ ⊥. If the complement is involutive
it also holds that ¬¬C ≡ C. Now if the fuzzy triple satisfies the De Morgan
laws (called dual triple), we additionally have, ¬(C t D) ≡ ¬C u ¬D and
¬(CuD) ≡ ¬Ct¬D. For example the fuzzy triples, 〈cL, tL, uL〉 and 〈cL, tG, uG〉,
are dual triples. Moreover, for any dual triple 〈c, t, u〉 and S-implication JS it
holds that, ∀R.C = ¬(∃R.¬C). For example the quadruple 〈cL, tG, uG,JKD〉,
satisfies this equivalence. Furthermore, if the fuzzy triple satisfies the laws of
contradiction and excluded middle, then the following properties of boolean logic
hold: (C u ¬C ≡ ⊥) and (C t ¬C ≡ >). For example, the triple 〈cL, tL, uL〉,
satisfies these laws.

It is important to notice that the classical properties of Boolean algebra, like
the De Morgan the excluded middle and the contradiction laws, do not always
hold in fuzzy set theory and logic. For example for the triple 〈cL, tG, uG〉 we have
max(0.6, 1 − 0.6) = 0.6 6= 1. The consequences of this property is that many
well-known techniques in DLs, like internalization do not carry over to f-DLs.
Fortunately, the laws of excluded middle and contradiction can be simulated.

Lemma 3.4 For all a ∈ ∆I, n ∈ [0, 1], and interpretations I
1. either CI(a) < n, or CI(a) ≥ n [8] 2, and

2. if CI(a) ≥ n and (¬C)I(a) ≥ n, then ⊥I(a) ≥ max(0, n − ε), where ε is
the equilibrium [3] of a fuzzy complement.

Point 1 simulates the DL axiom > v Ct¬C, while point 2 the axiom Cu¬C v
⊥. For example for 〈cL, tG, uG〉, where ε = 0.5 if n = 0.7, then 0 = ⊥I(a) ≥ 0.2,
which is a contradiction, while for n = 0.3, ⊥I(a) ≥ 0, which is valid. Indeed it
is possible that CI(a) ≥ 0.3 and (¬C)I(a) ≥ 0.3 = CI(a) ≤ 0.7.

2Similarly either CI(a) ≤ n or CI(a) > n for all n ∈ [0, 1]

Proceedings of DL 2006 123

3.3 Inference Services

In the current section we will present the inference problems of f-DLs. An f-
SHOIQ knowledge base Σ is satisfiable (unsatisfiable) iff there exists (does not
exist) a fuzzy interpretation I which satisfies all axioms in Σ. An f-SHOIQ-
concept C is n-satisfiable w.r.t. Σ iff there exists a model I of Σ for which there
is some a ∈ ∆I such that CI(a) = n, and n ∈ (0, 1]; C subsumes D w.r.t. Σ
iff for every model I of Σ we have ∀d ∈ ∆I , CI(d) ≤ DI(d); a fuzzy ABox A
is consistent (inconsistent) w.r.t. a fuzzy TBox T and RBox R if there exists
(does not exist) a model I of T and R that satisfies each assertion in A. Given
a fuzzy concept axiom, a fuzzy role axiom or a fuzzy assertion φ, Σ entails φ,
written Σ |= φ, iff for all models I of Σ, I satisfies φ.

Let Σ = 〈T ,R,A〉, be a fuzzy knowledge base. It has been proved that
all inference problems of f-DLs can be reduced to ABox consistency w.r.t. T
and R. More precisely, C is n-satisfiable w.r.t. Σ iff 〈T ,R, {(a : C) ≥ n}〉 is
satisfiable, Σ |= φ ./ n iff Σ = 〈T ,R,A ∪ {φ ¬ ./ n}〉 is unsatisfiable (where
¬ ./ represents the negation of inequalities, e.g. ¬ ≥=<), and Σ |= C v D iff
Σ = 〈T ,R,A ∪ {(a : C) ≥ n, (a : D) < n}〉, for both n ∈ {n1, n2}, n1 ∈ (0, 0.5]
and n2 ∈ (0.5, 1], is unsatisfiable [9]. In the past, the consistency problem in
f-DLs has been considered w.r.t. to a simple and acyclic TBox. Only recently
a procedure for deciding fuzzy ABox consistency w.r.t. general and/or cyclic
TBoxes has been developed [8]. In classical DLs general and cyclic TBoxes were
handled by a process called internalization [2]. As we mentioned previously,
internalization is based on the law of excluded middle, which is not always
satisfied in f-DLs. In [8] the authors use the case analysis of lemma 3.4, providing
the following result,

Lemma 3.5 [8] A fuzzy interpretation I satisfies C v D iff for all n ∈ [0, 1]
and a ∈ ∆I, either CI(a) < n or DI(a) ≥ n.

Hence, the semantic restrictions of a TBox T can be encoded in mutually ex-
clusive fuzzy assertions.

4 Reasoning in Fuzzy Description Logics

As we have seen f-DLs constitute a sound extension of classical DLs. Hence,
the techniques used to perform reasoning in classical DLs could be extended to
provide reasoning support for f-DLs. Since all inference problems can be reduced
to the problem of ABox consistency w.r.t. an RBox R, a procedure that decides
this problem should be constructed. In classical DLs this is done with the aid
of tableaux algorithms that given an ABox A they try to construct a tableau
for A [2], i.e., an abstraction of a model of A which has a tree or forest-like

124 Regular Papers

shape. In such trees, nodes correspond to objects in the model, and edges to
certain relations that connect two nodes. Each node x is labelled with the set of
concepts that it belongs to (L(x)), and each edge 〈x, y〉 with a set of roles that
connect two nodes x, y (E(〈x, y〉)). In the fuzzy case, since now we have fuzzy
assertions, we extend these mappings to also include the membership degree that
a node belongs to a concept. More formally we have the following definition.

Definition 4.1 If A is a fuzzy ABox, R a fuzzy RBox, RA is the set of roles
occurring in A and R together with their inverses, sub(A) is the set of sub-
concepts that exist in A and IA is the set of individuals in A, a fuzzy tableau
T for A w.r.t. R, is defined to be a quadruple (S, L, E, V) such that: S is a
set of elements, L : S × sub(A) → [0, 1] maps each element and concept to the
membership degree of that element to the concept, E : RA×S×S → [0, 1] maps
each role and pair of elements to the membership degree of the pair to the role,
and V : IA → S maps individuals occurring in A to elements in S.

Additionally, a fuzzy tableau should satisfy certain properties of the semantics of
the f-DL language [6, 5]. For example, if concept conjunction is performed by the
Gödel t-norm, then for a ∈ S, C, D ∈ sub(A), n ∈ [0, 1], and L(s, C uD) ≥ n, it
follows that both L(s, C) ≥ n and L(s, D) ≥ n must hold. Currently, we have
tableau definitions for the languages fKD-SI and fKD-SHIN [6, 5], while it is
an open research issue to define a tableau structure for fKD-SHOIQ as well as
for f-DLs with other norm operations. One difficult point in these definitions
is to handle transitivity in the new framework. In classical DLs the tree-like
structure is preserved by pushing concepts of the form ∀R.C from a node s to
a node t if R(s, t) exists. This is based on the observation that if Trans(R) then
the axiom ∀R.C v ∀R.(∀R.C), holds [2]. The following lemma characterizes
transitivity in fKD-DLs.

Lemma 4.2 If (∀R.C)I(a) ≥ n, RI(a, b) ≥ r1 and Trans(R) then, in an fKD-
DL, (∀R.(∀R.C))I(a) ≥ n holds.

Thus, as a tableau property we have that, if L(s, ∀R.C) ≥ n and Trans(R), then
either c(E(R, 〈s, t〉)) ≥ n or L(t,∀R.C) ≥ n. Another major problem towards
our goal in constructing a tableaux reasoning algorithm is to determine if the ap-
propriate blocking techniques can be applied. While this is quite straightforward
in fKD-DLs [6, 5, 8], this is very hard when other norms are used.

5 Conclusions

Fuzzy Description Logics are applicable in a number of research and industrial
applications that face a vast amount of imprecise and vague information. The
last couple of years the work on fuzzy DLs has provided with impressive results

Proceedings of DL 2006 125

such as the extension of very expressive DL languages, like SHOIN [10] and
SHOIQ, the development of reasoning procedures for fuzzy DLs like fKD-SI
[6] and fKD-SHIN [5] and reasoning w.r.t. general inclusion axioms [8], which
was considered an open problem for fuzzy DLs for many years. Currently the
work on fuzzy DLs is focused on the reasoning problem for fKD-SHOIQ, on
reasoning with other norms than the ones used in fKD-SI and fKD-SHIN , on
data-type support and on implementations.

References

[1] Steffen Hölldobler, Tran Dinh Khang, and Hans-Peter Störr. A fuzzy
description logic with hedges as concept modifiers. In Proceedings In-
Tech/VJFuzzy’2002, pages 25–34, 2002.

[2] I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation, 9:385–410,
1999.

[3] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions. Prentice-Hall, 1995.

[4] D. Sánchez and G.B. Tettamanzi. Generalizing quantification in fuzzy de-
scription logic. In Proceedings 8th Fuzzy Days in Dortmund, 2004.

[5] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrocks. The
fuzzy description logic f-SHIN . Proc. of the International Workshop on
Uncertainty Reasoning for the Semantic Web, 2005.

[6] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrocks. A fuzzy
description logic for multimedia knowledge representation. Proc. of the
International Workshop on Multimedia and the Semantic Web, 2005.

[7] G. Stoilos, G. Stamou, V. Tzouvaras, J.Z. Pan, and I. Horrocks. Fuzzy owl:
Uncertainty and the semantic web. Proc. of the International Workshop on
OWL: Experiences and Directions, 2005.

[8] G. Stoilos, U. Straccia, G. Stamou, and J.Z. Pan. General concept inclusions
in fuzzy description logics. to appear in ECAI, 2006.

[9] U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial
Intelligence Research, 14:137–166, 2001.

[10] U. Straccia. Towards a fuzzy description logic for the semantic web. In
Proceedings of the 2nd European Semantic Web Conference, 2005.

126 Regular Papers

Finding Subsumers for

Natural Language Presentation

Chris Mellish and Jeff Z. Pan

Department of Computing Science
University of Aberdeen

Abstract

This work is motivated by the task of describing in natural language a concept de-
fined in an OWL DL ontology. However, rather than focussing on linguistic issues, we
address the question of how to support natural language presentation with inference.
We introduce a new non-standard DL reasoning problem, that of finding subsumers
of a concept that are suitable for natural language presentation. We present a so-
lution that works by enumerating successively more complex concepts in the limited
language ALEN . Although the search space is formidable, specific optimisations that
take into account characteristics of natural language enable it to be tamed. Our initial
experiments show that the approach may be quite feasible in practice.

1 Introduction

Knowledge engineers, domain experts and also casual users need better ways to understand
ontologies. As the logical structure of ontologies becomes richer, it becomes harder to devise
appropriate graphical means of presentation that do not require special training on the part
of the users. In this scenario, presentation in natural language is becoming increasingly
attractive. Natural language has developed good ways of conveying some complex logical
structures and requires no special training.

The work described in this paper takes as its starting point the task of answering
in natural language a question What is A?, where A (the target) is an atomic concept
mentioned in some given OWL DL ontology. This may take place as a part of a longer
dialogue between person and machine where, for instance, subsequently the person asks
What is B?, for some atomic B mentioned in the answer to the first question. Rather than
considering detailed linguistic aspects of this task, however, we focus on how to support it
with appropriate reasoning.

A first attempt at the task of answering What is A? might somehow render in natural
language the set of ontology axioms that mention A. However, an ontology axiom is not
necessarily of appropriate complexity to be expressed as a natural language sentence. Also,
it could be misleading to present true, but incomplete information. Finally, important
information about the target may arise from logical consequences of the axioms, not only

Proceedings of DL 2006 127

from explicitly stated axioms. Elsewhere we have used these arguments to argue the need
for new kinds of inference, natural language directed inference (NLDI), which are capable
of deriving those logical consequences suitable for natural language presentation [8].

DL-based Ontologies have available powerful reasoning services, such as classification,
subsumption and satisfiability checking. Standard reasoning services, however, require
detailed specification of the reasoning goals (e.g. the subsumption service needs to be told
exactly which two concepts are to be tested). Since NLDI is a kind of data-driven reasoning
with goals that cannot be stated precisely in logical terms, standard DL reasoning services
cannot be used immediately to implement NLDI. The challenge is to exploit these efficiently
implemented services in more complex ways to make NLDI possible.

What kind of information is needed to answer a question What is A? McKeown [7]
discusses a number of kinds of facts present in human descriptions of a target A, which
include identification: An aircraft carrier is a surface ship, attributive: A torpedo has an
underwater target location, and equivalent: Wines described as ‘great’ are fine wines from
an especially good village. In DL terms, these correspond to concept subsumptions A v C

w.r.t. a TBox T , with A (A= AircraftCarrier, Torpedo, GreatWine) being the subsumee.
Unfortunately, not all (or even any) of these concept descriptions C need necessarily appear
explicitly directly in axioms of the form “A v C” in the ontology.

In this paper we present a procedure for discovering subsumers C of a concept A that
might be worth presenting in natural language. Although we allow the ontology T to be
expressed in full OWL DL, nevertheless the subsumers C are in the more limited language
ALEN . In a sense, therefore, our real goal is to produce the most specific ALEN subsumer,
which contains all the information known about the target. In general, however, this will
be a conjunction, within which the conjuncts could be generated in many possible orders.
Instead of generating the single conjunction, therefore, we generate a set of most specific
non-conjunctive subsumers, which could then be combined together by conjunction if this
was wished. We require these individual conjuncts to be the sort of things that could be
presented in individual natural language sentences.

The closest related work is that on non-standard inferences in DLs. On the one hand,
our task could be characterised as looking for a least subsumer (other than A itself) of A

using a less expressive DL [3]. On the other hand, the task can be regarded as a “matching”
problem, “A v?P”, where P is a concept pattern [2]. Unfortunately, existing approaches
to both computing least subsumers and matching only apply to less expressive DLs and
assume TBoxes to be unfoldable. In this work, apart from assuming the existence of
standard reasoning services, we do not assume unfoldability of the axioms.

2 Discovering Subsumers

Answering questions about an ontology is a form of communication, and formal theories
of communication standardly make reference to models of belief [1]. Here we need to
distinguish between two different sets of beliefs – the system’s beliefs and the user’s beliefs
(as in the system’s user model). The first of these is represented by the original ontology
T , whilst the second requires a separate user knowledge base U . The user KB is likely to be
different from the system KB because otherwise the user would not have sought information

128 Regular Papers

about the target. Hence two notions of subsumption arise:1

1. C1 system-subsumes C2 iff T |= C2 v C1;

2. C1 user-subsumes C2 iff U |= C2 v C1.

We make the assumption that the user KB has the same vocabulary as the system KB and
is an approximation to the system KB:

For all C1, C2, if U |= C1 v C2 then T |= C1 v C2.

I.e. everything the user knows is also known by the system. Our framework allows for
any U satisfying the above constraints; in particular, one could have U = T (ignoring this
particular distinction) or have U be something that is built up over the dialogue as a result
of the information that the user is told. Our current implementation considers just the first
question of a dialogue, where the user has no initial domain knowledge, i.e. U = φ.

We can now present the task more formally:2

The natural language subsumer enumeration problem: Given a
system-satisfiable target named concept A, find the most specific (w.r.t. user-
subsumption) non-conjunctive concepts C which system-subsume A, do not
user-subsume A and are appropriate for natural language presentation.

Here we use the user KB to decide which of these are worth presenting, because the extra
knowledge of the system may obscure certain user-relevant distinctions. For example, con-
sider an ontology T which includes the axiom C1 ≡ C2 not in U . Given this knowledge, if
C1 subsumes a target A, so does C2. As C1 and C2 are system-equivalent, from the system’s
point of view the choice of which to present is arbitrary. From the point of view of the user
who is not in possession of all the knowledge in T , however, the descriptions C1 and C2

provide distinct information, and so it is worth considering presenting both of them.
Our approach is to enumerate concepts C subsuming A via a search through all possible

concepts in ALEN . At each stage we can test whether an enumerated concept C system-
subsumes A using the subsumption reasoning service. Some such concepts are returned as
candidates which may be user-least non-conjunctive subsumers of A. The set of candidates
is then further filtered, in order to obtain a set, no element of which user-subsumes another
element or user-subsumes the target (exactly one of a set of user-equivalent concepts is
returned). In practice, the enumeration of candidates is organised in such a way as to avoid
many candidates that would otherwise be filtered out by the second step.

3 The Refinement Relation

The search space is expressed in terms of a refinement relation ↘, where C1 ↘ C2 indicates
that C2 results from a minimal change to C1 that makes it more syntactically complex. The

1In the following, we will also sometimes mention corresponding varients of other logical tests (e.g.
system- vs user-equivalence).

2We consider extra requirements for natural language presentation in Section 5.

Proceedings of DL 2006 129

search starts from the most general concept >, working to candidates C1 such that > ↘
C1, then to candidates C2 such that C1 ↘ C2, and so on. Thus we are exploring the set of
concepts α such that > ↘∗ α, where ↘∗ is the transitive closure of ↘.

To limit the amount of redundancy in the search space, concepts are assumed to be in a
normal form, so that conjunctions are only allowed inside ∃ constructs, and conjunctive in-
formation at the top level or just inside ∀ constructs must be expanded out to yield multiple
candidates. Nested conjunctions are flattened. Within conjunctions, conjuncts (if present)
occur in the following order: negations (in lexicographic order) before role restrictions (with
properties in a fixed order) before atomic concepts (in lexicographic order). Within the role
restrictions, all the restrictions for a given role occur together, in the order: number restric-
tions before ∀ before ∃. For any role P , there are at most two number restrictions: either
a single = restriction or at most one of each of ≤ and ≥, in this order. For any role P , at
most one ∀P restriction can occur within any allowed conjunction.

The following exhaustive definition can also be read as the basis of an algorithm for
enumerating, for a given concept α, the concepts β such that α ↘ β. This gives us the
original theoretical search space. In the actual implementation, we make a number of
optimisations compared to using the basic refinement relation, as detailed below.

> ↘ Ai if Ai is a named concept
> ↘ ¬Ai if Ai is a named concept
> ↘ (∃P.>) if P is a role name
> ↘ (∀P.α) if P is a role name and > ↘ α

> ↘ (≥ nP) if P is a simple role and 0 ≤ n ≤ π, where π a large number (1000000)
> ↘ (≤ nP) if (0 ≤ n ≤ π), and P is a simple role
> ↘ (= nP) if (0 ≤ n ≤ π), and P is a simple role
(∃P.α) ↘ (∃P.β) if α ↘ β

(∀P.α) ↘ (∀P.β) if α ↘ β

α ↘ (β u α) where α is not a conjunction, > ↘ β, this is within the scope of an ∃ and
β is of a type allowed before α by the conjunction ordering rules.

α1 u α2 u . . . αn ↘ β u α2 u . . . αn if α1 ↘ β

α1 u α2 u . . . αn ↘ β u α1 u α2 u . . . αn if >↘ β and β is of a type allowed before the αi

by the conjunction ordering rules.

The above relation ↘ has the following properties. These can be shown by induction
on the number of symbols (other than >) occurring in C1.

Lemma 1. If C1 is a satisfiable concept in ALEN expressed in terms of the vocabulary of
the ontology then > ↘∗ β for some concept β logically equivalent to C1.

Lemma 2. If C1 ↘ C2 then C2 is strictly more syntactically complex then C1 (for a range
of possible complexity metrics)

Lemma 3. If C1 ↘ C2 then C1 subsumes C2 (hence C1 system- and user-subsumes C2)

The first of these means that we can reach all possible concepts through ↘ (notice that
we do not need to allow ⊥ in formulae, because of equivalences such as (∀P.⊥) ≡ (= 0P)).
Because of Lemmas 2 and 3, a search following the transitive closure of ↘ is both a search
in terms of increasing syntactic complexity and also a (perhaps rather slow) search in terms
of increasing logical specificity.

130 Regular Papers

4 The Search Strategy

The search algorithm works with a derived relation ↘↘, defined in terms of ↘, which
produces results strictly user-subsumed by the original concept. Again, this definition can
be thought of as an algorithm to enumerate the relevant refinements:

C1 ↘↘ C2 iff C1 ↘ C2 and C2 does not user-subsume C1

or ∃C3.C1 ↘ C3, C3 user-subsumes C1 and C3 ↘↘ C2

Our search is organised in a depth-first manner. If a point in the tree is reached where
the concept Ci does not system-subsume the target, there is no point in considering further
refinements of this concept. By Lemma 3, such further refinements will be subsumed,
and hence also system-subsumed, by Ci. One of these cannot system-subsume the target,
because if so then, by transitivity of system-subsumption, Ci would have to as well. If
such a Ci is reached, search down that path of the tree is terminated. Lemma 2 means
that we can achieve termination by terminating the search path when it reaches a concept
with a complexity equal to or exceeding a preset limit. A generated concept is returned
as a candidate exactly when none of the first ↘↘ descendents both are of acceptable size
(see Section 5) and also system-subsume the target. This tends to lead to only user-least
solutions being returned.

The above properties guarantee that the above search is complete, in that all user-least
non-conjunctive concepts (or concepts logically equivalent to them) that system-subsume
the target and have a size below the limit are enumerated (as well as possibly some other con-
cepts). Logically equivalent solutions could, however, be generated many times. The search
is partially correct, in that all candidates system-subsume the target. User-minimality (and
so the rest of correctness) is then ensured by the subsequent filtering process.

Apart from the natural language based optimisations discussed in the next section,
space does not permit us to describe in detail a number of other optimisations used to
enhance the basic search approach. Firstly, the relevance filter of [9] is used to limit the
vocabulary of atomic concept and role names used in the enumerated concepts. Secondly,
we disallow the addition of elements to conjunctions which are either user-subsumed by
or user-subsume existing conjuncts. Thirdly, a focussed search is used to ensure that any
introduced number restriction is in fact the most specific such restriction such that the
candidate with this restriction in it subsumes the target.

5 Natural Language Direction

Natural language easily expresses conjunctive information and often produces scope am-
biguities in complex examples involving disjunction and negation. ALEN allows no dis-
junctions or complex negations and thus is a natural DL to act as the target for natural
language based approximation.

The following summarises other ways in which we incorporate natural language direction
into the algorithm, sometimes at the expense of logical completeness.

Proceedings of DL 2006 131

Concept Complexity. Because there is a limit to the complexity of a concept that can be
presented in a sentence, we impose a size limit on concepts. Each negation or conjunction
in a concept counts 1 towards the “size” of a formula, and each quantifier counts n + 1
towards the calculation, where n is the number of enclosing quantifiers. A complexity limit
of around 4 or 5 seems roughly plausible for what can give rise to a comprehensible natural
language sentence.

Specificity and Complexity. Because we use ↘↘, rather than ↘ in the algorithm,
refinements of a concept that are user-equivalent to it are not returned. Given that these
refinements are more complex than the original, the effect is that (apart from where equiv-
alent concepts are reached by different paths through the search space) only one of the
smallest of a set of user-equivalent concepts is ever returned. The consequence is that,
roughly speaking, the simplest way of saying some particular content is chosen (c.f. Grice’s
principle of brevity [4]).

Introducing new Terminology. Since we are interested in finding just the most specific
concepts that subsume the target, whenever > is refined to a named concept it can be re-
fined to a most user-specific named concept such that the whole candidate, with this concept
substituted, system-subsumes the target. Similarly, when a concept ¬Ai is introduced, it
can be done with a most user-general Ai such that the candidate still system-subsumes the
target. Unfortunately, if U = φ, then there are no non-trivial user-subsumption relation-
ships between named concepts, and so this measure has no effect. As a result, for instance,
if a target is system-subsumed by (∃hasPet.Poodle) then concepts like (∃hasPet.Animate)
will also appear as candidates (none of these is user-subsumed by any other). All of these
convey new information to the imagined user, but they are not all equally good for natural
language presentation. Given that the user has the opportunity in the dialogue to ask
followup questions about mentioned atomic concepts, it is actually complete in a dialogue
sense simply to return just the concept including the system most specific concepts in these
cases. In contrast, if all the above concepts are presented then the impression may be given
that there are no noteworthy system-subsumption relationships between them.

Negations. In natural languages, negation is used primarily to deny an explicitly or
implicitly available proposition. This means that (in the absence of some specific context)
it would be strange to answer the question What is a mammal? with something like Every
mammal is not a mushroom. Our interpretation of this requirement is the condition that
a negation ¬α can only be generated if it is within a conjunction where there is another
conjunct (which must be a positive atomic concept) β such that αuβ is satisfiable. This is
a kind of “β but not α” negation. For instance, it is perfectly reasonable to say “... a pizza
but not a vegetarian dish”, because it is possible to be both a pizza and a vegetarian dish.

Trivial Universals. If instances of a given concept cannot possibly have values for a role
P then all ∀ restrictions on this role trivially subsume the concept. Such restrictions are
however not appropriate to be expressed. This means that it would be strange to answer
the question What is a SpicyTopping? with something like A SpicyTopping can only have

132 Regular Papers

a pizza as a topping. In this example, pizza toppings cannot themselves have toppings.
This means that, for instance, ∀topping.P izza system-subsumes SpicyTopping. In this
situation, any concept of the form (∀P.α) system-subsumes the target. Although logically
each of these is a subsumer, in natural language terms each of them is trivial and not worth
expressing. The same problem can arise at any nesting within a candidate. Our solution to
this problem is that if at any point we are planning to insert the concept (∀P.>) at some
point in a candidate then first of all we look to see whether the concept with (∀P.⊥) in
this position system-subsumes the target. If so, then we judge that any universal would be
trivial and refrain from introducing one.

6 Discussion

Our prototype considers just the first question of a question answering dialogue, where U
= ∅. It is implemented in SWI Prolog (version 5.4.7), using a DIG interface for Prolog
[5]. RacerPro (version 1.9.0) is used via DIG to provide all reasoning services w.r.t. the
system KB (e.g. system-subsumption) and results are cached. As U =φ, the checking of
user-subsumption is implemented structurally in Prolog with simple subset of the algorithm
of [6], to avoid overheads introduced by using the DIG interface.

The following table shows statistics about some examples. The two ontologies used are
a food ontology from http://www.w3.org/TR/owl-guide/food.rdf and a pizza ontology
from http://www.co-ode.org/ontologies/pizza/pizza 20041007.owl. For each exam-
ple, we give the complexity limit, the search space size3, the target, the number of calls
to RacerPro needed, the number of subsumers found by the initial search and the number
that this is filtered to.

Ontology Limit Search Space Target Calls Subsumers Filtered

Food 4 2.8E8 FruitCourse 2354 87 63
Food 5 1.8E10 FruitCourse 4706 124 93
Food 6 1.2E12 FruitCourse 13756 385 324
Pizza 4 2.1E8 AmericanHot 1386 80 76
Pizza 5 1.8E10 AmericanHot 2116 80 76
Pizza 6 1.5E12 AmericanHot 3970 99 95

The concepts found subsuming AmericanHot, assuming complexity limit 4, include:

¬ V egetarianP izzau NamedP izza

(∀hasTopping.¬ ArtichokeTopping u PizzaTopping)
(∀hasTopping.(≤ 1hasSpiciness))
(∃hasTopping.(∀hasSpiciness.Spiciness)u MozzarellaTopping)
(≥ 5hasTopping)

Our results so far show that it can be possible, given an appropriate search strategy and
natural language direction, to solve the natural language subsumer enumeration problem

3The size of the basic refinement search space, without any optimisations, ignoring lexicographic ordering
of conjuncts and assuming a maximum cardinality of 3. The implementation allows cardinalities up to 1
million, but using this figure in the calculation of the raw search space size would be misleading.

Proceedings of DL 2006 133

in spite of the huge search space involved. Actual runtimes are still somewhat problematic
(the above calculation for AmericanHot with limit 5 takes about 31 seconds elapsed time
on a 1695MHz PC), but further optimisations could be introduced if the reasoner and the
rest of the system were in the same process.

7 Acknowledgements

Thanks to Racer Systems GmbH for free use of RacerPro, Jan Wielemaker for SWI Prolog,
and Zhisheng Huang and Cees Visser for their DIG interface for Prolog. Thanks to Holger
Wache and Frank van Harmelen for useful discussions. Chris Mellish’s contribution to this
work is funded by EPSRC grant GR/S62932/01. Jeff Z. Pan’s contribution is partially
funded by the FP6 Network of Excellence EU project Knowledge Web (IST-2004-507842).

References

[1] J. Allen. Natural Language Understanding. Benjamin Cummings, 1995.

[2] F. Baader, R. Küsters, A. Borgida, and D. McGuinness. Matching in description logics.
Journal of Logic and Computation, 9(3):411–447, 1999.

[3] S. Brandt, R. Küsters, and A. Turhan. Approximation and difference in description
logics. In Proc. of the 8th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’2002), pages 203–214, 2002.

[4] H. P. Grice. Logic and conversation. In P. Cole and J. Morgan, editors, Syntax and
Semantics: Vol 3, Speech Acts. Academic Press, 1975.

[5] Zhisheng Huang and Cees Visser. An Extended DIG Description Logic Interface for
Prolog. Technical Report SEKT/2004/D3.4.1.2/v1.0, Dept of Artificial Intelligence,
Vrije Universiteit Amsterdam, 2004.

[6] R. Küsters and R. Molitor. Structural subsumption and least common subsumers in a
description logic with existential and number restrictions. Studia Logica, 81(2):227–259,
2005.

[7] K. McKeown. Text Generation: Using Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Cambridge University Press, 1985.

[8] C. Mellish and X. Sun. Natural language directed inference in the presentation of
ontologies. In Procs of the Tenth European Workshop on Natural Language Geeration,
Aberdeen, Scotland, 2005.

[9] Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using vam-
pire to reason with owl. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen, editors, Procs of the 2004 International Semantic Web Conference (ISWC
2004), pages 471–485. Springer LNCS 3298, 2004.

134 Regular Papers

SHIN ABox Reduction

Achille Fokoue, Aaron Kershenbaum, Li Ma,
Edith Schonberg, Kavitha Srinivas, Rose Williams

IBM Research, Hawthorne, NY 10532
achille, aaronk, malli, ediths, ksrinivs, rosemw@us.ibm.com

May 12, 2006

Abstract

We propose a technique to make consistency detection scal-
able for large Aboxes in secondary storage. We use static
analysis of knowledge representation with summarization tech-
niques to produce a dramatically reduced proxy Abox. We show
that the proxy Abox is consistent only if the original Abox is
also consistent. We also show that, in practice, our techniques
dramatically reduce the time and space requirements for con-
sistency detection.

1 Introduction

All common reasoning tasks in expressive DL ontologies reduce to consistency
detection, which is well known to be intractable in the worst-case [2]. Given that
the size of an Abox may be in the order of millions of assertions, this complexity
poses a serious challenge for the practical use of DL ontologies.

We propose new techniques that make consistency detection scalable for
SHIN Aboxes with millions of assertions. Ontology Aboxes often reside in trans-
actional databases, so we do not assume that an Abox will fit into memory. With
these new techniques, we are able to efficiently extract a small set of assertions
from the database that represents the entire Abox, and reason over this small
set in memory.

We first use static analysis to isolate a subportion of the Abox that captures
all the global effects that can occur in reasoning, henceforth referred to as the
global-effects Abox. By global effects, we mean effects that propagate through
the Abox to affect an individual’s membership in a given concept. In practice,
isolating global effects results in substantial reductions in the size of the Abox,
because most roles participate in local rather than global effects.

1

Proceedings of DL 2006 135

Once we’ve isolated global effects in the Abox, we use summarization tech-
niques to dramatically reduce this subportion of the Abox further to produce a
proxy Abox. For example, in the largest of the 4 ontologies that we studied, we
reduced an Abox of 874K individuals and 3.5 million assertions to a proxy Abox
with 18 individuals and 49 role assertions.

The power of creating such a proxy is that we can replace the consistency
check on the global-effects Abox A′ with a consistency check on a dramatically
reduced proxy. Specifically, if the proxy is consistent, we are guaranteed that A′

is consistent. If the proxy is inconsistent, it can still be used to partition A′.

Our key contributions in this paper are as follows: (a) We present a technique
to use static analysis of knowledge representation to isolate a portion of the
Abox where global effects are possible. (b) We construct a dramatically reduced
proxy of this portion using summarization techniques. (c) We present a method
to further identify local effects in the global-effects Abox, based on the proxy
Abox, to handle cases where the summarization may have been too conservative
in building the proxy. (d) We show the efficiency of these techniques applied to
4 real ontologies.

2 Local/Global Effect Partitioning

We present several criteria for safely removing role assertions from an Abox A.
The reduced Abox is consistent iff A is consistent. In practice, applying these
criteria results in both significantly shrinking the Abox and in partitioning it
into many disconnected Aboxes, many of which consist of a single individual,
which can be checked for consistency using concept satisfiability.

Our criteria for role assertion removal is based on the assumption that
any concept in the clos(A) can reach the concept set of any individual in A
from the application of tableau expansion rules for SHIN. We define clos(A) as⋃

a:C∈A
clos(C) where clos(C) is a set that contains C and all its sub-concepts

(where C is in NNF). Note that our formal definition of clos(A) differs from [6]
in that we do not include ¬C in clos(C), due to lesser expressiveness of SHIN
compared to SHIQ.

We assume that a and b are named individuals in the original A, x is a new
unnamed individual introduced as a result of tableau expansion rules, C is a
concept in clos(A), and R is a role. Let L be a mapping from each individual in
A to a set of concepts in clos(A), such that a :C ∈ A iff C ∈ L(a). L(a) is the
concept set of a. An individual b is said to be an R-neighbor of a iff there is an
assertion Q(a, b) or Q−(b, a) in A where Q ∈ R (where R = { Q| Q v∗ R} and
v∗ is the reflexive transitive closure of the sub-role relation). The SHIN tableau
expansion rules can merge individuals, add membership assertions of the form
a :C where C ∈ clos(A), add unnamed individuals, and add new role assertions

136 Regular Papers

of the form R(a, x) or R(a, b) to A.
We say that an expansion rule has a global effect if it uses an existing role

assertion to add new assertions to A or to detect a clash. For example, a concept
C will be propagated to the concept set L(b) of a named individual b if a : ∀R.C
and R(a, b) ∈ A. The ∀-rule, ≤-rule, and ∀+-rule can have global effects. In
contrast, the ∃-rule and ≥-rule do not use any existing role assertions to alter
the Abox, and are hence local effect rules; but these rules can generate new role
assertions, so we call concepts of the form (∃R.C) and (≥ nR) R-generators.

A role assertion R(a, b) is said to be a global-effect role assertion iff there is at
least one execution of the tableau algorithm in which it is used by a global-effect
rule, or it is part of an explicit clash involving both a and b. Otherwise, it is a
local-effect role assertion and cannot affect the outcome of a consistency check.
Our criteria are designed to detect and remove local effect role assertions.

2.1 Role-based Local Effect Detection

We make the simple observation that if roles R and R− are never used in any
universal or maximum cardinality restrictions, then a role assertion R(a, b) can
never be used in a global-effect rule, so it can safely be ignored.
Definition 1: A role R is part of a universal restriction ∀P.C iff R ∈ P .
(Similarly for maximum cardinality restriction). A role R is part of the universal
restrictions of an Abox A iff there is a universal restriction ∀P.C ∈ clos(A) such
that R ∈ P . (Similarly for maximum cardinality restrictions).
Theorem 2: A role assertion R(a, b) can safely be removed from an Abox A
if neither R nor its inverse R− is part of the universal restrictions or maximum
cardinality restrictions of A.
Proof(sketch): Direct consequence of more the general Theorem 9.

2.2 Assertion-based Local Effect Detection

We specify criteria for local-effect role assertion removal even in the presence
of universal and maximum cardinality restrictions. The criteria for ∀-rule and
∀+-rule is as follows: Let role R be part of a universal restriction ∀P.C. A role
assertion R(a, b) is removable with respect to ∀P.C iff b : C ∈ A and R has no
transitive superroles. R(a, b) is removable with respect to universal restrictions
in an Abox A iff it is removable with respect to all universal restrictions ∀P.C,
where R or R− is part of ∀P.C.

Next, we note that for the ≤-rule to have a global effect from merging there
must be a maximum cardinality restriction (≤ nP) in clos(A), and an indi-
vidual a with more than n P -neighbors. To ensure that an individual a has
no more than n P -neighbors, we need to be able to compute an upper bound
on P -neighbors of a safely. In particular, when counting a′s P -neighbors, it is

Proceedings of DL 2006 137

Figure 1: Effect of mergers on a’s neighbors

important to include named individuals and unnamed individuals that can be-
come P -neighbors through P -generators and mergers. One example of a merger
is shown in Figure 1, where c can be merged with a because P− is attracted
to T− through a shared super role Q which is part of a maximum cardinality
restriction. We define the conditions under which the upper bound of a′s P -
neighbors can be computed safely and efficiently below. First, we introduce the
notion of an an attractant for P , to prevent new P -neighbors from mergers as
shown in Figure 1:

Definition 3: For a given role P , we define attractant(P) as follows: T ∈
attractant(P) iff there is a role Q such that P v∗ Q, T v∗ Q,≤ nQ ∈ clos(A).

We say that P is safe in A iff one of the following conditions is satisfied for
the role P:

(a) the attractant(P) ⊆ {P} and attractant(P−) ⊆ {P−}, or
(b) for all roles R such that either R or R− is in P , there are no

R-generators in clos(A).
Definition 4: An individual a inA is mergeable iff at some step of any execution
of the tableau algorithm on A, a is merged with a named individual b.

Lemma 5: Let P be a role that is safe in A. During an execution of the tableau
algorithm on A the following holds: if there is a unnamed individual x such that
P or P− is in the L(< parent(x), x >), then |L(< parent(x), x >)| = 1, where
parent(x) denotes the parent node of x in the completion forest.

Proof: Proved by induction [3] on the iterations of the tableau algorithm.

Theorem 6: An individual a in A is not mergeable in A if, for any role P and
any individual b in A, the following conditions hold:

(1) if a is a P -neighbor of b there is no concept (≤ nP) in clos(A), and
(2) if b is a P -neighbor of a then P is safe in A.

Proof sketch: By induction using Lemma 5 [3].

Definition 7: Let role R be part of a maximum cardinality restriction (≤ nP) ∈
clos(A). A role assertion R(a, b) is removable with respect to (≤ nP) iff

(1) if a is a Q-neighbor of a named individual c, there is no concept of
the form (≤ nQ) in clos(A), and

(2) if a named individual c is a Q-neighbor of a then Q is safe in A, and
(3) P is safe in A and its only mininum cardinality is of the form ≥ 1P

(∃P.>), and
(4) |P (a)|+ |Some(P, a)| ≤ n, where Some(P, a) = {∃P.C ∈ clos(A) |

there is no P -neighbor c of a such that c : C ∈ A}.

138 Regular Papers

R(a, b) is removable with respect to maximum cardinality restrictions in an Abox
A iff it is removable with respect to all maximum cardinality restrictions ≤ nR,
where R or R− is part of ≤ nR. Note that, by Theorem 6, (1) and (2) imply
that a is not mergeable in A.

Definition 8: A role assertion R(a, b) is removable with respect to maximum
cardinality restrictions in an Abox A iff the following holds: if R (resp. R−) is
part of a maximum cardinality restriction (≤ nP) ∈ clos(A), then R(a, b) (resp.
R−(b, a)) is removable with respect to (≤ nP). R(a, b) is removable with respect
to maximum cardinality restrictions in an Abox A iff it is removable with respect
to all maximum cardinality restrictions ≤ nP , where R or R− is part of ≤ nP .

Theorem 9: A role assertion R(a, b) can safely be removed from an Abox A if
it is removable with respect to universal restrictions and removable with respect
to maximum cardinality restrictions.

Proof Sketch: Let R(a, b) be a role assertion removable w.r.t. maximum
cardinality and universal restrictions in an Abox A. Let A′ be the Abox defined
as A′ = A − {R(a, b), R−(b, a)}. If A is consistent, A′ is obviously consistent.
We show that if A′ is consistent, a model of A can be constructed by applying
the tableau algorithm rules in a particular way. 1

First, for a root node c in the completion forest F , the root node α(c) is
defined as follows: if L(c) 6= ∅ then α(c) = c; otherwise, α(c) = d, where d is the
unique root node in F with L(d) 6= ∅ and d=̇c. Since A′ is consistent, we can
apply the tableau expansion rules on A′ without creating a clash in such a way
that: (1) ∃-rule is never triggered to satisfy a constraint ∃P.C ∈ L(α(a)) (resp.
L(α(b))) where ≤ nP ∈ clos(A), R (resp. R−) is part of ≤ nP , and b : C ∈ A
(resp. a : C ∈ A), and (2) ≥-rule is never triggered to satisfy a constraint
≥ nP ∈ L(α(a)) (resp. L(α(b))) where ≤ nP ∈ clos(A), R (resp. R−) is part
of ≤ nP , and, in the Abox A, b (resp. a) is one of the n R-neighbors of a (resp.
R−-neighbors of b) explicitly asserted to be distinct.

Such a rule application yields a clash-free completion forest F , and the only
nodes on which expansion rules may be applicable are α(a) and α(b) (the only
applicable rules are ∃-rule and ≥-rule). Next, we modify F to create a comple-
tion forest F ′ by adding to F the edge < α(a), α(b) > if it was not already in
F , and by adding R to L(< α(a), α(b) >), if it was not already there. We show
that F ′ is complete (i.e. no rules are applicable) and clash-free.

The fact that, in F ′, R ∈ L(< α(a), α(b) >) ensures that the ∃ and ≥ rules,
which may have been applicable on α(a) or α(b) in F , are not applicable on α(a)
and α(b) in F ′. However, the same fact may now make the ∀, ∀+, ≤, and ≤r

rules applicable on α(a) or α(b) in F ′. We show that this cannot be the case.

The definition of removable w.r.t. universal restrictions obviously ensures
that ∀ and ∀+ rules are not applicable on α(a) or α(b) in F ′. It can be shown

1 A direct model-theoretic proof cannot easily provided here, see [3] for details.

Proceedings of DL 2006 139

[3] that ≤, and ≤r rules cannot be applicable on α(a) or α(b) in F ′ and that F ′

is still clash free. Thus, a tableau for A can be built from F ′ as in [6], which
establishes that A has a model.

3 Proxy Abox

Intuitively, the Abox contains many redundant assertions from the point of view
of consistency checking that can be collapsed to create a reduced proxy Abox.
As an example, if the Abox contains assertions of the form R(m, c) and R(j, y),
where m and j are both members of W and c and y are both members of U ,
we can replace m and j by a proxy individual w : W that is connected by a R
relation to a proxy individual u : U . Reasoning over the resulting proxy Abox
corresponds to reasoning over the original Abox, as shown formally below.
Definition 10: A proxy Abox is an Abox A′′ that is generated from any SHIN
Abox A using a mapping function f that satisfies the following constraints,
where R is the set of all roles and their inverses in an Abox:

(1) if a :C ∈ A then f(a) :C ∈ A′′ (2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′′

(3) if a 6= b ∈ A then f(a) 6= f(b) ∈ A′′

Theorem 11: If the proxy AboxA′′ obtained by applying the mapping function
f to A is consistent then A is consistent. However, the converse of Theorem
11 does not hold.
Proof : Let us assume that A′ is consistent w.r.t. T and R. Therefore there
is a model I ′ = (∆I′

, .I
′

) of A′ w.r.t. T and R. A model of A can easily be
built from I ′ by interpreting an individual a in A in the same way as f(a) is
interpreted by I ′. Formally, let I = (∆I , .I) be the interpretation of the A w.r.t.
T and R defined as follows: ∆I = ∆I′

; for a concept C ∈ T , CI = CI′

; for a
role R in R, RI = RI′

; for an individual a in A, aI = f(a)I
′

. I is a model of A
w.r.t. T and R as a direct consequence of the fact that I ′ is a model of A′ and
A′ satisfies the 3 conditions stated in definition 1 (see [3] for more details).

The mapping function f that we use to create a proxy Abox from a global-
effects Abox is defined such that if L(a) = L(b) and a 6= b /∈ A, then f(a) = f(b).
That is, all individuals in the Abox A which have the same concept set and are
not asserted to be distinct map to the same individual in the proxy Abox A′′. If
a proxy Abox A′′ is not consistent, either there is a real inconsistency in A or the
process of collapsing individuals to create A′′ caused an artificial inconsistency.
To determine whether an inconsistency is real, we consider the global-effects
Abox A′. Like A′, A′′ may consist of disconnected Aboxes and, since A′′ is
typically small, it is not expensive to identify these partitions. Furthermore, we
know from the consistency check which partitions in A′′ are inconsistent. For
each inconsistent partition Ai

′′ in A′′, we test for consistency the assertions in
A′ that map into it, which form a distinct partition Ai

′ in A′. If any partition
in A′ is inconsistent, then A is inconsistent.

140 Regular Papers

Table 1: Characteristics of A, A’, and A”

KB Classes Roles Instances Role Assertions

A A’ A” A A’ A” A A’ A” A A’ A”

BioPax 31 14 14 40 2 2 261K 17K 39 582K 14K 106

LUBM 91 25 19 27 5 3 142K 44K 481 736K 45K 352

NIMD 19 2 2 28 1 1 1,278K 429K 2 2,000K 286K 1

ST 16 15 15 11 2 2 874K 547K 18 3,595K 580K 49

4 Computational Experience

We tested our approach on the four actual ontologies shown in Table 1. A corre-
sponds to the original Abox, A′ is the Abox obtained fromA after removing local
effects, and A′′ is the proxy Abox. Biopax includes the data for 11 organisms
available at http://biocyc.org. We used a version of LUBM that was modified
to SHIN [7] . The Abox of the NIMD ontology was generated from text analysis
programs run over a large number of unstructured documents. The semantic
traceability (ST) ontology Abox was generated from a program that extracted
relationships between software artifacts of a large middleware application.

As can be seen in Table 1, in practice, A′ is significantly smaller than A, and
A′′ is a substantial reduction over A′. In most cases, A′ was sufficient for the
consistency check. For ST, a real inconsistency was detected in the local-effects
consistency check. The Biopax and NIMD ontologies were consistent in A′′. For
LUBM, we needed to check the consistency of A′. The running time for our
algorithm took from 12.6 seconds to 283 seconds, which included the time for
building the proxy and checking it for consistency.

5 Related Work and Conclusion

There are many highly optimized reasoners such as Pellet [8], Racer [4], Instance-
Store [1], and Kaon2 [10] designed for consistency checking, but only InstanceS-
tore and Kaon2 can be extended to Aboxes in secondary storage. Kaon2 applies
to deductive databases, whereas our techniques work with relational databases.
InstanceStore is limited to role-free Aboxes. In theory, Instance Store can han-
dle Aboxes with role assertions through a technique called precompletion [9],
but this may not be practical for Aboxes stored in databases. Our techniques
can be contrasted with optimization techniques such as model caching and Abox
contraction [5], but again, it is unclear how such techniques can be applied to
Aboxes in databases.

We have demonstrated a technique to scale consistency detection to large
Aboxes in secondary storage by extracting a small representative Abox. Further,

Proceedings of DL 2006 141

we have shown that, in practice, this technique works efficiently on four large
ontologies. Our plan is to extend this approach to apply more accurate static
analysis techniques, extend its applicability to more expressive languages, and
to apply these techniques to query processing.

References

[1] Sean Bechhofer, Ian Horrocks, and Daniele Turi. The owl instance store:
System description. Proc. of 20th Int.Conf. on Automated Deduction, pages
177–181, 2005.

[2] F. Donini. Complexity of reasoning. In F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, Description Logic
Handbook, pages 101–141. Cambridge University Press, 2002.

[3] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and
Kavitha Srinivas. Scalable reasoning:cutting ontologies down to size. In
http://www.research.ibm.com/iaaa/aaaiSubmission.ps, 2006.

[4] V. Haarslev and R. Moller. Racer system description. Conf. on Automated
Reasoning (IJCAR 2001), pages 701–705, 2001.

[5] Volker Haarslev and Ralf Moller. An empirical evaluation of optimization
strategies for abox reasoning in expressive description logics. Proc. of the
International Workshop on Description Logics, pages 115–199, 1999.

[6] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individ-
uals for the description logic SHIQ∗. Proc. of 17th Int.Conf. on Automated
Deduction, pages 482–496, 2000.

[7] Li Ma, Yang Yang, Zhaomin Qiu, Guotong Xie, and Yue Pan. Towards a
complete owl ontology benchmark. In Proc. of the third European Semantic
Web Conf.(ESWC 2006), 2006.

[8] Evren Sirin and Bijan Parsia. Pellet: An owl dl reasoner. In Description
Logics, 2004.

[9] Sergio Tessaris and Ian Horrocks. Abox satisfiability reduced to termino-
logical reasoning in expressive description logics. In LPAR, pages 435–449,
2002.

[10] U.Hustadt, B. Motik, and U. Sattler. Reducing shiq description logic to
disjunctive datalog programs. Proc. of 9th Intl. Conf. on Knowledge Rep-
resentation and Reasoning (KR2004), pages 152–162.

142 Regular Papers

Tableau Caching for Description Logics

with Inverse and Transitive Roles

Yu Ding and Volker Haarslev

Concordia University, Montreal, Quebec, Canada
{ding yu|haarslev}@cse.concordia.ca

Abstract. Modern description logic (DL) reasoners are known to be less effi-
cient for DLs with inverse roles. The current loss of performance is largely due to
the missing applicability of some well-known optimization techniques, especially
the one for caching the satisfiability status of modal successors. In this paper,
we present a rule synthesis technique from which an estimation of the potential
back-propagation of constraints can be made. This estimation can be applied
to both the concept classifier and the satisfiability tester. This paper presents a
tableau caching technique for SHI as a first step to improving the performance
of tableau-based DL reasoners for logics offering the use of inverse roles. The
proposed techniques underwent a first empirical evaluation with a prototype DL
reasoner for SHI using a set of synthetically generated knowledge bases. The
initial results indicate an significant improvement in runtime performance once
caching is effectively enabled.

1 Motivation

Description logics (DLs) are a family of logic based formalisms for termi-
nological knowledge representation and reasoning [15]. Descending from
KL-ONE [1], they now enjoy a wide spectrum of applications. Behind this
success is a long line of research and implementation efforts in DL rea-
soners. Most modern DL systems are based on tableau algorithms. Such
algorithms are first introduced in [2] by Schmidt-Schauss and Smolka. In
spite of the high worst case complexity of the satisfiability problem [15] for
most expressive DLs (typically ExpTime-complete), highly optimized im-
plementations have been shown to work well in many realistic applications
[3, 9, 14].

DLs express unary relations in terms of concepts and binary relations
in terms of roles. To describe inverse binary relationships, inverse roles
are a necessary language element. One of the first approaches to allow the
declaration of inverse roles was in the early nineties when some DL systems
started to support very expressive DLs with inverse roles [5]. Later, the
theoretical result on elimination of inverse roles based on equi-satisfiability
was established [7].

Proceedings of DL 2006 143

Tableau-based DL systems typically employ a wide range of optimiza-
tion techniques, most of which were designed and established unfortu-
nately without appropriate consideration of inverse roles (which would
be reasonable if the elimination of inverse roles had become realistic in
applications). If directly applied to DLs with inverse roles, some well-
known optimizations become less efficient or even invalid (due to the two-
way propagation of universal restrictions introduced by inverse roles). The
caching technique is one such example that suddenly turns unsound when
inverse roles are considered. The current technique of inverse role elimina-
tion could introduce an overwhelming number of GCIs (General Concept
Inclusions) that are difficult for tableau algorithms. Other attempts were
tried, e.g., the dynamic blocking technique [8] which can be considered as
a successful attempt in adapting the blocking [4] technique to DLs with
inverse roles.

The literature addressing the issues caused by inverse role is not plen-
tiful, and a systematic treatment is still to be done. This paper will discuss
the soundness problem of common caching techniques for DLs with inverse
roles. We extend our previous study [16] to a more expressive description
logic, i.e., SHI, a logic with expressive role constructs (i.e., transitive
roles, inverse roles, and role hierarchies). We assume the reader’s famil-
iarity with the DL SHI and tableau algorithms. We introduce the rule
synthesis approach, discuss the use of heuristics for concept classifica-
tion, and show how to apply the same technique to obtain sound tableau
caching.

2 Synthesizing Rules

In this section, we present our rule synthesis approach in terms of a reach-
ability analysis of the underlying unfolding rules. Our reachability analysis
is based on a multi-graph G = (V, E) constructed from the syntactic struc-
ture of the given unfolding rules of T . The initial reachability relation is
represented as ε-edges and its transitive closure can be computed accord-
ing to a set of reachability extension rules that are presented in the first
subsection. The potential back propagations is contained in this closure.
After this, we show how the estimated potential back propagation can be
used to obtain sound sub-tableau caching as well as potential subsumers,
respectively.

144 Regular Papers

2.1 Potential Back Propagation

Due to the interaction of universal restrictions with inverse roles, con-
straints can propagate up and down the tableau tree. We refer to this
upward propagation of constraints as back propagation. Here we present
a way to synthesize the unfolding rules [15] to determine potential back
propagation (PBP). We view PBP a reflexive and transitive relation, and
formulate it as reachability in a directed graph (containing multi-edges
and cycles). In the discourse, we use the notation G = (V, E) for a di-
rected multi-graph, where V denotes a set of nodes and E denotes a set
of edges (binary relations) for pairs of nodes in V .

We say C (also D) is non-modally used by C uD and C tD; and say
∀R.(AtB) (resp. ∃R.(AtB)) modally uses A (also B) through ∀R (resp.
∃R). Note we are not using the transitive use relation, for details please
see [13].

Definition 1. Given a SHI expression in NNF (negation normal form),
its reachability graph is a multi-graph G = (V, E) formed according to a
function f such that: (1) for every concept literal C, there is a node f(C) ∈
V ; (2) for every SHI (sub-)expression s, there is a unique node f(s) ∈
V ; (3) if expression s1 non-modally uses s2, then ε ∈ E(f(s1), f(s2));
if s1 modally uses s2 through ⊗R for some role name R, then ⊗R ∈
E(f(s1), f(s2)), where ⊗ stands for the connective ∃ or ∀.

Recursively an expression could be decomposed into concept literals and
correspondingly G is constructed.

Definition 2. Given T, a SHI TBox of unfolding rules each of which
is of the form CL v D, where CL is a concept literal and D is in NNF,
a reachability graph G = (V, E) for T is formed such that for each rule
CL v D: (1) there is a node f(CL) ∈ V ; (2) there is a node f(D) ∈ V ;
(3) ε ∈ E(f(CL), f(D)).

The initial reachability graph G is built upon the syntactic structure
only. A non-modal use relationship is represented by an ε-edge, a modal use
relationship is represented by an edge tagged with the modality connective
concatenated with the corresponding role name. The unfolding operation
is represented by connecting the concept literal with an ε-edge to the root
of the graph representation of its right-hand side.

In Table 1 three rules are given for extending the reachability relation
from the initial G = (V, E). We use E∗ to denote the transitive closure of
E over ε-edges.

Proceedings of DL 2006 145

∃∀-rule: if there exist nodes x, y, z such that ∃R1 ∈ E∗(x, y)
and ∀R2 ∈ E∗(y, z)
and R1 v∗ Inv(R2)

then E(x, z) := E(x, z) ∪ {ε}
∀∀-rule: if there exist nodes x, y, z such that ∀R1 ∈ E∗(x, y)

and ∀S ∈ E∗(y, z) (for short let Inv(S) be R2)
and there exists R3 ∈ R s.t. R3 v∗ Ri for i ∈ {1, 2}

then E(x, z) := E(x, z) ∪ {ε}
∀∃-rule: if there exist nodes x, y, z such that ∀R1 ∈ E∗(x, y) and ∃R2 ∈ E∗(y, z)

and there exists Trans(S) s.t. R2 v∗ S v∗ R1

then E(y, y) := E(y, y) ∪ {∀S}
Table 1. Reachability Extension Rules over R for SHI.

Initially, the reachability graph G = (V, E) is constructed according to
all unfolding rules in T . Then, an extension of G is based on a simulation
of the ∀-rule in tableau algorithms w.r.t. R. For a given TBox T and a role
hierarchy R in DL SHI, the PBP is contained in the final reachability
relation in E∗.

To see how PBP is obtained, we compare the tableau expansion with
the reachability extension. In tableau algorithms, both decomposition and
selection are done by the u-rule and the t-rule; on the other hand, in
the reachability graph, only decomposition is simulated. Also, in tableau
algorithms, the firing of ∃-rule is subject to conditions, whereas in reach-
ability graph, we make a simplification and assume it can be always fired.
Furthermore, in tableau algorithms, the firing of ∀-rule depends on the
existence of an edge (e.g., might be provided by a sibling expression),
but in a reachability graph, we simplify that condition to only consider
its predecessors and successors (as if that sibling always exists). In sum-
mary, by making these simplification and discarding inessential factors,
the reachability graph is constructed in a very conservative way to grasp
every potential back propagation. The essence for the reachability graph
is that if PBP (ε-edge in the final G = (V, E∗)) is impossible, then it is
guaranteed that no back propagation will take place in the corresponding
application of the tableau algorithm.

For a given TBox T (of a set of unfolding rules) and a role hierarchy
R, there is a corresponding reachability graph G = (V, E∗). For a concept
literal C, we define a function Reach(C) = {y ∈ V | ε ∈ E∗(f(C), y)}. In
the following, we use the function Reach without mentioning its T and R.

146 Regular Papers

2.2 Heuristic for Sound Sub-tableau Caching

Based on Reach(C), we define the function Watch applicable to a concept
literal C: Watch(C) =

⋃
x∈Reach(C){Inv(R) | ∃y ∈ V s.t. ∀R ∈ E(x, y)},

where R is a (inverse) role. For a set of concept literals Cs, we define
CWatch(Cs) =

⋃
C∈Cs

Watch(C). Let Rs be a set of (inverse) roles, we use
Rs↓ to denote the union of subroles for each r ∈ Rs w.r.t. role hierarchy R.
At this point, we are able to define a boolean function Safe(Cs, R) that can
be used to guarantee caching soundness by excluding potential unsound
situations: Safe(Cs, R) = true iff R /∈ CWatch(Cs)↓. The following lemma
follows naturally from the previous analysis.

Lemma 1 (Sound Caching). Given the TBox T and the role hierarchy
R, let Cs and Cw be two sets of concept literals, R be a (inverse) role, The
set Cs can be cached at the position of R-successor if: (1) Cs ⊆ Cw; and
(2) Safe(Cs, R); and (3) Cw has a model.

Proof (sketch). (1) Assume Cw has the model Iw. The construction process
for Iw can be used to guide that of Cs, and Cs has a model Is inside which
each node’s label is a subset of that of Iw; (2) The condition Safe(Cs, R)
guarantees the root of Is has no Inv(R) predecessor, even if Iw needs a
Inv(R) predecessor.

2.3 Heuristic for Potential Subsumer

Classification is the process of computing the most-specific subsumption
relationships (i.e., parents and children) of each concept name to other
concept names mentioned in a TBox. The parents and children of a certain
concept name are computed in the so-called top-down and bottom-up
traversal phases, respectively. For large knowledge base, it is particularly
important to avoid as many traversal as possible. A typical optimization
is to use a heuristics-guided traversal which exploits information about
told subsumers [3] or potential subsumer [12] to restrict the search space.

However, even the better potential subsumer technique considers only
the transitive non-modal use relation [12] among concept names. For DLs
with inverse roles, potential subsumers could appear in modal-use rela-
tions. For example, given a simple TBox T = {A v ∃R.B, B v ∀R−.C}
(note that T has only primitive definitions and no cyclic rules). The sub-
sumption of A v C holds, and the subsumer C is neither explicitly told
nor non-modal discernible.

Proceedings of DL 2006 147

For DLs with inverse roles, the potential subsumer technique remains
useful if we take those concept names appearing in Reach(A) into con-
sideration. Similarly, this estimation is also applicable to related ABox
reasoning tasks [15].

3 Discussion and Related Work

As a first step to evaluate the proposed techniques, i.e., caching and back-
propagation estimation for DLs with inverse roles, a experimental tableau-
based reasoner has been developed in Java. It employs several optimization
techniques such as lexical normalization, semantic branching, backjumping
(in a weak form), and a optimized version of dynamic blocking (tailored
to DLs free of number restrictions). Besides the basic platform, two com-
ponents were implemented, one for back-propagation estimation, and one
for caching (the latter relies on the former). The proposed techniques were
then evaluated with a set of synthetically generated satisfiability tests.
These preliminary benchmarks indicated a performance gain of a factor
of 2 to 10. A more realistic benchmark using RacerPro is in preparation.

The following papers in the literature are relevant in our context to
caching and blocking. DeGiacomo et. al. [6] demonstrated for the DL ALC
that the tableau caching technique (especially unsatisfiability caching) is
necessary for obtaining a worst case optimal tableau algorithm. For super-
set and sub-set caching see [12]. For various blocking techniques for DLs
with inverse roles see [11, 8]. Papers which systematically addressed the
classification problem include [3, 12]. However, they commonly focused on
DLs without inverse roles. Recent papers focusing on the optimization of
classification did not address the anomaly when inverse roles are present
in the TBox.

Satisfiability tests for DLs with inverse roles are empirically hard for
tableau-based reasoning systems. For instance, it is required that the
blocking technique (i.e., the cycle detection mechanism) dynamically guar-
antees soundness. Furthermore, witness nodes are restricted to be ances-
tor nodes only. This dynamic behavior together with a limited choice of
witness nodes generally makes the tableau-based procedures less efficient
than necessary. Our preliminary experiments show that the proposed ap-
proach can be feasibly implemented as part of a one-pass parsing phase for
tableau-based DL reasoners. The availability of the caching technique dra-
matically speeds up the reasoning process. First, the witness space is no
longer restricted to ancestor nodes. Second, the caching technique requires

148 Regular Papers

no re-checking and thus it is safe to discard nodes once they are success-
fully cached. By doing this, the tableau algorithm is more space-economic.
Our approach can successfully deal with a set of (possibly cyclic) unfold-
ing rules and a role hierarchy, thus it well meets the typical requirement
from real applications.

4 Conclusion

The common caching techniques are no longer applicable in the presence
of inverse roles, since information can be pushed backwards, which might
invalidate the cache. Closely related to known techniques of knowledge
compilation, we presented in this paper a technique for synthesizing the
unfolding rules (of the terminological box) to estimate potential back prop-
agations. This technique is currently applied to terminological knowledge
bases with cyclic axioms and expressive roles in the expressive DL SHI.
The presented solution computes a reachability graph before testing the
satisfiability of a concept in order to determine, when backpropagation
is impossible and hence caching is safe. Based on this, a sound tableau
caching technique was obtained in a relatively straightforward way. As
was expected, better run-time performance was observed in our prelimi-
nary experiments due to the use of cache. We also pointed out that the
estimation could be used for other purposes such as in locating poten-
tial subsumers during concept classification. We are aware that further
refinement is possible for the technique presented here.

References

1. Brachman, R., McGuinness, D., Patel-Schneider, P., Resnick, L.,
Borgida, A.: Living with CLASSIC: When and how to use a KL-ONE-
like language. Principles of Semantic Networks, edited by John Sowa,
Morgan Kaufmann, (1991) 401-456

2. Schmidt-Schauss M., Smolka G.: Attributive concept descriptions with
complements. Artificial Intelligence, Vol 48, (1991) 1-26

3. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.:
An Empirical Analysis of Optimization Techniques for Terminological
Representation Systems - or - Making KRIS get a move on: KR-92,
(1992) 270-281

Proceedings of DL 2006 149

4. Buchheit M., Donini F., Nutt W., Schaerf A.: Decidable Reasoning in
Terminological Knowledge Representation Systems. Journal of Artifi-
cial Intelligence Research, Vol 1 (1993) 109-138.

5. Paolo Bresciani, Enrico Franconi, and Sergio Tessaris: Implementing
and testing expressive description logics: a preliminary report. DL-95
(1995).

6. De Giacoma, G., Donini, F., Massacci, F.: EXPTIME Tableaux for
ALC: DL-96, (1996)

7. Diego Calvanese, Giuseppe De Giacomo, Riccardo Rosati: A Note on
Encoding Inverse Roles and Functional Restrictions in ALC Knowledge
Bases. DL-98 (1998).

8. I. Horrocks and U. Sattler. A Description Logic with Transitive and
Inverse Roles and Role Hierarchies. Journal of Logic and Computation,
9(3), (1999) 385-410

9. Ian Horrocks: Using an expressive description logic: FaCT or fiction?:
KR-98 (1998)

10. Volker Haarslev, Ralf Möller: Consistency Testing: The RACE Expe-
rience: Proc. of TABLEAUX’2000, (2000) 57-61

11. F. Baader, U. Sattler: An Overview of Tableau Algorithms for De-
scription Logics. Studia Logica, 69, (2001) 5-40

12. Volker Haarslev, Ralf Möller: High Performance Reasoning with Very
Large Knowledge Bases: A Practical Case Study. Proc. of IJCAI’2001
(2001) 161-166

13. Volker Haarslev: Theory and Practice of Visual Languages and De-
scription Logics: Habilitation Thesis, Computer Science Department,
University of Hamburg, September (2001)

14. Volker Haarslev, Ralf Möller: RACER System Description: Proc. of
IJCAR’2001 (2001)

15. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider: The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge University Press
(2003)

16. Yu Ding, Volker Haarslev: Towards Efficient Reasoning for Description
Logics with Inverse Roles. DL-05 (2005) 208-215

150 Regular Papers

On the Scalability of

Description Logic Instance Retrieval

Ralf Möller, Volker Haarslev, Michael Wessel

1 Introduction

Although description logics (DLs) are becoming more and more expressive, our experience
has been that it is only for some tasks that the expressivity of description logics really comes
into play; for many applications, it is necessary to be able to deal with largely deterministic
knowledge very effectively (scalability problem). In the literature, the scalability problem has
been tackled from different perspectives. We see two main approaches, the layered approach
and the integrated approach. In the former approach the goal is to use databases for storing
and accessing data, and exploit description logic ontologies for convenient query formulation.
The main idea is to support ontology-based query expansion and optimization. See, e.g., [9, 4]
(DLDB), [1] (Instance Store), or [2] (DL-Lite). We acknowlede the interesting progress of these
approaches, but we note that the corresponding techniques only applicable if reduced expres-
sivity does not matter. Despite the most appealing argument of reusing database technology
(in particular services for persistent data), at the current state of the art it is not clear how
expressivity can be increased to, e.g., SHIQ without losing the advantage of fast runtimes.
Therefore, in this paper, we pursue the integrated approach that considers query answering
with a description logic system. For the time being we ignore the problems associated with
persistency and investigate specific knowledge bases (see below).

Continuing our work in [5], in this paper we investigate the constraints imposed on the
architecture of description logic reasoning systems, and we investigate the assumptions un-
derlying the heuristics used in instance retrieval algorithms. The contribution presents and
analyzes the main results we have found about how to solve the scalability problem with
tableau-based prover systems given large sets of data descriptions for a large number of in-
dividuals. Note that we do not discuss query answering speed of a particular system but
investigate the effect of optimization techniques that could be exploited by any (tableau-
based) DL inference system that already exists or might be built. We assume the reader is
familiar with DLs in general and tableau-based decision procedures in particular.

2 Lehigh University Benchmark

In order to investigate the scalability problem, we use the Lehigh University BenchMark
(LUBM, [3, 4]). LUBM data descriptions are automatically generated, but we do not exploit
this in this paper (e.g., by tailoring optimization techniques to regular patterns stemming from
generator peculiarities). The LUBM queries are formalized as conjunctive queries referencing
concept, role, and individual names from the Tbox. A query language tailored to description
logic applications that can express these queries is described in [8] (the language is called
nRQL). Variables are only bound to individuals mentioned in the Abox. In the notation
of nRQL queries used in this paper we assume that different variables may have the same
bindings. In addition, variables that do not occur in the head of a query are assumed to
be existentially quantified and are are also only bound to individual names mentioned in the

Proceedings of DL 2006 151

Abox.
Below, LUBM queries 9 and 12 are shown in order to present a flavor of the kind of query an-

swering problems – note that ′www.University0.edu′ is an individual and subOrganizationOf
is a transitive role. Please refer to [3, 4] for more information about the LUBM queries.

Q9 : ans(x, y, z)← Student(x), Faculty(y), Course(z),
advisor(x, y), takesCourse(x, z), teacherOf(y, z)

Q12 : ans(x, y)← Chair(x), Department(y),memberOf(x, y),
subOrganizationOf(y,′ www.University0.edu′)

In order to investigate the scalability problem, we used a TBox for LUBM with inverse
and transitive roles as well as domain and range restrictions but no number restrictions,
value restrictions or disjunctions. Among other axioms, the LUBM TBox contains axioms
that express necessary and sufficient conditions on Chair. For instance, there is an axiom
Chair

.= Person u ∃headOf.Department. For evaluating optimization techinques for query
answering we consider runtimes for a whole query set (queries 1 to 14 in the LUBM case).

3 Optimization Techniques

If the queries mentioned in the previous section are answered in a naive way by evaluat-
ing subqueries in the sequence of syntactic notation, acceptable answering times cannot be
achieved. Determining all bindings for a variable (with a so-called generator) is much more
costly than verifying a particular binding (with a tester). Treating the one-place predicates
Student, Faculty, and Course as generators for bindings for corresponding variables results
in combinatorial explosion (cross product computation). Optimization techniques are required
that provide for efficient query answering in the average case. For the discussion of optimiza-
tion techniques, we assume that for transitive and inverse roles, the Abox is extended in the
obvious way such that implicit role assertions are made explicit. In addition, the conclusions
from domain and range restrictions are made explicit in the Abox as well.

3.1 Query Optimization

The optimization techniques that we investigated are inspired by database join optimizations,
and exploit the fact that there are few Faculties but many Students in the data descriptions.
For instance, in case of query Q9 from LUBM, the idea is to use Faculty as a generator for
bindings for y and then generate the bindings for z following the role teacherOf . The heuristic
applied here is that the average cardinality of a set of role fillers is rather small. For the given
z bindings we apply the predicate Course as a tester (rather than as a generator as in the
naive approach). Given the remaining bindings for z, bindings for x can be established via
the inverse of takesCourse. These x bindings are then filtered with the tester Student.

If z was not mentioned in the set of variables for which bindings are to be computed, and
the tester Course was not used, there would be no need to generate bindings for z at all. One
could just check for the existence of a takesCourse role filler for bindings w.r.t. x.

In the second example, query Q12, the constant ′www.University0.edu′ is mentioned.
Starting from this individual the inverse of subOrganizationOf is applied as a generator for
bindings for y which are filtered with the tester Department. With the inverse of memberOf ,
bindings for x are computed which are then filtered with Chair. Since for the concept Chair
sufficient conditions are declared in the TBox, instance retrieval reasoning is required if Chair
is a generator. Thus, it is advantageous that Chair is applied as a tester (and only instance
tests are performed).

For efficiently answering queries, an ordered query execution plan must be determined.
For computing a total order relation on query atoms with respect to a given set of data
descriptions (assertions in an ABox), we need information about the number of instances of
concept and role names. An estimate for this information can be computed in a preprocessing

152 Regular Papers

step by considering given data descriptions, or could be obtained by examining the result set of
previously answered queries (we assume that ABox realization is too costly, so this alternative
is ruled out).

3.2 Indexing by Exploiting Told and Taxonomical Information

In many practical applications that we encountered, data descriptions often directly indicate
of which concept an individual is an instance. Therefore, in a preprocessing step it is useful to
compute an index that maps concept names to sets of individuals which are their instances.
In a practical implementation this index might be realized with some form of hashtable.

Classifying the TBox yields the set of ancestors for each concept name, and if an individual
i is an instance of a concept name A due to explicit data descriptions, it is also an instance
of the ancestors of A. The index is organized in such a way that retrieving the instances of a
concept A or one of its ancestors requires (almost) constant time. The index is particularly
useful to provide bindings for variables if, despite all optimization attemps for deriving query
execution plans, concept names must be used as generators. In addition, the index is used to
estimate the cardinality of concept extensions. The estimates are used to compute an order
relation for query atoms. The smaller the cardinality of a concept or a set of role fillers is
assumed to be, the more priority is given to the query atom. Optimizing query Q9 using told
information yields the following query execution plan.

Q9′ : ans(x, y, z)← Faculty(y), teacherOf(y, z), Course(z),
advisor−1(y, x), Student(x), takesCourse(x, z)

Using this kind of rewriting, queries can be answered much more efficiently.
If the TBox contains only role inclusion axioms and GCIs of the form A v A1u. . .uAn, i.e.,

if the TBox forms a hierachy, the index-based retrieval discussed in this section is complete
(see [1]). However, this is not the case for LUBM. In LUBM, besides domain and range
restrictions, axioms are also of the form A

.= A1 u A2 u . . . u Ak u ∃R1.B1 u . . . u ∃Rm.Bm

(actually, m = 1). If sufficient conditions with exists restrictions are specified as in the case
of Chair, optimization is much more complex. In LUBM data descriptions, no individual
is explicitly declared as a Chair and, therefore, reasoning is required, which is known to be
rather costly. If Chair is used as a generator and not as a tester such as in the simple query
ans(x)← Chair(x), optimization is even more important.

3.3 Obvious Non-Instances: Exploiting Information from One Completion

The detection of “obvious” non-instances of a given concept C can be optimized by using
a model merging operator defined for so-called individual pseudo models (aka pmodels) as
specified in [5]. The central idea is to compute a pmodel from a completion that is derived
by the tableau prover. Note that it is important that all restrictions for a certain individual
are “reflected” in the pmodel. The idea of model merging is that there is a simple sound
but incomplete test for showing that adding the assertion i : ¬C to the ABox will not lead
to a clash (see [5] for details) and, hence, i is not an instance of C. Note that, usually, the
complete set of data structures for a particular completion is not maintained by a reasoner.
The pmodels provide for an excerpt of a completion needed to determine non-instances.

3.4 Obvious Instances: Exploiting Information from the Precompletion

A central optimization technique to ensure scalability as it is required for LUBM is to also
find “obvious” instances with minimum effort. Given an initial ABox consistency test one
can consider all deterministic restrictions, i.e., consider only those tableau structures (from
now on called constraints) for which there are no previous choice points in the tableau proof
(in other words, consider only those constraints that do not have dependency information

Proceedings of DL 2006 153

attached). These constraints, which are computed during the tableau proof, describe a so-
called precompletion.1 Note that in a precompletion, no restrictions are violated.

Given the precompletion constraints, for each individual an approximation of the most-
specific concept (MSC’) of an individual i is computed as follows. For all constraints repre-
senting role assertions of the form (i, j) : R (or (j, i) : R) add constraints of the form i : ∃R.>
(or i : ∃R−1.>). Afterwards, constraints for a certain individual i are collected into a set
{i : C1, . . . , i : Cn}. Then, MSC ′(i) := C1 u . . . u Cn. Now, if MSC ′(i) is subsumed by the
query concept C, then i must be an instance of C. In the case of LUBM many of the assertions
lead to deterministic constraints in the tableau proof which, in turn, results in the fact that
for many instances of a query concept C (e.g., Faculty as in query Q9) the instance problem
is decided with a subsumption test based on the MSC’ of each individual. Subsumption tests
are known to be fast due to caching and model merging. The more precisely MSC’(i) approx-
imates MSC(i), the more often an individual can be determined to be an obvious instance of
a query concept. Obviously, it might be possible to determine obvious instances by directly
considering the precompletion data structures. However, these are technical details. The main
point is that, due to our findings, the crude approximation described above suffices to detect
all “obvious” instances in LUBM.

If query atoms are used as testers, in LUBM it is the case that in a large number of
cases the test for obvious non-instances or the test for obvious instances determines the result.
However, for some individuals i and query concepts C both tests do not determine whether
i is an instance of C (e.g., this is the case for Chair). Since both tests are incomplete, for
some individuals i a refutational ABox consistency test resulting from adding the claim i : ¬C
must be decided with a sound and complete tableau prover. For some concepts C, the set of
remaining instances i for which the “expensive” ABox instance test must be used is quite large,
or, considering C as a generator, the set of candidates is quite large. In any case, considering
the volume of assertions in LUBM (see below for details), it is easy to see that the refutational
ABox consistency test must not start from the initial, unprocessed ABox in order to ensure
scalability.

For large ABoxes and many repetitive instance tests it is mandatory not to “expand” the
very same initial constraints over and over again. Therefore, the precompletion resulting from
the initial ABox consistency test is used as a starting point for refutational instance tests. The
tableau prover keeps the precompletion in memory. All deterministic constraints are expanded,
so if some constraint is added, only a limited amount of work is to be done. Tableau provers
are fast w.r.t. backtracking, blocking, caching and the like. But not fast enough if applied in
a naive way. If a constraint i : ¬C is added to a precompletion, the tableau prover must be
able to very effectively determine related constraints for i that already have been processed.
Rather than using linear search through lists of constraints, index structures are required.

3.5 Index Structures for Optimizing Tableau Provers

First of all, it is relatively easy to classify various types of constraints (for exists restrictions,
value restrictions, atomic restrictions, negated atomic restrictions, etc.) and access them
effectively according to their type. We call the corresponding data structure an active record
of constraint sets (one set for each kind of constraint). For implementing a tableau prover,
the question for an appropriate set data structure arises. Since ABoxes are not models,
(dependency-directed) backtracking cannot be avoided in general. In this case, indexing the
set of “relevant” constraints in order to provide algorithms for checking if an item is an element
of a set or list (element problem) is all but easy. Indexing requires hashtables (or trees), but

1Cardinality measures for concept names, required for determining optimized query execution plans, could
be made more precise if cardinality information is computed by considering a precompletion. However, in the
case of LUBM this did not result in better query execution plans.

154 Regular Papers

backtracking requires either frequent copying of index structures (i.e., hashtables) or frequent
inserting and deleting items from hashtables. Both operations are known to be costly.

Practical experiments with LUBM and many other knowledge bases indicate that the
following approach is advantageous in the average case. For frequent updates of the search
space structures during a tableau proof, we found that simple lists for different kinds of
constraints are most efficient, thus we have an active record of lists of constraints. New
constraints are added to the head of the corresponding list, a very fast operation. During
backtracking, the head is chopped off with minimum effort. The list representation is used if
there are few constraints, and the element problem can be decided efficiently. However, if these
lists of constraints get large, performance decreases due to linear search. Therefore, if some
list from the active record of constraints gets longer than a certain threshold, the record is
restructured and the list elements are entered into an appropriate index structure (hashtables
with individuals as keys). Afterwards the tableau prover continues with a new record of empty
lists as the active record. The pair of previous record of lists and associated hashtable is called
a generation. From now on, new constraints are added to the new active record of constraints
and the list(s) of the first generation are no longer used. For the element problem the lists
from the active record are examined first (linear search over small lists) and then, in addition,
the hashtable from the first generation is searched (almost linear search). If a list from the
active record gets too large again, a new generation is created. Thus, in general we have a
sequence of such generations, which are then considered for the element test in the obvious
way. If backtracking occurs, the lists of the appropriate generation are installed again as the
active record of lists. This way of dealing with the current search state allows for a functional
implementation style of the tableau prover which we prefer for debugging purposes. However,
one might also use a destructive way to manage constraints during backtracking. Obviously,
all (deterministic) constraints from the initial Abox can be stored in a hashtable. In any case,
the main point here is that tableau provers need an individual-based index to efficiently find
all constraints an individual is involved in. In the evaluation of other optimization techniques
(see below) we presuppose that a tableau prover is equipped with this technology.

3.6 Transforming Sufficient Conditions into Conjunctive Queries

Up to now we have discussed the optimization of concept atoms used as testers in the query
execution plan. If concepts are used as generators, indeed a retrieval problem rather than only
an instance test problem has to be solved. Using the results in [5] it is possible to linearly
iterate over all individuals, check for obvious non-instances and obvious instances, and then, for
the set of remaining candidates dependency-directed instance retrieval and binary partitioning
can be used (see [5]). Our findings suggest that in the case of LUBM, for example for the
concept Chair, the remaining tableau proofs are very fast. Nevertheless it is the case that the
whole procedure is based on a linear iteration over all individuals. In application scenarios
such as those we investigate with LUBM we have 200,000 individuals and more, and even if
each single test lasts only a few dozen microseconds, query answering will be too slow, and
hence additional techniques must be applied to solve the scalability problem.

The central insight for another optimization technique is that conjunctive queries can be
optimized according to the above-mentioned arguments whereas for concept-based retrieval
queries, optimization is much harder to achieve. Let us consider the query ans(x)← Chair(x).
For Chair, sufficient conditions are given as part of the TBox (see above). Thus, in principle,
we are looking for instances of the concept Person u ∃headOf.Department. The key to
optimizing query answering becomes apparent if we transform the definition of Chair into a
conjunctive query and derive the optimized version Q15′

Q15 : ans(x)← Person(x), headOf(x, y), Department(y)
Q15′ : ans(x)← Department(y), headOf−1(y, x), P erson(x)

Proceedings of DL 2006 155

Univs Inds Concept Assertions Role Assertions

1 17174 53738 49336
3 55664 181324 166682
5 102368 336256 309393
10 207426 685569 630753

Table 1: Linearly increasing number of individuals, concept assertions and role assertions for
different numbers of universities.

Because there exist fewer Departments than Persons in LUBM, search for bindings for x is
substantially more focused in Q15′ (which is the result of automatic query optimization, see
above). In addition, in LUBM, the extension of Department can be determined with simple
index-based tests only (only hierarchies are involved). With the Chair example one can easily
see that the standard approach for instance retrieval can be optimized dramatically if query
atoms are rewritten as indicated in the above example.

If there is no specific definition or there are meta constraints, rewriting is not applied. It is
easy to see that the rewriting approach is sound. However, it is complete only under specific
conditions, which can be automatically detected. If we consider the Tbox T = {D .= ∃R.C},
the Abox A = {i : ∃R.C} and the query ans(x)← D(x), then, due to the algorithm presented
above, the query will be rewritten as ans(x)← R(x, y), C(y). For variable bindings, the query
language nRQL (see above) considers only those individuals that are explicitly mentioned in
the Abox. Hence, i will not be part of the result set because there is no binding for y in the
Abox A. Examining the LUBM Tbox and Abox it becomes clear that in this case for every
i : ∃R.C appearing in a tableau proof there already exist constraints (i, j) : R and j : C in
the original Abox. However, even if this is not the case, the technique can be employed under
some circumstances.

Usually, in order to construct a model (or a completion to be more precise), tableau provers
create a new individual for each constraint of the form i : ∃R.C and add corresponding concept
and role assertions. These newly created individuals are called anonymous individuals. Let us
assume, during the initial Abox consistency test a completion is found. As we have discussed
above, a precompletion is computed by removing all constraints that depend on a choice
point. If there is no such constraint, the precompletion is identical to the completion that the
tableau prover computed. Then, the set of bindings for variables is extended to the anonymous
individuals found in the precompletion. The rewriting technique for concept query atoms is
applicable (i.e., is complete) under these conditions. Even if the rewriting technique is not
complete (i.e., s.th. is removed from the completion to derive the precompletion), it can be
employed to reduce the set of candidates for binary partitioning techniques (c.f., [5]) that can
speed of this process considerably in the average case.

The transformation approach discussed in this section is reminiscent to an early transfor-
mation approach discussed in [7]. In fact, ideas from translational approaches from DLs to
disjunctive datalog [6] can also be integrated in tableau-based approaches. In the following
section, we will evaluate how the optimization techniques introduced up to now provide a
contribution to the data description scalability problem.

4 Evaluation and Conclusion

The significance of the optimization techniques introduced in this contribution is analyzed
with the system RacerPro 1.9. RacerPro is freely available for research and educational
purposes (http://www.racer-systems.com). The runtimes we present in this section are
used to demonstrate the order of magnitude of time resources that are required for solving
inference problems. They allow us to analyze the impact of proposed optimization techniques.

156 Regular Papers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

No. of Universities

RacerPro Performance

Consistency
Index
Load

Prepare

Figure 1: Runtimes for loading, preparation, abox consistency checking and indexing.

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

No. of Universities

RacerPro Performance

Mode A
Mode B
Mode C

Figure 2: Runtimes of 14 LUBM queries with different optimization settings (see text).

An overview about the size of the LUBM benchmarks is given in Table 1. The runtimes
for loading the data descriptions, transforming them into abstract syntax trees (preparation),
and indexing are shown in Figure 1 (AMD 64bit processor, 4GB, Linux OS). It is important
to note that the curves are roughly linear, thus, no reasoning is included in these phases. In

Proceedings of DL 2006 157

Figure 1, the runtimes for checking ABox consistency and precompletion data structures (see
above) are indicated (the shape, which appears to be quadratic, reveals that this phase are
subject to further optimizations).

In Figure 2, average query-answering times for running all 14 LUBM queries on data
descriptions for an increasing number of universities are presented (see Table 1 for an overview
on the number of individuals, concept assertions, and role assertions). In mode A and B,
concept definitions are not rewritten into conjunctive queries (see Section 3.6). In mode A,
full constraint reasoning on datatypes is provided. However, this is not required for LUBM.
Therefore, in mode B, told value retrieval is performed only. As Figure 2 shows, this is much
more efficient. Mode C in Figure 2 presents the runtimes achieved when definitions of concept
names are rewritten to conjunctive queries (and told value reasoning on datatypes is enabled).
Mode C indicates that scalability for instance retrieval can be achieved with tableau-based
retrieval engines. Note that we argue that the concept rewriting technique is advantageous
not only for RacerPro but also for other tableau-based systems. Future work will investigate
optimizations of large Aboxes and more expressive Tboxes. Our work is based on the thesis
that for investigating optimization techniques for Abox retrieval w.r.t. more expressive Tboxes,
we first have to ensure scalability for Aboxes and Tboxes such as those that we discussed in
this paper. We have shown that the results are encouraging.

References

[1] S. Bechhofer, I. Horrocks, and D. Turi. The OWL instance store: System description. In Proceed-
ings CADE-20, LNCS. Springer Verlag, 2005.

[2] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query
answering in description logics. In Proc. of the 2005 Description Logic Workshop (DL 2005).
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2005.

[3] Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+OIL repositories. In Proc. of the Second
Int. Semantic Web Conf. (ISWC 2003), number 2870 in LNCS, pages 613–627. Springer Verlag,
2003.

[4] Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large OWL datasets.
In Proc. of the Third Int. Semantic Web Conf. (ISWC 2004), LNCS. Springer Verlag, 2004.

[5] V. Haarslev and R. Möller. Optimization techniques for retrieving resources described in
OWL/RDF documents: First results. In Ninth International Conference on the Principles of
Knowledge Representation and Reasoning, KR 2004, Whistler, BC, Canada, June 2-5, pages
163–173, 2004.

[6] B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis,
Univ. Karlsruhe, 2006.

[7] B. Motik, R. Volz, and A. Maedche. Optimizing query answering in description logics using
disjunctive deductive databases. In Proceedings of the 10th International Workshop on Knowledge
Representation Meets Databases (KRDB-2003), pages 39–50, 2003.

[8] M. Wessel and R. Möller. A high performance semantic web query answering engine. In Proc.
of the 2005 Description Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2005.

[9] Z. Zhang. Ontology query languages for the semantic web: A performance evaluation. Master’s
thesis, University of Georgia, 2005.

158 Regular Papers

High Performance Absorption Algorithms for
Terminological Reasoning

Ming Zuo and Volker Haarslev
Concordia University, Montreal, Quebec, Canada

{ming zuo|haarslev}@cse.concordia.ca

Abstract

When reasoning with description logic (DL) knowledge bases (KBs),
performance is of critical concern in real applications, especially when
these KBs contain a large number of axioms. To improve the perfor-
mance, axiom absorption has been proven to be one of the most effective
optimization techniques. The well-known algorithms for axiom absorp-
tion, however, still heavily depend on the order and the format of the
axioms occurring in KBs. In addition, in many cases, there exist some re-
strictions in these algorithms which prevent axioms from being absorbed.
The design of absorption algorithms for optimal reasoning is still an open
problem. In this paper, we propose some new algorithms to absorb axioms
in a KB to improve the reasoning performance. The experimental tests we
conducted are mostly based on synthetic benchmarks derived from com-
mon cases found in real KBs. The experimental evaluation demonstrates
a significant runtime improvement.

1 Motivation

When reasoning with description logic (DL) knowledge bases (KBs) which con-
tain a large number of axioms, performance is the key concern in real appli-
cation. To improve the reasoning performance, many optimization algorithms
and techniques are employed in most of the modern reasoners such as RACER
and FaCT++. Among the optimization algorithms, lazy unfolding is proven to
be one of the most effective techniques [7]. Unfortunately, lazy unfolding does
not work well for KBs containing a significant number of nonabsorbable GCIs
(General Concept Inclusions). A GCI is called nonabsorbable if it cannot be
rewritten into a rule axiom. We use the term rule axiom to represent axioms
of the form of A ⇒ C where A ∈ NC and C is an arbitrary concept, while
the form C v D represents a GCI where C and D are arbitrary concepts. The
difference between A ⇒ C and A v C is that A ⇒ C represents only “if A then

Proceedings of DL 2006 159

C”, while A v C represents both “if A then C” and “if ¬C then ¬A” during
reasoning. To convert a GCI into rule axiom(s), a technique called absorption
is employed. Although preliminary absorption algorithms have been discussed
in [6], there is little concern about the “best” absorption for optimal reasoning.
The known algorithms also still heavily depend on the order and the format of
axioms found in the KB of interest. In addition, in many cases, some restrictions
in these algorithms prevent axioms from being absorbed [3].

2 Tableau Algorithm and Lazy Unfolding

Reasoning about a DL based KB is usually reduced to concept reasoning w.r.t.
a TBox. For such kind of reasoning, a sound and complete tableau reasoning
algorithm is usually employed. The basic idea behind a tableau algorithm is to
take an input concept C w.r.t. a TBox T , and try to prove the satisfiability of C
w.r.t. T by constructing a model I of C w.r.t. T . This is done by syntactically
decomposing C so as to derive constraints on the structure of such a model. For
example, any model of C must, by definition, contain some individual x such
that x is an element of CI , and if C is of the form ∃R.D, then the model must
also contain an individual y such that 〈x, y〉 ∈ RI and y is an element of DI ;
if D is non-atomic, then continuing with the decomposition of D would lead
to additional constraints. The construction fails if the constraints include an
obvious contradiction, e.g., if some individual z must be an element of both C
and ¬C for some concept C [2, 5].

The decomposition and construction are usually carried out by applying so-
called tableau expansion rules as described in [2]. During the tableau expansion,
disjunctions are added to the label of each node of the tableaux for each GCI
(one disjunction is added for axioms of the form C1 v C2; two disjunctions are
added for axioms of the form C1 ≡ C2 [5]). This leads to an exponential increase
in the search space as the number of nodes and axioms increases [4].

An intuitive optimization technique is lazy unfolding — it only unfolds con-
cepts if required during the expansion process [1]. It has been described by the
additional tableau rules in [5].

Lazy unfolding cannot be applied to an arbitrary axiom in a TBox due to
the atomic concept restriction on the left-hand side of the axiom. However, we
can still divide an arbitrary TBox T into two parts: the unfoldable part Tu, to
which we can apply lazy unfolding directly, and the general part Tg, in which we
have to perform reasoning by general tableau expansion [5]. Therefore, there is
an intuitive optimization technique to be considered: converting general axioms
from Tg to Tu while keeping the semantics of TBox unchanged. This is the
original idea of an “absorption”.

160 Regular Papers

3 Standard Absorption

Let us first consider an absorption example. Suppose we have two TBoxes T
and T ′.

T = Tu ∪ Tg and Tu = ∅; Tg = {A v C; ¬A v D};
T ′ = T ′

u ∪ T ′
g and T ′

u = {A ⇒ C; ¬A ⇒ D}; T ′
g = ∅.

An obvious question is whether T ′ ≡ T ?
According to the definition of a correct absorption proposed in [6], T ′ is a

correct absorption of T . Unfortunately, T ′ 6= T since T ′ |= T does not hold.
To evaluate the correctness of an absorption, we introduce the notion of a valid
absorption.

Definition 3.1 (valid absorption) Let T be a TBox, and T ′ be an absorption
of T . If T ′ |= T and T |= T ′, then T ′ is called a valid absorption of T .

Based on the above definitions, the following absorptions are all valid ab-
sorptions, provided that A is an atomic concept and C, D and E are arbitrary
concepts, and T is an acyclic TBox [2].

Proposition 3.1 Let T = Tu ∪ Tg, Tu = ∅ and Tg = {A v D}, A ∈ NC, and
T ′ = T ′

u ∪ T ′
g ; T ′

u = {A ⇒ D} and T ′
g = ∅. Then T ′ is a valid absorption of T .

Proposition 3.2 Let T = Tu ∪ Tg, Tu = ∅ and Tg = {A ≡ D}, A ∈ NC, and
T ′ = T ′

u ∪ T ′
g , T ′

u = {A ⇒ D;¬A ⇒ ¬D} and T ′
g = ∅. Then T ′ is a valid

absorption of T .

Proposition 3.3 Let T = Tu ∪ Tg.
(1) If T ′ is an arbitrary TBox, then (Tu, Tg ∪ T ′) is a valid absorption of

T ∪ T ′.
(2) If T ′ is a TBox that consists entirely of axioms in the form of A v D,

where A ∈ NC and neither A nor ¬A occur on the left-hand side in Tu, then
(Tu ∪ {A ⇒ D}, Tg) is a valid absorption of T ∪ T ′.

A question rises from Proposition 3.3 whether it is possible to absorb an
axiom into Tu if either A or ¬A occur on the left-hand side of Tu.
Lemma 3.1 Let (Tu, Tg) be a valid absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms in the form of A v D, where A ∈ NC and A already
has a rule definition in Tu, say A ⇒ C, if ¬A does not appear on the left-hand
side of Tu, then (Tu ∪ {A ⇒ (D u C)}, Tg) is a valid absorption of T ∪ T ′.
Lemma 3.2 Let (Tu, Tg) be a valid absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms of the form A v D, where A ∈ NC and ¬A already
has a rule definition in Tu, say ¬A ⇒ C, if A does not appear on the left-hand
side of Tu, then (Tu ∪ {A ⇒ D}, Tg ∪ {> v C t D}) is a valid absorption of
T ∪ T ′.
Lemma 3.3 Let (Tu, Tg) be a valid absorption of a TBox T , if T ′ is a TBox
that consists entirely of axioms of the form A v E, where A ∈ NC. If both A

Proceedings of DL 2006 161

and ¬A have a rule definition in Tu, say A ⇒ C and ¬A ⇒ D, then (Tu∪{A ⇒
(C u E)}, Tg ∪ {> v D t E}) is a valid absorption of T ∪ T ′.

The above mentioned propositions and lemmas also hold for a cyclic TBox
as long as no right-hand side concept in Tu directly uses [2] an atomic concept
(regardless of a negation sign) occurring in the left-hand side of the same axiom.

4 Heuristic Absorption

Experimental experience suggests that reasoning efficiency is improved by either
reducing the number of axioms in Tg or reducing the number of axioms in Tu.
Thus, we propose the “best” absorption is the one which can absorb a maximal
number of axioms from Tg and keep only a minimal number of axioms in Tu.

A first possible way of reducing axioms in Tg and Tu is to convert a primitive
definition into a complete definition, i.e., selecting a concept definition instead
of a concept inclusion by checking all axioms in the specified TBox. This can
be achieved as follows.

Given an arbitrary TBox T . Suppose A is an atomic concept.

1. Simplify [8] and normalize T . After normalization, Tu = ∅ and Tg contains
a set of axioms in the form > v C tD where C and D are either atomic
concepts or role concepts. Then each axiom in Tg can be expressed as a
set. For example, the set G = {C, D} represents the axiom in the form
> v CtD. As a consequence, ¬G represents a set containing the concept
¬C u ¬D. Therefore, each axiom in Tg only contains A or ¬A or none
of them. We also need a function con which returns for a given set G its
represented concept, e.g., if G = {C, D}, then con(G) returns C tD.

2. Initialize two sets Tg1, Tg2 to be empty and consider A the chosen (fixed)
atomic concept.

3. For any set G, if A ∈ G, then remove G from Tg and add an item
¬(G\{A}) to Tg1; if ¬A ∈ G, then remove G from Tg and add an item
G\{¬A} to Tg2; otherwise, keep G in Tg.

4. For each item G2 in Tg2, if G2 also appears in Tg1,

(a) remove G2 from both Tg1 and Tg2;

(b) add the axiom {A ⇒ con(G2)} and {¬A ⇒ con(¬G2)} to Tu.

5. For each item set G′
1 left in Tg1, create a new set ¬G′

1 ∪ {A} and put it
back into Tg; for each item set G′

2 in Tg2, create a new set G′
2 ∪{¬A} and

put it back into Tg.

162 Regular Papers

The above algorithm can be further improved in step (4) by checking more than
one item set in G2. For more general KBs, the following heuristic absorption
procedure could be applied.

Given an arbitrary TBox T = Tu ∪ Tg. Tu contains a set of axioms of the
form C ≡ D or C ⇒ D. Tg contains a set of axioms of the form > v C.

1. Simplify and normalize T as described above.

2. Suppose cp is the total number of appearance of A in Tg; and cn is the
total number of appearance of ¬A in Tg. Among all cps and cns, select the
greatest value and absorb the accordingly atomic concept to Tu.

3. Repeat step (2) until no concept can be absorbed anymore.

In fact, the above mentioned two algorithms can be combined to achieve a
better performance.

5 Experimental Results

To check the effectiveness of the newly developed algorithms, we compare them
with the ones currently employed by RACER. Firstly, we developed a customized
RACER version by disabling its absorption module. After that, we developed
a new external absorption module (as a stand-alone program) by implementing
the algorithms described above. Each of our test KBs is processed by the exter-
nal absorption module. Its output is used as input to the customized RACER
version. We also process each original test KB with the standard RACER ver-
sion. In our graphs we compare for each test KB the TBox classification time
of the customized RACER version (denoted as “enhanced”) with the standard
version of RACER (denoted as “normal”).

5.1 Primitive Definition to Complete Definition

Suppose A, B, C,D are all atomic concepts in the following example:

TBox T = Tu ∪ Tg;
Tu = {A ⇒ B; C ⇒ B; B ⇒ A t C} and Tg = {> v A t C t ∃R.D}

After normalization and simplification, the above TBox can be easily absorbed
into the following TBox T ′ by heuristically creating these concept definitions:

T ′
u = {B ≡ (A t C);¬A ⇒ C t ∃R.D}
T ′

g = ∅
The classification times for a KB where we replicated this pattern of axiom

pairs are shown in the left graph in Figure 1.
From the graph one can see that the CPU time for reasoning with the algo-

rithms currently employed by RACER is exponential. However, the performance
based on the newly developed absorption algorithm is roughly linear.

Proceedings of DL 2006 163

0.01

0.1

1

10

100

1000

20 40 60 80 100
Axiom pairs

C
P

U
 T

im
e

Normal

Enhanced
0.1

1

10

100

1000

20 30 40 50 60 70 80

Axiom pairs

C
P

U
 T

im
e

Normal Enhanced

Figure 1: Classification times (seconds) for pattern “primitive to complete defi-
nition” (left graph) and for pattern “enhanced absorption” (right graph).

5.2 Enhanced Absorption Algorithm

Based on Lemma 3.2 and 3.3, we were able to develop an absorption algorithm
by allowing both positive or negative atomic concepts to occur on the left-hand
side of Tu. Consider the following example (A, B ∈ NC):

T = Tu ∪ Tg;

Tu = {A v B}; Tg = {> v A t ∃R.K}
By applying Lemma 3.3, we are able to completely absorb it as the following:

Tu = {A ⇒ B;¬A ⇒ ∃R.K;¬B ⇒ ∃R.K}; Tg = ∅
The test result is shown in the right graph in Figure 1. They show that the
new absorption algorithm is much more effective than the classical absorption
algorithm due to the elimination of absorption restrictions.

5.3 Heuristic Absorption

Suppose we have the following TBox T which consists of the following general
axioms:

{¬AtB; ¬Ct¬Dt∃R1.C1t∃R2.C2; ¬DtK; ¬MtN ; CtDt∃R1.C1tMtA}
To absorb T , we follow the procedure described in Section 4:

Step 1: List the statistics of Tg for each atomic concept. The result is as follows.
(The format is A(cp, cn), where cp gives the number of positive (unnegated)
occurrences and cn the number of negative (negated) occurrences, and we ignore
the atomic concepts occurring in the qualifications of existential and universal
restrictions.)

A(0,1); B(1,0);C(1,1);D(1,2);M(1,1); N(1,0); K(1,0);C2(0, 0); C1(0, 0)

We divide the atomic concepts into two groups by selecting the concepts where
one of cp or cn values is zero and discarding the concepts that have both cp and
cn values equal to zero. We obtain the following:

164 Regular Papers

0.1

1

10

100

1000

20 30 40 50 60 70 80

Axiom pairs
C

P
U

 T
im

e

Normal Enhanced

Figure 2: Classification times (seconds) for pattern “heuristic absorption”.

Group 1: B(1,0); N(1,0); K(1,0)
Group 2: A(1,1); C(1,1);D(1,2);M(1,1)

Step 2: We give the concepts in the first group a higher priority. Then, the
concepts B, N, K have the same priority. Suppose we absorb B first. We have
Tu and Tg as the following:

Tu: {¬B ⇒ ¬A}
Tg: {¬C t¬Dt∃R1.C1 tR2.C2; ¬DtK; ¬M tN ; C tDt∃R1.C1 tM tA }
Statistics group:

Group 1: A(1,0); N(1,0); K(1,0)
Group 2: C(1,1);D(1,2);M(1,1)

We repeat step 1 and step 2 until Tg is empty. At the end, Tu contains the
following axioms:

¬B ⇒ ¬A
¬A ⇒ C tD t ∃R1.C1 tM
D ⇒ K u (¬C t ∃R1.C1 tR2.C2)
M ⇒ N

and Tg = ∅
The test results using the above absorption scheme are shown in Figure 2. The
improvement of the heuristic absorption algorithm is significant compared with
the one currently employed by RACER.

6 Conclusion

We proposed criteria for the “best” absorption based on experimental expe-
rience. Then, we introduced novel heuristic absorption algorithms. We have
demonstrated how these algorithms are working, and how they affect the rea-
soning performance. In addition, we have shown that some restrictions applied
in the absorption algorithms of RACER could be eliminated. Therefore, the

Proceedings of DL 2006 165

absorption algorithms can be effectively applied to more general axioms.
We have also implemented the heuristic algorithm by incorporating the op-

timizations known from the RACER reasoner. We have illustrated their effec-
tiveness by analyzing the reasoning performance of RACER when classifying
benchmark KBs. The analysis shows that, not only are the new techniques
highly effective, but also the reasoning performance is not significantly affected
by the order and format of the axioms occurring in a KB.

References

[1] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H. Profitlich. An em-
pirical analysis of optimization techniques for terminological representation
systems. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Rep-
resentation and Reasoning (KR92), pages 270–281, 1992.

[2] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, implementation, and applications, pages 47–
100. 2003.

[3] V. Haarslev and R. Möller. High performance reasoning with very large
knowledge bases. In Proceedings of Seventeenth International Joint Confer-
ence on Artificial Intelligence, pages 161–166, 2001.

[4] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[5] I. Horrocks. Implementation and optimisation techniques. In F. Baader,
D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, implementation, and applications,
pages 313–355. 2003.

[6] I. Horrocks and S. Tobies. Optimisation of terminological reasoning. In Proc.
of the 2000 Description Logic Workshop, pages 183–192, 2000.

[7] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In
Proceedings of the Seventh International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 285–296, 2000.

[8] F. Massacci. Simplification: A general constraint propagation technique for
propositional and modal tableaux. In Proceedings of the International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, pages 217–231, 1998.

166 Regular Papers

Automated Benchmarking of Description Logic
Reasoners

Tom Gardiner, Ian Horrocks, Dmitry Tsarkov
University of Manchester

Manchester, UK
{gardiner|horrocks|tsarkov}@cs.man.ac.uk

May 12, 2006

1 Introduction

Reasoning for expressive DLs implemented in state-of-the-art systems has high
worst case complexity. The hope/claim is, however, that these systems perform
well in “realistic” applications. In practice, this means in ontology applications.
To check the validity of this claim it is necessary to test the performance of these
systems with (the widest possible range of) ontologies derived from applications.

In addition, testing is useful in order to check the correctness of implementa-
tions. In small examples, it may be easy to check the correctness of a system’s
reasoning. However, for typical real-world examples, manual checking is not fea-
sible. In these instances, the best (perhaps the only) way to check correctness is
often by checking for consistency with the reasoning of other existing systems.

Real-world ontologies vary considerably in their size and expressivity. While
they are all valuable test cases, it is still important to understand each ontology’s
properties in order to provide efficient and relevant testing.

System developers find this particularly useful, as it helps them to identify
weaknesses in their systems and to devise and test new optimisations. Finally,
testing is also useful for the developers and users of applications as they can
use benchmarking results to determine if (the performance of) a DL reasoner is
likely to satisfy their requirements, and if so which reasoner is likely to perform
best in their application.

2 Background and Related Work

For the above mentioned reasons, there is extensive existing work on bench-
marking DL (as well as modal logic) reasoners. E.g., TANCS comparisons

1

Proceedings of DL 2006 167

and benchmark suites [10], DL comparisons and benchmark suite [1], work
on M-SPASS [8], work on FaCT and DLP [7, 6], the OWL benchmark suite
and test results, and various test results from papers describing systems such
as FaCT++ [13], Pellet (http://www.mindswap.org/2003/pellet/), Racer [5],
KAON2 (http://kaon2.semanticweb.org/), Vampire [12], etc.

Due to the fact that relatively few (large and/or interesting) ontologies were
available, earlier tests often used artificially generated test data. The Lehigh
University Benchmark [4], for example, used a synthetic ontology and randomly
generated data to test the capabilities of knowledge base systems using specific
weightings to compare systems on characteristics of interest. Results from such
tests are, however, of doubtful relevance when gauging performance on ontolo-
gies. The popularity of OWL has meant that many more ontologies are now
available, and recent benchmarking work has focused on testing performance
with such ontologies.

One such example [11] involved benchmarking a number of reasoners against
a broad range of realistic ontologies. However, not all reasoners used in that
comparison supports OWL as an input language, so quantitative comparison of
performance would have been difficult/un-justified. From the other hand, the
DIG interface [2] is recognised as a preferred choice by application developers
and thus is implemented into a wide range of DL Reasoners.

Our work builds on these earlier efforts, taking advantage of the DIG stan-
dard to provide a generic benchmarking suite that allows the automatic quan-
titative testing and comparison of DL Reasoners on real-world examples with
relevant properties. We aim to make the testing process as autonomous as possi-
ble, taking care, for example, of (re)starting and stopping reasoners as necessary,
and the analysis of results be as flexible as possible, by allowing for arbitrary
SQL queries against the collected data. We also aim to provide, as a publicly
available resource, a library of test ontologies where each ontology has been
checked for expressivity and syntactic conformance, translated into DIG syntax
(which is much easier to work with that OWL’s RDF/XML syntax), and in-
cludes (where possible) results (such as the concept hierarchy) that can be used
for testing the correctness of reasoning systems.

3 Methodology

The system has two main functions. The first is to process ontologies and add
them to the library, and the second is to benchmark one or more reasoners using
the ontology library.

When processing ontologies, the system takes as input a list of OWL-ontology
URI’s. Before they can be used in testing, some preprocessing of these ontologies
is required. The process involves generating valuable meta-data about each
ontology, as well as converting each of the OWL-ontologies to DIG.

168 Regular Papers

The meta-data is generated by code written for SWOOP [9], and provides
the details of the expressivity (i.e. the constructs present in the ontology) to-
gether with the number of classes, object properties, data properties, individ-
uals, class axioms, property axioms and individual axioms present. This is
invaluable information in helping to understand the meaning of any results ob-
tained through testing, in finding, for example, strengths and weaknesses of
particular systems. The OWL-to-DIG conversion uses the OWL-API (http:
//sourceforge.net/projects/owlapi). This process is far from trivial as
OWL’s RDF syntax is extremely complex, and it is easy to (inadvertently) cause
ontologies to be outside of OWL DL, e.g., by simply forgetting to explicitly type
every object. Moreover, the DIG interface supports only the most basic of data
types, such as Strings and Integers. The result is that many of the available
OWL Ontologies we found could not be successfully converted to DIG.

Local copies are stored of both the OWL Ontology and the DIG version.
This is not only for efficiency during the testing, but also to ensure consistency
(as online ontologies rarely remain static). Moreover, this allows us to fix trivial
errors in the OWL ontologies so that they can be used for testing purposes. The
locations of these files, together with their properties/meta-data, are stored as
database entries for easy access and manipulation.

The main function of the benchmark suite itself is timing the classification
of each ontology by each Reasoner. To promote fairness, each Reasoner is ter-
minated and then restarted for every ontology.

A problem with trying to compare different Reasoners is that they may
perform tasks in different ways. For example, they may vary in the way in
which they perform each part of the reasoning: some may take an “eager”
approach, fully classifying the whole ontology and caching the results as soon
as it is received; others may take a “lazy” approach, only performing reasoning
tasks as required in order to answer queries. To try to get around this problem,
we use a five step test, for each ontology, that forces every reasoners to fully
classify that ontology. The steps are as follows:

1. TELL the reasoner the full ontology
2. ASK for all the concepts in the ontology
3. ASK for the satisfiability of the TOP concept
4. ASK for the satisfiability of all the concepts in the ontology
5. ASK for the ontology taxonomy (parents and children of all concepts)

Each of these individual steps are timed, providing interesting information about
when different reasoners do most their work. It is, however, the total time for
this complete (classification) test that we are most interested in.

Each test will end in one of three ways. It will either complete successfully,
fail due to lack of time or fail for some other reasons. The latter may include
failure due to lack of run-time memory, failure because the reasoner could not
parse the ontology successfully, etc.

The benchmark suite is fully automatic, dealing with most errors autonomously,

Proceedings of DL 2006 169

meaning that the testing can be left to run over-night or over a week-end (which
may be necessary when using a large time-out). All data is recorded in a MySQL
database, making it easy for the user to view and analyse the data in a variety
of ways.

As discussed in Section 1, in order to get a clearer indication of how DL
Reasoners perform in the real world, we aim to build a large library of OWL
ontologies from those that are publicly available. Currently, our library contains
a little over 300 OWL-RDF Ontologies, but only 172 of these could successfully
be converted to DIG. This has, however, provided us with a total of just under
72,000 classes and over 30,000 individuals in a DIG format. Only 18% of the
ontologies were at least ALC, which suggests that the majority of real-world
ontologies aren’t in fact very complex, but it also means we have a comfortable
number of “interesting” examples too.

4 Testing

Our system is currently fully automatic and runs the classification tests success-
fully through our whole library. It does not, however, at this stage verify the
correctness of each Reasoner’s answers to the queries (from steps 2-5) and how
they compare to the answers given by other Reasoners. This means that our
measure of success is, for now, merely an indication that the Reasoner received
and parsed the DIG successfully and returned a valid DIG response. This is
generally a good indication, but should only be considered a preliminary result.

We have performed some tests on our system, as it stands, and we provide
here some examples of the kinds of information that our system can produce.

FaCT++ v1.1.3, KAON2, Pellet v1.3 and RacerPro v1.8.1 are four of the
most widely used OWL/DIG reasoners, and we therefore decided to use these to
test the current capabilities of our system. The tests were performed using an
Intel Pentium-M Processor 1.60 GHz and 1Gb of main memory on Windows XP.
The time-out period was set to 10 minutes (in real time). Pellet and KAON2
are java applications, and for these tests were run with a maximum heap space
of 200Mb. RacerPro and FaCT++ were left to run on their default settings. Our
system does not try to optimise the performance of the Reasoners for particular
ontologies, as we believe this is the job of the Reasoners themselves, not the
application user.

Table 1 shows how the individual Reasoners performed firstly on all our
ontologies and then on Ontologies which have particular characteristics. Finally,
it shows their performance on OWL-Lite ontologies, which includes all those with
expressivity up to SHIF.

In order to determine which were the most “challenging” ontologies (w.r.t.
reasoning), we tried to order ontologies according to the difficulty of reasoning
with them. To do this, we used all the ontologies that were successfully classified
by at least two Reasoners and then ordered these by their average classification

170 Regular Papers

Type Status FaCT++ KAON2 Pellet RacerPro

All Success 138 45 152 110
All Failed 29 124 18 62
All TimedOut 5 3 2 0
Nominals Success 7 3 9 7
Nominals Failed 4 9 3 5
Nominals TimedOut 1 0 0 0
TransRoles Success 15 9 18 13
TransRoles Failed 4 11 3 9
TransRoles TimedOut 3 2 1 0
Datatypes Success 102 12 114 75
Datatypes Failed 23 15 13 52
Datatypes TimedOut 2 0 0 0
OWL-Lite Success 33 31 33 34
OWL-Lite Failed 5 6 5 6
OWL-Lite TimedOut 2 3 2 0

Table 1: Sample of Overall Performance

Figure 1: Comparison of Reasoners on the Top 10 Most Challenging Ontologies

Proceedings of DL 2006 171

Ontology Expressivity nClass nIndiv URL

1 DL-Lite 27652 0 http://...logy/nciOncology.owl
2 SHF 3097 0 http://...ibrary/not-galen.owl
3 ALR+ 20526 0 http://archive.godatabase.org/
4 SHF 2749 0 http://...Ontologies/galen.owl
5 RDFS(DL) 1108 3635 http://...world-fact-book.daml
6 RDFS(DL) 1514 0 http://...logy/data/center.owl
7 ALCF(D) 87 0 http://...a/pizza/20041007.owl
8 SHIF 37 0 http://...s/DOLCE-Lite/397.owl
9 RDFS(DL) 4 1899 http://...nt/AirportCodes.daml

10 ALR+HI(D) 5 2744 http://...ogicUnits/2003/09/hu

Table 2: Properties of Top 10 Most Time-consuming Ontologies

Reasoner Tells ConceptList SatOfTop SatOfClasses Hierarchy

FaCT++ 23% 35% 11% 9% 21%
KAON2 47% 45% 0% 3% 5%
Pellet 70% 20% 1% 2% 6%
RacerPro 58% 11% 4% 9% 19%

Table 3: Average Division of Task Time

time. Figure 1 shows the amount of time each Reasoner took to classify the
10 most challenging ontologies according to this measure (where negative time
represents a failure to classify). Table 2 then shows some of the interesting
information that is available on these “Top 10” Ontologies.

This table is useful in helping us understand what makes these particular
Ontologies so time-consuming to reason over. In the case of the NCI and Gene
Ontology’s (1st and 3rd), it can be clearly seen that it is their shear size that
provides the challenge. The 5th, 9th and 10th (world-fact-book, AirportCodes
and Hydrolic Units) make up for their number of classes with an extensive array
of individuals. Whereas Galen (2nd and 4th) simply uses some very complicated
constructs and deep role hierarchy.

Our final table, Table 3, shows the average proportion of each classification
test that each Reasoner spent on the separate tasks. This shows, for example,
that Pellet performs a lot of caching on receiving the Ontology (TELLS), while
FaCT++ does relatively little until the first ASK query.

5 Discussion

As we mentioned in the introduction, testing is useful for reasoner and tool
developers as well as for users. Building on existing work, we have developed

172 Regular Papers

a system for testing reasoners with available ontologies. The benefits of our
approach include autonomous testing, flexible analysis of results and the devel-
opment of a test library that should be a valuable resource for both the DL
and ontology community. We will continue to extend the library, and will add
classification results from tested reasoners so that correctness testing can also
be performed.

While there are an increasingly large array of OWL-Ontologies available for
public use, other Ontology formats (e.g. OBO: the Open Biomedical Ontologies,
http://obo.sourceforge.net) are still widely in use and would make for valu-
able test examples. It is also the case, as describe in [3], that a large proportion
of the available OWL-Full Ontologies, could in fact be validated as OWL-DL,
just by adding a few extra clarifying statements. This means that of the 162
Ontologies that we had to throw away, many could be useful examples with a
little work. In the future we hope to use these observations, together with any
external contributions, to considerably increase the size of our ontology library.

The results produced by our tests provide an interesting insight into the vari-
ety and depth of information that can be extracted from such testing/benchmarking.
However, for the system and its results to become a valuable resource, we need
to test their correctness. We are currently assuming that both the OWL-to-DIG
conversions and the Reasoner’s responses are all valid and correct.

With regard to the OWL-API’s conversions, this was the utility built along-
side the original DIG specification. We therefore argue that this is the best
conversion available and that our assumption is justified.

Regarding the responses, as discussed earlier, they can be almost impossible
to check for correctness. Our best option is therefore to analyse the difference in
responses received from different reasoners, and this route is thus one we aim to
explore further. It will be interesting to see if reasoners (that should, in theory,
all produce the same inferences to the same problems) will actually agree on the
test ontologies.

So far we have focused on testing Tbox reasoning (classification). Although
the use of nominals in SHOIQ blurs the separation between Tbox and Abox,
it would still be useful to explicitly test Abox reasoning, e.g., by asking for
the instances of some query class. This functionality will be added in a future
version of the system.

Apart from the future work described above, there are a number of exten-
sions to our benchmarking system that would enhance its utility. Allowing users
to define their own customised test, rather than the 5 step classification we are
using, is one example that would allow Reasoner developers to test specific op-
timisations and implementations as they are developed. Other relevant tests
would include testing how multiple concurrent tests on a Reasoner affects per-
formance, as well as simply not restarting a Reasoner between tests.

We intend for the whole system, including the ontology library, to be available
for open-source use in the near future.

Proceedings of DL 2006 173

References

[1] P. Balsiger and A. Heuerding. Comparison of theorem provers for modal
logics. In Proceedings of Tableaux’98, May 1998.

[2] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG description logic
interface. In Proceedings of DL2003 International Workshop on Description
Logics, September 2003.

[3] Sean Bechhofer and Raphael Volz. Patching syntax in OWL ontologies. In
Proceedings of 3rd International Semantic Web Conference, ISWC, 2004.

[4] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge
base systems. Journal of Web Semantics, 3(2):158–182, 2005.

[5] V. Haarslev and R. Möller. RACER system description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, Siena, Italy, pages 701–705.
Springer-Verlag, 2001.

[6] I. Horrocks. Benchmark analysis with FaCT. In Proc. of TABLEAUX 2000,
number 1847, pages 62–66. Springer-Verlag, 2000.

[7] I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Proc. of
TABLEAUX 98, pages 27–30, 1998.

[8] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation
and first-order resolution. 2000.

[9] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and
James Hendler. Swoop: A ’web’ ontology editing browser. Journal of Web
Semantics, 4(2), 2005.

[10] Fabio Massacci and Francesco M. Donini. Design and results of TANCS-00.
volume 1847, 2000.

[11] Zhengxiang Pan. Benchmarking DL reasoners using realistic ontologies. In
Proc. of the OWL: Experiences and Directions Workshop, 2005.

[12] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire.
AI Communications, 15(2-3):91–110, 2002.

[13] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner:
System Description. In Proc. of the Int. Joint Conf. on Automated Reason-
ing (IJCAR 2006), 2006. To Appear.

174 Regular Papers

Will My Ontologies Fit Together?
A preliminary investigation.

Bernardo Cuenca Grau, Ian Horrocks,
Oliver Kutz, and Ulrike Sattler

School of Computer Science, The University of Manchester, UK

1 Motivation

In realistic applications, it is often desirable to integrate different ontologies1

into a single, reconciled ontology. Ideally, one would expect the individual on-
tologies to be developed as independently as possible, and the final reconciliation
to be seamless and free from unexpected results. This allows for the modular
design of large ontologies and facilitates knowledge reuse tasks. Few ontology
development tools, however, provide any support for integration, and there has
been relatively little study of these issues at a fundamental level. Understanding
at this fundamental level would help us predict, for example, what logical con-
sequences to expect from the integrated ontology, and whether the integration
of ontologies preserves some desirable properties of its parts.

To the best of our knowledge, the problem of predicting and controlling
the consequences of ontology integration has has been tackled only in [4]. The
authors propose a set of reasoning services (with decidability and complexity
results) to check whether, through integration with other ontologies, desirable
properties of an ontology have been destroyed.

In this paper, we propose first steps towards a different approach, the so-
called normative approach.2 We specify certain properties that one would like
to preserve in the integration and devise a set of restrictions that, when ad-
hered to, guarantee to preserve these properties. Thus, while the approach of
[4] determines the preservation of desirable properties ex post, our methodology
prescribes some restrictions that guarantee the preservation of desirable prop-
erties. We introduce two ‘integration scenarios’ that, we believe, capture some
of the common practices in ontology engineering, and postulate desirable prop-
erties that should be satisfied by the integrated ontology. We provide syntactic
restrictions on the use of shared vocabulary that guarantee the preservation of

1Throughout this paper, we do not distinguish between ontologies and TBoxes.
2Thanks to Frank Wolter for coining this expression.

Proceedings of DL 2006 175

these properties. The two basic ontology integration scenarios we analyze here
are the following:

1. Foundational integration: an ontology is integrated with a foundational
(or “upper”) ontology. The foundational ontology describes more general
terms, and may be domain independent.

2. Broadening integration: two ontologies describing different (and largely
independent) domains are integrated to cover a broader subject area.

We define, for each scenario, semantic properties that one might want to be
satisfied by the integrated ontology, that is, we specify how the consequences of
the integrated ontology relate to those from its parts. Next, we specify syntac-
tic constraints on the ontologies to be integrated and show that they guarantee
these properties: these syntactic constraints are referred to as compliance con-
ditions. Furthermore, we sometimes need global semantic safety constraints on
the ontologies used in the integration. In this paper, we use a condition called
localness, which is identical to a condition found in [3].

Clearly, the syntactic constraints depend on the DL used in the ontologies,
and mainly concern the way the symbols occurring in the different ontologies
(their signatures) are used. Finally, we discuss whether these constraints are
realistic for the scenario, i.e., whether users could be expected to stick happily
to these constraints in order to ensure that the integrated ontology will satisfy
the desired semantic properties. Since all constraints are purely syntactic, they
are decidable in polynomial time, and preliminary tests indicate that many
ontologies satisfy the constraints already.

We assume the reader to be familiar with the basics of description logics
and use, throughout this paper, axiom for any kind of TBox, RBox, or ABox
assertion, and Sig(T) for the set of concept and roles names in T . This paper
is accompanied by a technical report [2].

2 Integration Scenarios

Suppose that two ontologies T1, T2 are to be integrated in some application. The
ontologies may be the result of a collaborative ontology development process and
may have been designed in a coordinated way by different groups of experts,
or they may have been simply “borrowed” from the Web. In any case, we
assume that they have both been tested and debugged individually prior to the
integration and, hence, are consistent and do not contain unsatisfiable concept
names. To capture this notion, we call an ontology T instantiable if there exists
a model I of T s.t. AI 6= ∅ 6= RI for all concept and role names A, R in the

176 Regular Papers

signature of T .3

In the simplest case, one would construct an integrated ontology T by simply
taking the union of the two ontologies T1, T2. In general, the ontologies T1 and
T2 may be related and share symbols in their signatures Sig(T1) and Sig(T2).4
We will first postulate the semantic properties that T should satisfy in order
to capture the modeling intuitions of each scenario, and then to investigate
“acceptable” syntactic restrictions on the Ti that make sure that T will behave
as expected. The intuition is simple: the more liberal the syntactic constraints
including the use of shared symbols, the more freedom is given to the modeler,
but the less likely it is that the integrated ontology will behave as desired.

2.1 Foundational Integration

Often, interoperability between different domain ontologies Tdom and their data
is achieved through the use of a foundational (or “upper”) ontology Tup. A
well designed foundational ontology should provide a carefully conceived high
level axiomatization of general purpose concepts. Foundational ontologies, thus,
provide a structure upon which ontologies for specific subject matters can be
based.

A prominent example of an ontology conceived as the integration of a foun-
dational ontology and a set of domain ontologies is GALEN [8], a large medical
ontology designed for supporting clinical information systems. The foundational
ontology contains generic concepts, such as Process or Substance. The domain
ontologies contain concepts such as Gene or Research Institution, which are
specific to a certain subject matter. The domain ontologies in GALEN are con-
nected to the foundational ontology through subsumption relations between con-
cept and role names. For example, Microorganism in one of the domain ontolo-
gies is a subconcept of Organism in the foundational ontology: Microorganism v
Organism. Some prominent ontologies, such as CYC, SUMO and DOLCE have
been designed specifically to be used in applications as foundational ontologies.
For example, given a large dataset about chemicals annotated with concepts
in a certain biomedical ontology, e.g., the National Cancer Institute Thesaurus
(NCI) [5], one may want to annotate it semi-automatically with concepts of a
different ontology. For such a purpose, one may align organic chemicals in NCI
to substances in SUMO using the axiom: Organic Chemical v Substance. Simi-
larly, one may want to use a foundational ontology to generalize the roles of a
given domain ontology. For example, a University ontology may use SUMO to

3For T a TBox in a logic whose models are closed under disjoint unions, such as SHIQ,
T is instantiable if all concept and role names in T are satisfiable.

4There may be some previous reconciliation w.r.t. symbols, e.g., to identify different sym-
bols in the two ontologies that have the same intended meaning [7]. This is a separate problem,
often referred to as ontology alignment, which we do not address here.

Proceedings of DL 2006 177

generalize the role writes as follows: writes v authors , where authors is defined
in SUMO and does not occur in the University ontology.

Foundational ontologies are well-established ontologies that one does not
control and, typically, does not fully understand. When one of these ontologies
is borrowed from the Web and integrated in an application, it is especially
important to make sure that the merge preserves their semantics. In particular,
we do not want the classification tree in Tup to change as a consequence of
the merge. This property can be conveniently formalized by the notion of a
conservative extension [4].

Definition 1 The TBox T = T1 ∪ T2 is a conservative extension of T1 if, for
every axiom α in the signature of T1: T |= α implies T1 |= α.

Clearly, if T is a conservative extension of T1 and T1, T2 are consistent, then so is
T . However, conservativeness is a much stronger condition than instantiability:
even if T is instantiable, new (and probably unintended) subsumptions between
(possibly complex) concepts in T1 may still occur as a consequence of the merge.

In general, it may still be tolerable, and even desirable, to allow new sub-
sumptions to occur in the domain ontology as a consequence of the integration
and, in such a case, T will not be a conservative extension of Tdom.

Also, the notion of a conservative extension is not sufficient to capture all
the intended and unintended consequences. In particular, one would not ex-
pect concept names originally in Tup to be subsumed by concepts originally
in Tdom. In other words, the rôles of the foundational and domain ontologies
should not be inverted after the merge. In contrast, new subsumptions may
and should be entailed between concepts (respectively roles) in Tdom and con-
cepts (roles) in Tup. For example, since the shared concept Substance is sub-
sumed by SelfConnectedObject in SUMO, it is expected that T = TNCI ∪TSUMO

will entail the subsumption Organic Chemical v SelfConnectedObject, where
Organic Chemical occurs in NCI, but not in SUMO, whereas SelfConnectedObject
occurs in SUMO, yet not in NCI.

Next, we specify syntactic restrictions that will ensure these “nice” properties
of T = Tup∪Tdom. Given the examples, it seems reasonable to limit the coupling
between Tup and Tdom to subsumptions relating concept (role) names in Tdom and
concept (role) names occurring in Tup.

Definition 2 The pair = = 〈Tup, Tdom〉 is f-compliant5 if, for S = Sig(Tup) ∩
Sig(Tdom) the shared signature, concept and role names A, R ∈ S occur in Tdom

only in axioms of the form B v A and S v R respectively, where B, S ∈
Sig(Tdom) \ S.

5“f” stands for “foundational”.

178 Regular Papers

f-compliance suffices for capturing the coupling between the foundational and
the domain ontologies in GALEN. However, is f-compliance enough to guarantee
our “nice” properties for T = Tup ∪ Tdom? A simple example will provide a
negative answer: just assume that Tdom contains a GCI of the form > v A; after
the merge, every concept in Tup will be subsumed by A ∈ Sig(Tdom) and, thus,
the foundational ontology does not act as such anymore.

As mentioned above, we use an additional safety condition—called localness—
which is defined as follows [3]: if I = (∆I , .I) and J = (∆J , .J) are interpre-
tations such that ∆J = ∆I ∪ ∇, where ∇ is a non-empty set disjoint with ∆I ,
AJ = AI for each concept name, and RJ = RI for each role name, then J is
called the expansion of I with ∇. Intuitively, the interpretation J is identical
to I except for the fact that it contains some additional elements in the inter-
pretation domain. These elements do not participate in the interpretation of
concepts or roles. Now, local ontologies are precisely those whose models are
closed under domain expansions, i.e., T is local if, for every I |= T and every
set ∇ disjoint with ∆I , the expansion J of I with ∇ is a model of T .

Intuitively, local ontologies contain only GCIs with a limited “global” effect.
Examples of non-local axioms are GCIs that fix the size of the domain in every
model of the ontology (e.g. > v bob for a nominal bob), or GCIs that establish
the existence of a “universal” named concept (e.g. > v Car). In contrast, role
domain and range and concept disjointness are local. In order to show that
localness is a reasonable condition to impose, we have implemented a localness
checker, tested it on about 800 ontologies available on the Semantic Web, and
found that less than 1% of them contain non-local axioms. In [2], we provide
the proofs of our initial results, a precise syntactic characterisation of localness
for SHIQ and further details on our experimental results.

Theorem 1 Let = = 〈Tup, Tdom〉 be f-compliant. If Tdom is a local SHOIQ
TBox, Tup is a SHIQ TBox (not necessarily local), and T = Tup ∪ Tdom is
instantiable, then

1. T = Tup ∪ Tdom is a conservative extension of Tup,

2. T 6|= A v B, for all concept names A ∈ Sig(Tup) and B ∈ Sig(Tdom) \ S,
and

3. T 6|= R v S, for all role names R ∈ Sig(Tup) and S ∈ Sig(Tdom) \ S.

This theorem states that our desirable properties are indeed preserved after
the merge and, most importantly, the rôles of the foundational and domain
ontologies are preserved (Items 2 and 3). Note, however, that f-compliance does
not suffice for ensuring the instantiability of the merge: only if T is consistent
and free from unsatisfiable names do the guarantees provided by the theorem
apply. Although instantiability, as opposed to conservative extensions, can be
easily checked using a reasoner, one might want to strengthen the theorem (and

Proceedings of DL 2006 179

the corresponding syntactic restrictions) to ensure the instantiability of T as
well. Also, note that localness certainly is a too restrictive safety condition
since it rules out “harmless” GCIs as well. The investigation of new f-compliance
conditions that ensure the instantiability of the integrated ontology and of less
strict safety conditions is the focus of our ongoing work.

2.2 Broadening Integration

In this scenario, an ontology T1 is to be integrated with another T2 that describes
in more detail one or more of the domains that are only touched on in T1. For
example, we may wish to integrate the Wine Ontology [9] with an ontology
describing, in more detail, the regions in which wines are produced or the kinds
of grapes they contain.

The Wine Ontology illustrates a common pattern: although ontologies usu-
ally refer to a core application domain, they also refer to other secondary do-
mains that deal with different objects. This modeling paradigm is not only
characteristic of small and medium sized ontologies, but also occurs in large,
high-quality knowledge bases, written by groups of experts. A prominent ex-
ample is the NCI Thesaurus [5], a huge ontology covering areas of basic and
clinical science. The core of NCI is focused on genes; other subject matters de-
scribed in the ontology include diseases, drugs, chemicals, diagnoses treatments,
professional organizations, anatomy, organisms, and proteins.

In this scenario, concepts in the core application domain can be defined in
terms of concepts in the secondary domains. For example, in the Wine Ontology,
a Bordeaux is described as a Wine produced in France, where France is defined in
the Regions ontology: Bordeaux v Wine u ∃producedIn.France In NCI, the gene
ErbB2 is an Oncogene that is found in humans and is associated with a disease
called Adrenocarcinoma.

ErbB2 v Oncogene u ∃foundIn.Human u ∃associatedWith.Adrenocarcinoma

Concepts in secondary ontologies, however, do not use the core concepts in
their definitions, i.e., regions are not defined in terms of wines or diseases in
terms of genes. Note, in this connection, that a ‘broadening scenario’ in this
interpretation is closely related to the way ontologies would be integrated using
the framework of E-connections, but is rather mimicking than directly adopting
the syntax and semantics of E-connections [6].

Ontologies following this pattern can evolve by expanding their domain of
discourse with knowledge about new subject matters. For example, we may
extend the Wine ontology by representing the kinds of dishes each wine is most
appropriate for, or NCI by adding information about useful publications on
cancer research. This evolution process will typically consist of adding a new

180 Regular Papers

“secondary” ontology, either developed by a group of experts, or borrowed di-
rectly from the Web. As a consequence, this ontology should be “good” as it is,
and thus we want to make sure that it will not be affected by the integration,
i.e., we should require T = Tcore ∪ Tside to be a conservative extension of Tside.

Furthermore, since we assume Tcore and Tside to cover different aspects of
the world, we require that the merged ontology T does not entail subsumptions
in any directions between non-shared concept names A ∈ Sig(Tcore) and B ∈
Sig(Tside). This condition ensures that the ontologies actually describe different
objects.

Let Tcore and Tside be ontologies with signatures Score = Ccore ∪ Rcore and
Sside = Cside ∪Rside, let the shared signature S = Score ∩Sside contain only con-
cept names, and let Rout ⊆ Rcore be a distinguished subset of roles. Intuitively,
the roles in Rout connect objects in different ontologies. Some concepts in Tcore

are defined in terms of restrictions on these roles; for example, the Bordeaux
wines are related to France via the role producedIn and the ErbB2 oncogenes
with organisms and diseases through the roles foundIn and associatedWith, re-
spectively.

Definition 3 The pair = = 〈Tcore, Tside〉 is b-compliant if: 1) S = Score∩Sside =
Ccore∩Cside, ∅ 6= Rout ⊆ Rcore; 2) for every role inclusion axiom R v S ∈ Tcore,
either both R,S ∈ Rout or both R,S /∈ Rout; 3) for every GCI C1 v C2 ∈ Tcore,
C1, C2 can be generated using the following grammar:

Ci ← A|C uD|¬Ci|∃R.Ci|∃P.A′| ≥ nR.Ci| ≥ nP.A′

where A ∈ Ccore \Cside, C, D and Ci are concepts generated using the grammar,
A′ ∈ Cside, R /∈ Rol(Rout), and P ∈ Rout.

As a consequence, concept names in Tside can only be used in Tcore through
restrictions on the “outgoing” relations. Condition 2) makes sure that the hier-
archies for the two kinds of roles are disconnected from each other. It turns put
that the Wine Ontology and the “modules” that can be extracted from NCI [3]
are local and b-compliant. As in the foundational scenario, the theorem requires
the instantiability (and thus the consistency) of the merged ontology T .

Theorem 2 Let = = 〈Tcore, Tside〉 be b-compliant. If Tcore is a local SHOIQ
TBox, Tside is a local SHIQ TBox, and T = Tcore ∪ Tside is instantiable, then

1. T = Tcore ∪ Tside is a conservative extension of Tside,

2. For all A ∈ Sig(Tcore)\S and B ∈ Sig(Tside): T 6|= A v B and T 6|= B v A,

3. For all R ∈ Sig(Tside) and S ∈ Sig(Tcore): T 6|= R v S and T 6|= S v R,

4. For all R ∈ Rout and S ∈ Rcore \Rout: T 6|= R v S and T 6|= S v R.

Proceedings of DL 2006 181

3 Outlook

So far, the problem of predicting and controlling the consequences of ontol-
ogy integration has been largely overlooked by the Ontology Engineering and
Semantic Web communities.

In this paper, we have formalized two basic scenarios for ontology integration.
In each case, we have identified a set of semantic properties that the integrated
ontology should satisfy and, under certain simplifying assumptions, we have
shown how these properties can be guaranteed by imposing certain syntactic
constraints on the ontologies to be integrated.

So far we have been very conservative in both the (syntactic) compliance
and safety conditions (localness) in the scenarios. In the future, we aim at
investigating how these can be relaxed in each case without losing the nice
properties of the integrated ontology. We expect that our results will constitute
the basis for a normative methodology for ontology integration that is both
well-founded and understandable to modelers, and that can be supported by
ontology development tools.

References

[1] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of Description Logics and
Abstract Description Systems. JAIR, 16:1–58, 2002.

[2] B. Cuenca-Grau, I. Horrocks, O. Kutz, and U. Sattler. Will my Ontologies Fit
Together? Technical report, University of Manchester, 2006. Available at http:
//www.cs.man.ac.uk/~bcg/Integration-TR.pdf.

[3] B. Cuenca-Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web
Ontologies. In Proc. of KR-2006, 2006.

[4] S. Ghilardi, C. Lutz, and F. Wolter. Did I Damage My Ontology? A Case for
Conservative Extensions in Description Logics. In Proc. of KR-2006, 2006.

[5] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler. The
National Cancer Institute’s Thesaurus and Ontology. J. of Web Semantics, 1(1),
2003.

[6] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of Abstract
Description Systems. Artificial Intelligence, 1(156):1–73, 2004.

[7] N. Noy. Semantic Integration: A Survey on Ontology-based Approaches. SIGMOD
Record, 2004.

[8] A. Rector. Modularisation of Domain Ontologies Implemented in Description
Logics and Related Formalisms, including OWL. In Proc. of FLAIRS, 2003.

[9] M.K. Smith, C. Welty, and D.L. McGuinness. OWL Web Ontology Language
Guide. W3C Recommendation, 2004.

182 Regular Papers

Description logic reasoning using the PTTP
approach

Zsolt Nagy, Gergely Lukácsy, Péter Szeredi
Budapest University of Technology and Economics

Department of Computer Science and Information Theory
{zsnagy, lukacsy, szeredi}@cs.bme.hu

Abstract

The goal of this paper is to present how the Prolog Technology The-
orem Proving (PTTP) approach can be used for ABox-reasoning. This
work presents an inference algorithm over the language ALC, and eval-
uates its performance highlighting the advantages and drawbacks of this
method.

1 Introduction and motivation

Work reported in this paper is being carried out in the Sintagma1 project, which
aims at the development of a knowledge management tool-set for the integra-
tion of heterogenous information sources. This is an extension of the Silk2 [2]
technology, for retrieving information spanning over several data sources stored
in the model warehouse of the system. The model warehouse contains UML
models as well as models given using description logics (DL) [1].

Currently we are working on extending the capabilities of the Sintagma
tool-set by designing and implementing description logic inference methods used
for querying information sources containing large amounts of data. The first step
of this research process resulted in a resolution-based transformation of ABox-
reasoning problems to Prolog [10]. This algorithm is able to answer instance-
check and instance-retrieval queries over the DL language ALC and an empty
TBox. In this paper, we examine how ABox-reasoning services can be provided
with respect to a non-empty TBox using Prolog technology.

This paper is structured as follows: Section 2 presents related work on ABox-
inference in description logics. Section 3 details the method how ABox-reasoning

1Semantic INtegration Technology Applied in Grid-based Model-driven Architectures
2Semantic Integration via Logic and Knowledge

Proceedings of DL 2006 183

is performed in our framework. Section 4 evaluates the performance of our
technique, highlighting its strong points and weaknesses. Finally, Section 5
concludes this work and addresses future research challenges.

2 Related Work

Traditional tableau-based Description Logic reasoners such Racer are slow
when performing ABox-reasoning on large amounts of instances [4]. The work
[7] describes a resolution-based inference algorithm, which is not as sensitive to
the increase of the ABox size as a tableau-based method. The system Kaon2
[8] implements this method and provides reasoning services over the description
logic language SHIQ.

The work [5] discusses how a first order theorem prover such as Vampire
can be modified and optimized for reasoning over description logic knowledge
bases.

Paper [3] describes a direct transformation ofALC description logic axioms to
Horn-clauses. Although [3] restricts the expressive power of ALC by disallowing
constructs that result in non-Horn clauses, the main advantage of the approach
is that the transformed clauses can be supplemented with other non-DL Horn-
clauses.

Both the modified Vampire and Kaon2 aim to provide inference services
over knowledge bases defined using the expressive power of the DL language in
question plus the expressive power of a restricted fragment of first order logic.
In case of Kaon2, the restrictions involving FOL components are such that the
inference algorithm remains to be a decision procedure. It has been proved in
[9] that query-answering over a knowledge base containing SHOIN axioms and
so-called DL-safe rules is decidable. However in practice, this decision procedure
has been shown to be highly inefficient due to don’t know nondeterminism (back-
track search). For efficiency reasons, only a subset of the SHOIN description
logic language is used in Kaon2.

In our previous work [10], we have provided a possible resolution-based al-
ternative to ABox reasoning over the language ALC with respect to an empty
TBox. In that approach, a query-plan was derived before the first ABox-access
and the query-plan was executed using Prolog. This solution could be viewed
as a two-phase proof of an ABox-query: first, the ABox-independent part of
the proof is constructed, resulting in the query-plan as a Prolog program, and
second, the query-plan is executed on the ABox.

Our current work deals with ALC ABox-reasoning in the presence of non-
empty TBoxes, with some restrictions on the form of the TBox-axioms. How-
ever, we do allow full negation and disjunction on each side of the DL axioms,
generalizing the transformation of [3]. In contrast with the earlier approach, we
delegate the whole reasoning process to Prolog, building on the Prolog Technology

184 Regular Papers

Theorem Proving (PTTP) approach [13].
Paper [6] introduces a fragment of the SHIQ language that can be trans-

formed into Horn-clauses. The Horn-SHIQ language presented there allows
more concept constructors than our restricted ALC framework. On the other
hand, our approach poses less restrictions on use of disjunctions.

3 Transforming DL axioms to Prolog clauses

In this section, we describe the transformation of ALC TBox-axioms into ex-
ecutable Horn-clauses. The aim of this transformation is to provide concept-
instance check and concept-instance retrieval services over an ALC knowledge-
base containing both ABox- and TBox-axioms.

In order to avoid the appearance of Skolem-functions in the transformed
Horn-clauses, some restrictions are posed on the DL-axioms. We exclude sub-
sumption axioms C v D where ∀R.E is a subconcept of the negational normal
form of C or ∃R.E is a subconcept of the negational normal form of D. Although
the method described below can cope with ABox-inference on some TBoxes con-
taining such axioms, allowing them in general may lead to non-termination when
transformed to Prolog. The problem of termination for transformed clauses con-
taining Skolem-functions may be addressed by reverting to a two-phase trans-
formation process (as in [10]) and using ordered resolution [7] in the first phase,
or by applying a proper meta-level cycle-detection technique.

The goal of this section is to show that an arbitrary DL knowledge-base
obeying the above restriction can be transformed into a set of executable Prolog-
clauses. There are three types of clauses: the TBox-clauses, ABox-facts and the
clauses belonging to the instance-check and instance-retrieval queries. Currently,
we use an interpreter written in Prolog for executing these Prolog clauses, in
order to ease the development process and experimentation. However, it is fairly
easy to transform these clauses further to code directly executable on a Prolog
system.

Description of the transformation. Let an ABox A and a TBox T be
given, where T consists of axioms C v D, where C and D are in negational
normal form, and C does not contain subconcepts of form ∀R.E, while D does
not have a subconcept ∃R.E. The axioms of the TBox are transformed into
Prolog clauses using the transformation steps below.

1. Based on the well-known mapping described e.g. in [1], we transform the
description logic axioms into first order logic formulas.

2. The formulas corresponding to the TBox-axioms are then transformed into
clausal form [12]. According to the properties of clause transformation, the
generated clauses have the following properties:

Proceedings of DL 2006 185

• clauses are disjunctions of possibly negated literals;

• all variables in the clauses are universally quantified.

Due to our restrictions posed, no Skolem functions appear in the clausal
form of the concepts. The general form of a transformed TBox-clause is
thus the following:

∨
m

Cm(xim) ∨∨
n

¬Dn(xjn) ∨∨
p

¬Rp(xkp , xlp), (1)

where the literals Cm and Dn correspond to atomic concepts, and literals
Rp correspond to role names, while x-es denote variables. Note that while
both positive and negative unary literals can appear in the clauses, binary
literals are only negative. Positive binary literals do not appear in any
clause, since this would correspond to a role negation in the corresponding
DL axiom.

3. Each TBox-clause
L1 ∨ L2 ∨ . . . ∨ Ln (2)

is transformed into n clauses of the following form (i = 1, . . . , n)

Li ← Lneg
1 ∧ Lneg

2 ∧ . . . ∧ Lneg
i−1 ∧ Lneg

i+1 ∧ . . . ∧ Lneg
n , (3)

where Li is the head of the clause, and all other literals are body literals.
Lneg is equal to ¬L if L is a positive literal, and Lneg = T if L = ¬T . A
clause of form (3) is called a contrapositive of the clause (2).

Execution in Prolog. The resulting contrapositives are then transformed to
Prolog syntax and are executed by our interpreter. The transformation and
interpretation techniques as well as the usage of contrapositives have been bor-
rowed from PTTP (Prolog Technology Theorem Prover) [13]. We briefly describe
how we handle these issues:

• Occurence of positive and negative literals : To transform an arbitrary
clause to Prolog format we introduce new predicate names. For each
concept-name C (i.e. one of Cm or Dn of Formula (1)) we add a new
predicate name nonC, and replace all occurrences of ¬C(X) by nonC(X)
both in the head and in the body. The link between the separate predicates
C and nonC is created by ancestor resolution, see below.

• Ancestor resolution: open predicate calls3 are collected in an ancestor list.
If the ancestor list contains a literal which can be unified with the first

3I.e. calls which were entered or re-entered, but have not been exited yet, according to the
Procedure-Box model of Prolog execution. [11]

186 Regular Papers

literal of the goal, then the call corresponding to the goal literal succeeds.
Program execution is divided into two branches: one reflecting the mod-
ifications caused by the ancestor resolution step, and one without using
ancestor resolution.

• Loop elimination: if the first literal of the goal can be found in the ancestor
list, we stop the given branch with a failure. The term ’can be found’
is interpreted by the == Prolog built-in predicate, which succeeds if its
operands are identical.

Prolog execution uses SLD-resolution [11], which is a linear resolution strat-
egy always resolving the first literal of the goal with the head of a corresponding
definite-clause in the Prolog-program. When all n contrapositives of a clause (2)
are available, the goal can be resolved with any literal Li of the clause. Thus,
any linear refutation can be simulated in Prolog at the expense of introducing
multiple variants of the clauses.

Soundness, completeness, termination. Soundness and completeness of
this approach is based on the properties of the PTTP technique [13], since
PTTP is a sound and complete first order theorem prover. A DL ABox-inference
problem is handled with these theorem-proving techniques by resolving the set of
produced TBox-, ABox- and query-clauses in a PTTP framework using Prolog.

Regarding termination, consider the following example: if we transform the
axiom C v ∀R.C4 into clausal form, we get the clause ¬C(x)∨¬R(x, y)∨C(y).
Executing an instance-retrieval query on concept C may lead to an infinite loop
if the literals in the contrapositives are not ordered properly. Whenever we call
the contrapositive

C(Y) :- C(X), R(X, Y).

we introduce a new variable inside the literal C, which is not detected by the loop
elimination technique. This example shows that without further provisions, the
termination of the Prolog program is not guaranteed.

Conjecture: The execution of the resulting clauses of the above described
transformation always terminates if all role literals in the body of the clauses
are moved before concept literals. This rearrangement ensures that at the time
of a concept-predicate call the variable in the call either (a) occurs in a role
literal previously called or (b) is equal to the head-argument of the clause. Role
literals can only be resolved with ABox-facts, so all variables occurring in a role
literal are unified with ABox-instances. In case (a), the variable in the concept-
predicate call is instantiated due to the previous role-predicate call. In case
(b), the head-argument of the clause is either instantiated, or is identical to an

4Suppose that C is an atomic concept.

Proceedings of DL 2006 187

older head argument. By induction, this means that any uninstantiated concept
argument must be identical to the parameter of the instance-retrieval query.
The number of clauses and instances is finite and only one variable, namely the
parameter of the query may occur in a predicate call. Therefore, for a set of
clauses, only a finite number of different predicate calls is possible. Since loop
elimination ensures that the same predicate call never executes twice, execution
always terminates.

Optimizations. Note that not all contrapositives of the clauses are needed for
acquiring a complete decision procedure. Contrapositives containing a role literal
in the head can be omitted, since they cannot be called within the execution
of an instance-check or an instance-retrieval query. Although these clauses are
never called by the program, the size of the program gets smaller, reducing
administration overhead.

It is often the case that a concept predicate is called with a ground argument.
In the presence of disjunctions, such a Prolog goal could be executed in multiple
ways. Obviously, once the goal exited successfully, there is no point in exploring
alternative branches within this goal. Therefore we modified the interpreter to
perform a Prolog cut operation (!) after a successful exit from a ground goal.
This optimization resulted in a measurable performance boost.

Composite queries. The outcome of the transformation is a set of Prolog-
clauses, which are usable for instance-check or instance-retrieval queries on pos-
sibly negated atomic concepts. For allowing ABox-inference queries containing
a composite query-concept Q, an atomic concept-name A has to be introduced
for the query-concept with the axiom A ≡ Q. The equivalence-axiom A ≡ Q
can be written in form A v Q and Q v A. From these two subsumption axioms,
only the second one has to be added to the TBox for answering the ABox query.
This axiom is transformed to Prolog clauses in the same way as the other axioms
in the TBox.

Note that directly transforming the composite query-concept Q to a Prolog
query is not sufficient, because all the contrapositives of the query-clause Q v A
may be needed for handling case-analysis. This technique is an alternative for
passing the parameter of the instance-check and the instance-retrieval queries
when handling case-analysis, as detailed in [10].

4 Performance evaluation

We have carried out the preliminary performance-evaluation of our approach
and compared it with the available state-of-the-art description logic reasoners,
such as Racer and Kaon2. Since the capabilities and usage of these systems

188 Regular Papers

are different, the goal of this comparison is to analyze the behavior of these
approaches for different reasoning tasks and not to declare a winner among these
systems. It is important to note that these inference engines provide reasoning
services over different description logic languages, so the comparison has to be
evaluated with care.

The tests were run on an AMD Athlon CPU running at 1.81GHz with 1GB
RAM and Windows XP operating system with Service Pack 2. After a test
had been performed, Racer5, Kaon26 and our Prolog interpreter7 were always
reinitialized.

We show the results for two instance-retrieval test cases. The first test (the
first five-line block of Table 1) summarizes the results of a test-case over a
TBox containing TBox-axioms with no disjunctions. The second test was run
on a TBox containing complex TBox-axioms with disjunctions and composite
concepts. The last line belongs to the second test case indicating a special case
explained below. The ABox of the tests was randomly generated using a Prolog
program.

KB # #role #concept Racer Kaon2 SICStus
characteristics instances assertions assertions
simple 500 1269 337 1.1s 0.203s 0.000s
TBox 1000 2499 688 3.1s 0.531s 0.000s
axioms 2000 2133 1333 13.2s 0.515s 0.016s

5000 12599 3300 91.4s 0.468s 0.016s
10000 25036 6627 >300s 0.891s 0.031s

complex 500 261 323 0.0s 0.078s 0.890s
TBox 1000 503 635 0.7s 0.375s 1.953s
axioms 2000 972 1392 1.5s 1.062s 7.875s

5000 2493 3367 7.1s 5.156s 44.265s
Special complex 5000 2493 3367 7.0s 3.579s 0.813s

Table 1: Test results

The first block shows that the resolution-based approaches are not as sensi-
tive to the increase of the size of the ABox as the tableau-based Racer, when
not many disjunctions are present8. When comparing execution times of Kaon2
and our interpreter, one should note that Kaon2 provides inference services over
a description logic language with higher expressive power.

5version 1.7.6
6version released on 8th December 2005
7running under SICStus Prolog version 3.12.2
8Note that in special cases as shown in [10], Kaon2 fails to scale.

Proceedings of DL 2006 189

The second test case highlights that our interpreter does not handle disjunc-
tions efficiently enough, due to the many introduced contrapositives that often
make the program explore irrelevant parts of the search space. For instance, if
we know that some TBox-axioms are not needed for answering a simple query,
the clauses belonging to the axioms not needed can be left out, reducing execu-
tion time below one second for even the ABox with size 5000. This phenomenon
is described as a special test case in the last row of Table 1. Here the ax-
ioms not needed for answering the instance-retrieval query are omitted from the
TBox. Note that for TBoxes containing less disjunctions, the execution time
was only reduced by a small constant factor when omitting irrelevant axioms.
Kaon2 seems to handle disjunctions fairly well. Although Racer was faster
than Kaon2 for the first test case, execution times increased with the overhead
of examining all the instances of larger ABoxes.

A possible reason why our approach does not handle disjunctions well enough
is that – as opposed to our previous work [10] – no preprocessing is made on
the transformed PTTP-clauses. We believe that the current approach can be
optimized by cutting the search space at compile time.

5 Conclusion and future work

This paper has described an ABox-reasoning technique for the DL languageALC
which is able to handle TBoxes obeying certain restrictions. We have written
an interpreter which executes the resolution-based proof belonging to instance-
check and instance-retrieval queries and have also evaluated the performance of
this approach, pointing out its advantages and disadvantages.

In the future, our plan is to examine how the services provided by the in-
terpreter can be included in the Prolog-program serving as the query-plan. Our
other aim is to apply optimizations guiding the Prolog execution of the refuta-
tion. By combining this approach with the approach seen in our previous work,
we believe that the performance of this reasoning technique can be largely en-
hanced. A method handling all forms of refutation involving Skolem-functions
and DL-constructs not addressed in this paper is also subject of future research.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003.

[2] Tamás Benkő, Gergely Lukácsy, Attila Fokt, Péter Szeredi, Imre
Kilián, and Péter Krauth. Information integration through rea-
soning on meta-data. In Proceedings of the Workshop “AI Moves

190 Regular Papers

to IA”, IJCAI’03, Acapulco, Mexico, pages 65–77, August 2003.
http://www.dimi.uniud.it/workshop/ai2ia/cameraready/benko.pdf.

[3] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription Logic Programs: Combining Logic Programs with Description
Logics. In Proc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 48–57. ACM, 2003.

[4] V. Haarslev and R. Möller. Optimization techniques for retrieving resources
described in OWL/RDF documents: First results. In Ninth International
Conference on the Principles of Knowledge Representation and Reasoning,
KR 2004, Whistler, BC, Canada, June 2-5, pages 163–173, 2004.

[5] Ian Horrocks and Andrei Voronkov. Reasoning support for expressive on-
tology languages using a theorem prover. In FoIKS, volume 3861 of Lecture
Notes in Computer Science, pages 201–218. Springer, 2006.

[6] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reason-
ing in very expressive description logics. In Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2005), pages
466–471. International Joint Conferences on Artificial Intelligence, 2005.

[7] U. Hustadt, B. Motik, and U. Sattler. Reasoning for description logics
around SHIQ in a resolution framework. Technical Report 3-8-04/04,
FZI, Karlsruhe, Germany, June 2004.

[8] KAON2: Ontology management tool for the semantic web.
http://kaon2.semanticweb.org/.

[9] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-
DL with rules. Journal of Web Semantics: Science, Services and Agents
on the World Wide Web, 3(1):41–60, July 2005.

[10] Zsolt Nagy, Gergely Lukácsy, and Péter Szeredi. Translating description
logic queries to Prolog. In PADL, volume 3819 of Lecture Notes in Computer
Science, pages 168–182, 2006.

[11] U. Nilsson and J. Maluszynski, editors. Logic, Programming and Prolog.
John Wiley and Sons Ltd., 1990.

[12] S.J. Russel and P. Norvig, editors. Artificial intelligence: a modern ap-
proach. Prentice Hall, 1994.

[13] M. Stickel. A Prolog technology theorem prover: A new exposition and
implementation in Prolog, Technical Note 464, SRI international, 1989.

Proceedings of DL 2006 191

Extending the SHOIQ(D) Tableaux with
DL-safe Rules: First Results

Vladimir Kolovski and Bijan Parsia and Evren Sirin
University of Maryland
College Park, MD 20740
kolovski@cs.umd.edu

bparsia@isr.umd.edu

evren@cs.umd.edu

Abstract

On the Semantic Web, there has been increasing demand for a rules-
like expressivity that goes beyond OWL-DL. Efforts of combining rules
languages and description logics usually produce undecidable formalisms,
unless constrained in a specific way. We look at one of the most expressive
- but decidable - such formalisms proposed: DL-safe rules, and present
a tableaux-based algorithm for query answering in OWL-DL augmented
with a DL-safe rules component. In this paper we present our algorithm
which is an extension of the SHOIQ tableaux algorithm and show the
preliminary empirical results. Knowing that we pay a high price in per-
formance for this expressivity, we also explore possible optimizations.

1 Introduction

Even though OWL-DL [3] has been a great success as a language for ontology
representation on the Semantic Web, there is already demand for even greater
expressivity in the form of logic programming (LP) rules. Community interest
in this area is growing, as evidenced by the recent (November 2005) creation
of the Rule Interchange Format Working Group (RIF [2]). One approach to
provide the needed additional expressivity is to couple in some way Description
Logic with LP rule systems (the hybrid approach).

However, combining expressive Description Logics with rules is non-trivial
since it can easily lead to undecidability if the integration is not restricted in some
manner. There have been a number of proposals that follow the hybrid approach

192 Regular Papers

while still retaining decidability [12, 4, 9]. The logic of DL-safe rules [12] is one
of the most expressive of these, combining SHIQ(D) and positive datalog rules.
DL-safe rules allow classes and properties from the Description Logic component
to occur freely in the head or the body of the rule, with the only restriction being
that they can be applied only to explicitly named individuals. The same authors
who coined the term also proposed the only practical reasoning algorithm for
this formalism [11]. The algorithm is based on reducing the description logic
knowledge base to a positive disjunctive datalog program, appending the DL-
safe rules to this program and using optimized deductive database techniques
for query answering.

As an alternative to a reduction to disjunctive datalog, in this paper we
present a direct tableaux algorithm for DL-safe rules, as an extension to the
SHOIQ tableaux algorithm. Instead of converting the Description Logic knowl-
edge base to a datalog program, we extend a highly optimized OWL-DL tableaux
reasoner to handle these rules. We believe that we will benefit from layering our
algorithm on top of an efficient tableaux reasoner and our initial empirical re-
sults support this claim. Also, this approach allows our algorithm to cover the
full expressivity of OWL-DL (SHOIN (D)) and DL-safe rules.

In the following section, we provide preliminaries and definitions of terms
used later in this paper. Then, after presenting our algorithm, we discuss its
performance in the preliminary tests, and possible optimizations and future
work.

2 Background

In this section we provide a brief overview of the terms and notation used later in
the paper. We assume that the reader is familiar with the syntax and semantics
of SHOIN (D). Before introducing DL-safe rules, we need to describe the
standard notation we will be using for rules. A term is either a constant (denoted
by a, b, c) or a variable (denoted by x, y, z). An atom has the form P (s1, ..., sn),
where P is a predicate symbol and si are terms. A literal is an atom or a negated
atom. A rule has the form

H ← B1, . . . , Bn

where H and Bi are atoms; H is called the rule head, and the set of all Bi is
called the rule body. A program P is a finite set of rules. As for the semantics,
we treat rules as logical implications, thus they can also be represented as:

H ∨ ¬B1 ∨ ¬B2 ∨ . . .¬Bn

Definition 1 (Semantics of a DL-safe Knowledge Base)

Proceedings of DL 2006 193

We start with a SHOIN (D) knowledge base, K. Let VC, VIP , VDP be count-
able and pair-wise disjoint sets of class, object property and datatype property
names respectively. Let VP be a set of predicate symbols that can be used as atoms
in the rules, such that VC ∪VIP ∪VDP ⊆ VP . A DL-atom is an atom of the form
A(s) were A belongs to VC, or of the form R(s, t) where R belongs to VIP ∪VDP .
A rule r is called DL-safe if each variable in r occurs in a non-DL-atom in the
rule body. A program is DL-safe iff all of its rules are DL-safe.

Let K be a SHOIN (D) knowledge base and P a set of DL-safe rules. A
DL-safe Knowledge Base is a pair (K, P). Since SHOIN (D) is a subset
of first order logic, we can give the semantics of (K, P) by π(K)∪P where π(K)
is a translation mapping SHOIN (D) to first order logic.

3 Tableaux Algorithm

In this section we present a tableaux-based algorithm for deciding the satisfia-
bility of DL-safe knowledge bases. Our algorithm is inspired by the decidability
proof for query answering in combined SHOIN (D) and DL-safe rules [12]. The
main difference is that we push the rule reasoning inside the tableaux algorithm
in order to get some goal directed behavior. Our approach extends the SHOIQ
algorithm [7] thus we are able to handle the full expressivity of OWL-DL and
DL-safe rules. We assume that the reader is familiar with the basics of the
SHOIQ algorithm (detailed description is available in [7]).

The main reasoning service that our algorithm provides is query answering.
More specifically, answering for a given query α and a DL-safe knowledge base
KB = (K, P) whether KB |= α. This can be reduced to a consistency check of
KB ∪ {¬α} , so KB |= α iff KB ∪ {¬α} is not consistent.

To check whether a DL-safe KB (K, P) is consistent, we need to perform
a consistency check of its ABox with respect to the TBox, the RBox and the
rules. Since it was shown in [7] that we can reduce reasoning w.r.t. general
TBoxes and role hierarchies to reasoning w.r.t. role hierarchies only, from now
on without loss of generality we will assume that we have internalized the TBox
and we do reasoning w.r.t. to the RBox and the rules program.

Since ABoxes in general involve multiple individuals with arbitrary role rela-
tionships between them, the completion algorithm will work on a forest instead
of a tree. Such a forest is a collection of trees whose root nodes correspond to
the individuals present in the input ABox. The individuals in the input ABox
are the explicitly asserted individuals, and are the only individuals to which the
rules in P are applicable. A formal description of a completion forest is given
in the following definition.

Definition 2 (SHOIQ + DL-safe Completion Forest) (extended version of [8])
A completion forest F for a SHOIQ Abox A w.r.t a role hierarchy R and a

194 Regular Papers

DL-safe KB (K, P) is a collection of trees whose distinguished root nodes may be
connected by edges in an arbitrary way. The completion forest can be described
as a directed graph G = (V ,L, E , P, 6=) where each individual x ∈ V can be labeled
with a set of concept labels L(x) and each edge (x, y) can be labeled with a set of
role names E(x, y). P is a program consisting of DL-safe rules Ri ,each one of
the form

Hi ∨ ¬Bi1 ∨ ¬Bi2 ∨ . . .¬Bin

We also keep track of inequalities between nodes of the graph with a symmetric
binary relation 6= between the nodes of G. Given a SHOIQ Abox A, a role
hierarchy R and a DL-safe program P , the algorithm initializes a completion
forest F that contains a root node xi

0 for each individual ai ∈ A, and an edge
(xi

0, x
j
0) if A contains an assertion (ai, aj) : R for a role R. The labels of these

nodes and edges are initialized as follows:

L(xi
0) = {C|ai : C ∈ A}

L((xi
0, x

j
0)) = {R|(ai, aj) : R ∈ A}

xi
0 6= xj

0 iff ai 6= aj ∈ A

For the purpose of our paper, we assume standard blocking and clash defini-
tions [7].

The tableaux algorithm starts with the completion forest F . It applies the
completion rules and stops when a clash occurs. The ABox A is consistent
w.r.t. to R and P iff the completion rules can be applied in a way that they yield
a complete and clash-free completion forest, and inconsistent otherwise.

Our extension of the algorithm is in the form of a new completion rule,
R-rule 1. We reuse all of the original SHOIQ completion rules, and add the R-
rule. The R-rule starts with generating all of the possible ground instantiations
for a DL-safe rule (we will refer to them as bindings henceforth). We need to
be careful with the bindings because only named individuals not introduced
by the tableaux expansion rules are considered. For every such binding, we
check whether at least one of the ground literals holds true. If that is not the
case, we have found a clash and the DL-safe knowledge base is inconsistent.
Thus, for every literal in the rule we create a disjunction branch, in which we
assert that the literal holds (in a manner explained in Figure 1) - this branch
is then explored further. This is the most naive version of the algorithm, and
optimizations are discussed in the next sections.

Please note here that for brevity, we do not include all of the SHOIQ
tableaux completion rules (they are defined in [7]). We only present our new
expansion rule which is to be applied with lowest priority.

1Thanks to the anonymous reviewer for the suggestion

Proceedings of DL 2006 195

→ R rule:
foreach DNF clause Ri ∈ P :

foreach ground substitution to Ri that produces a ground clause G :

foreach monadic ground literal B(a) ∈ G :
if B /∈ L(a), then create a new branch where L(a) = L(a) ∪ {B}

foreach dyadic ground literal B(a, b) ∈ G :
if B is of type ¬A(a, b) and ∀A.¬{b} /∈ L(a), then

create a new branch where L(a) = L(a) ∪ {∀A.¬{b}}

if B is of type A(a, b) and (a, b) /∈ G then
create a new branch with G = G∪ {(a, b)} and L(a, b) = {A}

if B is of type A(a, b), (a, b) ∈ G and A /∈ L(a, b) then
create a new branch where L(a, b) = L(a, b) ∪ {A}

Figure 1: New Expansion Rule

4 Implementation and Optimizations

We implemented a proof of concept by extending the open source reasoner Pel-
let [1]. Obviously, the bottleneck of the algorithm is the non-determinism in-
troduced by creating and exploring tableaux branches for every binding. Thus,
as an easy optimization, we check whether, for a particular binding, the rule
ground clause is trivially satisfied (one of the disjuncts occurs in the tableaux).
If this is the case, we do not generate any new branches for that clause in the
tableaux.

More advanced, yet practical, optimizations are possible. For example, we
do not need to generate all possible groundings of the rules. Thus, we use a
fix-point evaluation procedure as an optimization for our algorithm. By running
that procedure first, we make sure that all of the obvious rules are fired - by
obvious we mean those rules whose patterns we can match syntactically against
the individuals in the completion forest. We use the efficent pattern matching
RETE [5] algorithm for this purpose. After the fixpoint is reached, we continue
with our tableaux-based algorithm. The speed up comes from the fact that for a
given grounding for a rule, if the rule was already fired in the pattern-matching
phase, now we do not have to try each disjunct of its horn clause separately,
thus decreasing non-determinism.

Another optimization would be to sort the rules after the fix point optimiza-
tion and before running our algorithm. For a given rule r:

H ← B1, . . . , Bn

we would like to try those groundings that satisfy the maximum amount of

196 Regular Papers

conditions Bi first. By doing this we will succeed in firing the ’almost obvious’
applications of the rules first, and add more information in the concept labels
of the tableaux. In general, the more information we have in the concept labels,
the higher the chances to reach a clash when grounding the horn clauses of the
rules, yielding less non-determinism in the algorithm.

5 Evaluation

We conducted an experimental study to compare the performance of our ap-
proach with KAON2 [10]. Our test case of choice was a modified version of the
LUBM benchmark [6], with one university and increasing ABox sizes. There are
46 defined classes and 30 object properties in the ontologies. We extended this
ontology by adding a rules component consisting of 2 rules:

GraduateStudent(X):-
Person(X), takesCourse(X, Y), GraduateCourse(Y).

SpecialCourse(Z):-
FullProfessor(X), headOf(X, Y), teacherOf(X, Z).

We ran the experiments on an IBM ThinkPad T42 with Pentium Centrino
1.6GHz processor and 1.5GB of memory. The performance results (time in
milliseconds) for the consistency check of the ontologies are shown in table 1.
Rule Branch stands for the number of additional branches introduced by the
R-rule.

No Size of ontology Pellet DL-Safe KAON2
Rule Branches Consistency Check Time Consistency Check Time

1 LUBM, 1 rule, consistent, 17 individuals 34 100 661
2 LUBM, 1 rule, consistent, 94 individuals 107 250 621
3 LUBM, 1 rule, inconsistent, 94 individuals 120 381 651
4 LUBM, 2 rules, consistent, 17 individuals 109 421 701
5 LUBM, 2 rules, inconsistent, 94 individuals 422 951 691
6 LUBM, 2 rules, inconsistent, 94 individuals 0 90 691
7 LUBM, 2 rules, consistent, 94 individuals 422 1232 5748

Table 1: Evaluation Results for Consistency Checking. Rule Branches stands
for the total number of branches introduced by the R-rule

Please note that the first rule has 2 variables, and the second has 3. The
additional variable in the second rule impacts the performance, since there are
considerably more bindings possible for that rule. As an example of the expo-
nential blow up of the bindings, consider that in the case of LUBM with two
rules and 94 individuals, in the naive implementation there were 804264 bind-
ings to try. This observation lead us to another optimization strategy - prune

Proceedings of DL 2006 197

the bindings search space. To accomplish this, we embed the trivial satisfiability
check in the generation of the bindings. This strategy, along with the imple-
mentation of the RETE algorithm as a preprocessor, improved the performance
considerably.

We present our results compared to KAON2 in Table 1. As it can be seen,
for smaller cases we perform favorably, however the faster rate of increase of
consistency check time on our part suggests that for larger ontologies we will be
slower than KAON2. The last two test cases merit more discussion. In case of
6), after the RETE algorithm fired the obvious rules we got a clash early and
avoided generation of groundings. In the lasr test case, we added another class ,
OverachievingProfessor which is equivalent to a FullProfessor who teaches
at least 9 courses. This was to demonstrate how we perform better in presence
of cardinality constraints.

6 Related Work

The most relevant related work to ours is the only other practical reasoning
algorithm that processes DL-Safe KBs . The algorithm is described in [11]
(implemented in [10]) and is based on the SHIQ(D) logic and having restricted
the DL-atoms in rules to concepts and simple roles. The algorithm is based on
reducing the description logic knowledge base to a positive disjunctive datalog
program which entails the same set of ground facts as the original knowledge
base. As shown in Section 5, our algorithm compares reasonably well for smaller
ontologies and for cases when cardinality constraints are used.

7 Conclusions and Future Work

This paper makes the following contributions:

• Provides a direct tableaux procedure for the combination of OWL-DL and
DL-safe rules.

• Provides preliminary empirical results of an implementation and discussion
of possible optimizations.

As for our next steps, we noticed that a the reordering of the literals in the
rule makes a noticeable difference in the running time, so we will try to work
out the optimum orderings. Also, in longer term, we plan to work on evolving
our algorithm toward SWRL by integrating a first order Free Variable tableaux
procedure with the SHOIQ algorithm.

198 Regular Papers

References

[1] Pellet - OWL DL Reasoner. http://www.mindswap.org/2003/pellet.

[2] Rule interchange format working group, 2005.
http://www.w3.org/2005/rules/wg.

[3] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. Web Ontology Lan-
guage (OWL) Reference Version 1.0. W3C Working Draft 12 November
2002 http://www.w3.org/TR/2002/WD-owl-ref-20021112/.

[4] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Al-log: integrating
datalog and description logics. Journal of Intelligent Information Systems,
10:227–252, 1998.

[5] C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

[6] J. Heflin, Z. Pan, and Y. Guo. The lehigh university benchmark LUBM.
http://swat.cse.lehigh.edu/projects/lubm/, 2003.

[7] I. Horrocks and U. Sattler. A tableaux decision procedure for shoiq. In
Proc. of IJCAI 2005, pages 448 – 453.

[8] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the
description logic shiq. In D. MacAllester, editor, Proc. of the CADE 2000,
number 1831, pages 482–496. Springer-Verlag, 2000.

[9] A. Levy and M.-C. Rousset. CARIN: A representation language combining
horn rules and description logics. Artificial Intelligence, 104(1-2):165–209,
1998.

[10] B. Motik. KAON2 - ontology management for the semantic web.
http://kaon2.semanticweb.org/, 2005.

[11] B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitt Karlsruhe, Germany, January 2006.

[12] B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules.
In Proc. of ISWC 2004, pages 549–563.

Proceedings of DL 2006 199

Description Logic Reasoning for Dynamic
ABoxes

Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin,
and Adtiya Kalyanpur

Maryland Information and Network Dynamics Laboratory
8400 Baltimore Ave., College Park, MD, 20740 USA

{halasche,evren,aditya}@cs.umd.edu,bparsia@isr.umd.edu

1 Introduction

Recently, there has been interest in providing formal representation of Web con-
tent, which can then be processed using automated reasoning techniques. Due
to data sources that produce fluctuating data, there exists a variety of descrip-
tion logic reasoning use cases which require frequent updates at the assertional
level. These include prominent web services frameworks (e.g., OWL-S) that use
description logics for service discovery and matchmaking, where devices register
or deregister their descriptions (and supporting ontologies) quite rapidly. Addi-
tionally, Semantic Web portals often allow content authors to modify or extend
the ontologies which organize their site structure or page content. Lastly, one of
the common uses of description logic reasoners is in ontology editors. Most edi-
tors do not do continuous reasoning while one is editing, relying on an analogue
of the edit-compile-test loop of most programming environments.

While there exists such use cases for reasoning under update, today’s descrip-
tion logic reasoning services have been developed considering relatively static
knowledge bases. In this paper, we investigate the process of incrementally up-
dating tableau completion graphs created during consistency checking in the
expressive description logics SHOQ(D) and SHIQ(D), which correspond to
a large subset of the W3C standard Web Ontology Language, OWL-DL. We
present an algorithm for updating completion graphs under both the addition
and removal of ABox assertions; this provides a critical step towards reasoning
over fluctuating/streaming data, as it has been shown that in KBs with sub-
stantially sized ABoxes, consistency checking can dominate reasoning time. We
also provide an empirical analysis of the optimizations through an experimental
implementation in an open source OWL-DL reasoner, Pellet.

200 Regular Papers

2 Background

DL tableau-based algorithms decide the consistency of an ABox A w.r.t a TBox
T (by TBox, we are additionally referring to all axioms for properties) by trying
to construct (an abstraction of) a common model for A and T, called a com-
pletion graph [5]. Formally, a completion graph for an ABox A with respect to
T is a directed graph G = (V , E ,L, ˙6=). Each node x ∈ V is labeled with a set
of concepts L(x) and each edge e = 〈x, y〉 with a set L(e) of role names. The
binary predicate ˙6= is used for recording inequalities between nodes. This graph
is constructed by repeatedly applying a set of expansion rules.

For ABox updates, we consider addition and deletion of individual equality
and inequality assertions x = y and x 6= y, concept assertions C (x) and role
assertions R(x , y). Updating ABox assertions in the presence of a TBox and
an RBox brings up several issues with the semantics. For the purposes of this
paper we use a straight-forward update semantics, which we call Edit Seman-
tics. Intuitively, Edit Semantics can be described as an update in which all
new ABox assertions are directly added (or removed) to the KB and no further
changes/revisions are made. As the above example shows removing an assertion
from the ABox under these semantics will not guarantee that the removed as-
sertion will not be entailed anymore. Furthermore, an addition of a new axiom
may cause inconsistencies in the KB as no additional changes can be made be-
sides the addition or removal invoked by the update. Formally, we desribe this
semantics as:

Definition 1 (Edit Semantics) Let S be the set of assertions in an initial ABox
A. Then under Edit Semantics, updating S with an an ABox addition (resp.
deletion) α, written as A + α (resp. A− α), results in an updated set of ABox
axioms S ′ such that S ′ = S ∪ {α} (resp. S ′ = S \ {α}).

This semantics might be a little unintuitive (especially from a belief revision
point of view) but real world use of the update semantics is directly present
in ontology editors and many document-oriented servers, e.g. Semantic Web
Service repositories. For example, an OWL-S Web Service description can be
seen as a set of ABox assertions and publishing/retracting this service descrip-
tion to/from a repository would be typically done under Edit Semantics. Edit
semantics additionally aligns with the Formula based update semantics defined
in [9].

3 Update Algorithm

The goal of the algorithm presented here is to update a previously constructed
completion graph in such a way that it is still a model of the KB (if one exists).

Proceedings of DL 2006 201

The approach presented here is applicable to the Description Logics SHOQ
[3] and SHIQ [4], as the difference between the two completion algorithms is
independent of the update algorithm.

3.1 ABox Additions

Conceptually, tableau algorithms for SHOQ [3] and SHIQ [4] can be thought
of as incremental in nature - expansion rules are applied in a non-deterministic
manner to labels in the completion graph. Hence, new ABox assertions can be
added even after previous completion rules have been fired for existing nodes
and edges in the graph. After the addition, expansion rules can subsequently be
fired for the newly added nodes, edges and their labels.

In order to update a completion graph upon the addition of a type assertion,
C(x), the algorithm first checks if the individual exists in the completion graph.
If x 6∈ V , then x is added to V . Then C is added to L(x), if it does not already
exist. If an individual inequality relation, x 6= y, is added to the completion
graph, the algorithm checks if x ∈ V and y ∈ V . If either do not exists, then
they are added to the graph. Additionally, if the x 6= y 6∈ x ˙6=y, then it is
added. Alternatively, if an individual equality relation, x = y, is added to the
completion graph, the algorithm checks if x ∈ V and y ∈ V . If either do not
exists, then they are added to the graph. Additionally, x and y are merged.
Lastly, if a role, R(x, y), is added to the ABox and 〈x, y〉 6∈ E , then 〈x, y〉 is
added to E and R is added to L(〈x, y〉). If however, 〈x, y〉 ∈ E but R 6∈ L(e),
then R is added to L(x).

After the graph has been updated, the completion rules are reapplied to the
updated completion graph, as the update may induce additional expansion rules
to be fired. We note here that if there has previously been a deletion update,
then previously explored branches which had a clash must be re-explored as the
deletion could have removed the axiom which caused the clash.

3.2 ABox Deletions

When updating a completion graph under ABox axiom removals, components
(nodes, edges, labels, etc.) in the graph that correspond to the removed axiom
cannot be simply removed. This is because as completion rules are applied,
newly added portions of the graph are dependent on the presence of the original
axioms in the KB. By deleting an ABox assertion, components of the graph that
are dependent on that assertion need to be updated as well.

In order to account for this, we propose using axiom pinpointing [6], which
tracks the dependencies of graph components on original source axioms from
the ontology through the tableau expansion process. More specifically, the ap-
plication of the expansion rules triggers a set of events that change the state of

202 Regular Papers

the completion graph, or the flow of the algorithm. In [6] a set of change events
is defined, including adding labels to nodes and edges, etc. In order to record
the changes on the completion graph, [6] introduces a tracing function, which
keeps track of the asserted axioms responsible for changes to occur. The tracing
function, τ , maps each event e ∈ E to a collection of sets, each set containing a
fragment of K (axioms) that cause the event to occur. This tracing function is
maintained throughout the application of tableau expansion rules defined in [5].

For purpose of this work, the original set of change events has been extended
[2] to include all possible events that can occur during the application of expan-
sion rules. The extension of events includes removing nodes, edges, labels (in
case of merges), adding nodes and edge, etc. Additionally the tracing function
maintenance through expansion rule application has been extended. Although
the tracing extension has been provided for SHOIQ, it is trivial to see how they
are applied to SHIQ and SHOQ completion strategies. For brevity, further
details are omitted, however they can be found in [2].

In general, the update algorithm for deletion works as follows. When an
ABox axiom is removed, the algorithm performs a lookup in the graph for all
change events whose axiom traces include the axiom number of the deleted
axiom. These events are rolled-back if and only if their axiom trace sets only
include sets which contain the deleted axiom, possibly among other axioms.
By roll-back we refer to simply undoing (the inverse) the event (e.g., rolling
back the event Add(x,V) would be the process of removing x from V). If there
exists additional axiom traces for that particular event that do not include the
removed axiom, then only the sets including the removed axiom are deleted from
the axiom trace set; in this situation the actual event is not rolled-back. This is
intuitive as there still exists support for that particular event.

As in the approach for additions, the completion rules must be reapplied to
the updated completion graph as it is possible for the graph to be incomplete
for the KB. Axiom tracing additionally requires a slight modification to the
update approach for ABox additions. For example, in the case that a individual
type assertion is added to the KB, the algorithm must add a new tracing set
to the axiom trace for the affected components (this set will consist of the
new axiom number). The update algorithm (UPDATE(G, α)) is provided in
Figure 1. Note that deps (dependents) is the inverted tracing function index.
Additionally, the operator ∪∗ is defined as follows: let S1 = {S1

1 , ..., S
1
m} and

S2 = {S2
1 , ..., S

2
n} be two collections of sets, then:

S1
i (1 ≤ i ≤ m) ∈ S1 ∪∗ S2 iff S1

i 6⊂ S2
j for all j, 1 ≤ j ≤ n

S2
j (1 ≤ j ≤ n) ∈ S1 ∪∗ S2 iff S2

j 6⊂ S1
i for all i, 1 ≤ i ≤ m

Due to space limitation soundness proofs for the update algorithm are omit-
ted, however they can be found in a more detailed technical report1.

1Description Logic Reasoning for Dynamic ABoxes, UMIACS Technical Report. Available

Proceedings of DL 2006 203

function UPDATE(G, α)
if α is an addition then

if α is a x 6= y or x = y then
let op be the operation, such that op ∈ {=, 6=}
if x 6∈ V then
V ← V ∪ {x}

if y 6∈ V then
V ← V ∪ {y}

if op is 6= then
if x 6= y ∈ x ˙6=y then add it

if op is = then
Merge x and y

τ(x op y)← τ(x op y) ∪∗ {{α}}
τ(Add(x,V))← τ(Add(x,V)) ∪∗ {{α}}
τ(Add(y,V))← τ(Add(y,V)) ∪∗ {{α}}
deps(α)← deps(α) ∪ {{x op y}{Add(x,V)}{Add(x,V)}}

else if α is a individual type addition, (C(x)) then
if x 6∈ V then
V ← V ∪ {x}
L(x)← L(x) ∪ {C}
τ(Add(x,V))← τ(Add(x,V)) ∪∗ {{α)}}
τ(Add(C,L(x)))← τ(Add(C,L(x))) ∪∗ {{α}}
deps(α)← deps(α) ∪ {{Add(x,V)}{Add(C,L(x))}}

else if α is a role assertion addition, R(x,y) then
if 〈x, y〉 6∈ E then
E ← E ∪ {〈x, y〉}
L(〈x, y〉)← L(e) ∪ {R}
τ(Add(x,V))← τ(Add(x,V)) ∪∗ {{α)}}
τ(Add(y,V))← τ(Add(y,V)) ∪∗ {{α)}}
τ(Add(〈x, y〉, E))← τ(Add(〈x, y〉, E)) ∪∗ {{α)}}
τ(Add(R,L(〈x, y〉)))← τ(Add(R,L(〈x, y〉))) ∪∗ {{α}}
deps(α)← deps(α) ∪ {{Add(x,V)}{Add(y,V)}{Add(〈x, y〉, E)}{Add(R,L(〈x, y〉))}}

Apply expansion rules to G
if there is a clash then

Perform backjumping
else if α is a deletion then

events← deps(α)
deps(α)← ∅
for each e ∈ events do

traces← τ(e)
for each t ∈ traces do

if α ∈ t do
traces← traces \ t

if traces = ∅ do
roll-back e

τ(e)← traces
Apply expansion rules to G
if there is a clash then

Perform backjumping
return G

Figure 1: Pseudo-code of update procedure for SHOQ(D) and SHIQ(D) ABoxes

204 Regular Papers

4 Implementation and Evaluation

We have implemented the approach presented in this paper in an open source
OWL-DL reasoner, Pellet 2. In order to evaluate our update algorithm, we have
performed an emperical evaluation using two different KBs with large ABoxes -
the Lehigh University Benchmark (LUBM)3 and AKT Reference Ontology 4.

Three tests were run over three KBs consisting of one, two, and lastly three
universities from the LUBM dataset generator. First an initial consistency check
was performed and then in each test, a random update was selected which was
used to update the KB. In the regular version of the reasoner, the cached comple-
tion graph was discarded, while in the optimized reasoner the update algorithm
was utilized. For each KB size, varying sized additions and deletions were ran-
domly selected from the dataset. Update sizes include single axiom, twenty-five
axioms, and fifty axioms (individual and/or role). Each test was performed
twenty-five times and the results were averaged. Expressivity and KB statistics
are provided in Table 1. Results for additions and removals in the LUBM

Name Classes / Properties / Individuals / Assertions Expressivity
LUBM-1 Univ 43 / 32 / 18,257 / 97,281 SHI
LUBM-2 Univ 43 / 32 / 47,896 / 254,860 SHI
LUBM-3 Univ 43 / 32 / 55,110 / 295,728 SHI
AKT-1 160 / 152 / 16,505 / 70,948 SHIF
AKT-2 160 / 152 / 32,926 / 143,334 SHIF

Table 1: LUBM and AKT Portal Dataset Statistics

test are presented in Figure 2 (timing results are shown in milliseconds and the
scale is logarithmic). We note that the ’0’ axiom value represents the initial
consistency check. In both versions of the reasoner, initial consistency checks
are comparable. However for both update types, performance improvements
ranging from one to three orders of magnitude are achieved under updates in
the reasoner with the optimized update algorithm. This is due to the avoidance
of re-firing of completion rules by maintaining the previous completion graph;
therefore very few (if any in some cases) completion rules must be refired. This
provides direct empirical evidence for the effectiveness of the update algorithm.
In a second evaluation, two datasets5 adhering to the AKT Reference ontology
were used (statistics shown in Table 1). The tests were structured in the same
manner as the LUBM test. Again, each test was performed twenty-five times
and the results are averaged over these iterations. All timings are in milliseconds
and the scale is logarithmic. Similar to the LUBM test, update performance is

at http://www.mindswap.org/papers/2006/aboxUpdateTR2006.pdf
2Pellet OWL-DL Reasoner: http://www.mindswap.org/2003/pellet/
3LUBM Ontology: http://swat.cse.lehigh.edu/projects/lubm/
4AKT Ontology: http://www.aktors.org/publications/ontology/
5Hyphen-REA: http://www.hyphen.info/rdf/hero complete.zip

Proceedings of DL 2006 205

Figure 2: Addition and Removal Updates of LUBM and AKT datasets

improved between one to three orders of magnitude. Note that the performance
of the update is better in the LUBM test cases; this is primarily due to the in-
creased complexity of the AKT Reference Ontology. Therefore, a larger number
of expansion rules are applied after the update. However the update algorithm
greatly outperforms the regular reasoner, again demonstrating the effectiveness
and overall impact of the update algorithm.

5 Related Work and Conclusion

To our knowledge there has been no previous work in DL reasoning algorithms
for incremental maintenance of completion graphs. We do note that this work
can be paralleled to view maintenance and truth maintenance; however we deal
with a more expressive logic and a different proof theory. There has also been
recent work in optimizing incremental instance retrieval in expressive description
logics [1]; however previous work has not addressed the notion of updating the
completion graphs for consistency checking. Additionally, in [7, 8] the authors
specify update semantics for descriptions logics; however this work is less related
to belief revision and is independent as we are concerned with maintaining the

206 Regular Papers

internal state of the reasoner.
In this paper, we have presented an algorithm for updating completion graphs

for the Description Logics SHIQ(D) and SHOQ(D) under both the addition
and removal of ABox assertions, providing a critical step towards reasoning
procedures for fluctuating or streaming data. We have provided an empirical
analysis of the algorithm through an experimental implementation in the Pellet
reasoner. Our initial results are very promising as they demonstrate orders of
magnitude performance improvement.

References

[1] Volker Haarslev and Ralf Moller. Incremental query answering for imple-
menting document retrieval services. In International Workshop on Descrip-
tion Logics, pages 85–94, 2003.

[2] Christian Halaschek-Wiener, Aditya Kalyanpur, and Bijan Parsia. Extend-
ing tableau tracing for abox updates. In UMIACS Tech Report, 2006.
http://www.mindswap.org/papers/2006/aboxTracingTR2006.pdf.

[3] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description
logic. In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

[4] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In Proc. of the 6th Int. Conference on Logic for Program-
ming and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes
in Artificial Intelligence, pages 161–180. Springer-Verlag, 1999.

[5] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005).
Morgan Kaufman, 2005.

[6] Aditya Kalyanpur, Bijan Parsia, Bernardo Cuenca-Grau, and Evren Sirin.
Tableau tracing in shoin. UMIACS Tech Report.

[7] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic
aboxes. In International Conference of Principles of Knowledge Representa-
tion and Reasoning(KR), 2006.

[8] Mathieu Roger, Ana Simonet, and Michel Simonet. Toward updates in de-
scription logics. In International Workshop on Knowledge Representation
meets Databases, 2002.

[9] M. Winslett. Updating logical databases. In Updating Logical Databases.
Cambridge University Press, 1990.

Proceedings of DL 2006 207

Beyond Asserted Axioms: Fine-Grain
Justifications for OWL-DL Entailments

Aditya Kalyanpur1 and Bijan Parsia1 and Bernardo Cuenca Grau2

University of Maryland, USA1, University of Manchester, UK2

aditya@cs.umd.edu, bparsia@isr.umd.edu, bcg@cs.man.ac.uk

1 Motivation

The Ontology Engineering community widely agrees on the importance of helping
the user understand the output of a DL reasoner. The most recent approaches to the
problem [4] [3] are based on the notion of aMinimal Unsatisfiability Preserving Sub-
TBoxes(MUPS). Roughly, a MUPS for an atomic conceptA is a minimal fragment
T ′ ⊆ T of a TBoxT in whichA is unsatisfiable.

For example, given the TBox:

1: A t C v B u ∃R.D u E u ¬B, 2: C v Ft ≥ 1.R
3: A v E u ∀R.¬D, 4: B v ¬D t E

where the conceptA is unsatisfiable, the TBoxT ′ = {1} is a MUPS forA in T .
In our earlier work [2], we extended the notion of a MUPS to arbitrary entailments

in SHOIN and devised a non-standard inference service,axiom pinpointing, which,
givenT any of its logical consequencesα, determines the minimal fragments ofT in
whichα holds.

However, these services, though useful for debugging and explanation purposes,
suffer from a fundamentalgranularityproblem: since they work at the asserted axiom
level, they fail to determine whichpartsof the asserted axioms areirrelevant for the
particular entailment under consideration to hold. For instance, in our example, the
conjunctE in axiom1 is irrelevant for the unsatisfiability ofA. Moreover, additional
parts of axioms that could contribute to the entailment aremasked, e.g., the axioms
1, 3 can be broken down intoA v ∃R.D andA v ∀R.¬D which also entail the
unsatisfiability ofA, however, this condition cannot be captured.

In this paper, we aim at extending the axiom pinpointing service to captureprecise
justifications, which are at a finer granularity level than the original asserted axioms.
In this context, we provide a formal notion of precise justification and propose a
decision procedure for the problem. We discuss implementation details of the service

208 Regular Papers

and show that it is feasible in practice. Our results are applicable toSHOIN and
hence to OWL-DL.

2 Precise Justifications

Since we aim at identifying relevant parts of axioms, we define a function that splits
the axioms in a TBoxT into “smaller” axioms to obtain an equivalent TBoxTs that
contains as many axioms as possible.

Definition 1 (split KB) Given aSHOIN conceptC in negation normal form (NNF),
the functionsplit(C) returns a set of concepts, inductively defined as follows:

split(C)← C, if C is A, ¬A,≥ n.R,≤ n.R, = n.R,>,⊥ or a nominal node{o}
split(C uD)← split(C) ∪ split(D)
split(C tD)← (split(C)⊗t split(D))
split(∀R.C)← ∀R.

∏
(split(C))

split(∃R.C ′) – we get two cases depending onC ′

if C ′ is of the formC uD,
split(∃R.C ′)← ∃R.E ∪ split(¬E t C) ∪ split(¬E tD) ∪ split((¬C t ¬D) t E), whereE is a fresh concept

else,
split(∃R.C ′)← ∃R.

∏
split(C ′)

Given a KB= {α1, α2, ...αn}, where each axiomαi is of the formCi v Di, let
Cα be the concept representingα, i.e., ¬Ci t Di, converted to NNF. Then,Ts =
split KB() =

∑> v Cs for each conceptCs ∈ split(¬C1 t D1) ∪ split(¬C2 t
D2)..split(¬Cn tDn).

The idea of the above function is to rewrite the axioms in in a convenient normal
form and split across conjunctions in the normalized version, e.g., rewritingA v
C u D asA v C, A v D.1 In some cases, we are forced to introduce new concept
names, only for the purpose of splitting axioms into smaller sizes (which prevents any
arbitrary introduction of new concepts); for example, since the axiomA v ∃R.(C u
D) is not equivalent toA v ∃R.C, A v ∃R.D, we introduce a new concept name,
sayE, and transform the original axiom into the following set of “smaller” axioms:
A v ∃R.E, E v C, E v D, C uD v E.

Table 1 shows an algorithm to split a TBox based on the above definition. In this
algorithm, we also keep track of the correspondence between the new axioms and the
axioms inT by using a functionσ.

1Note that the⊗t operator generates a cross-product of disjunctions, e.g,split((A u B) t (C u
D)) = {(A t C), (A tD), (B t C), (B tD)}; and the

∏
operator applies the set of concepts to the

preceding universal or existential operator, e.g.,split(∀R.(B u (C tD))) = {∀R.B, ∀R.(C tD)}.

Proceedings of DL 2006 209

Algorithm: Split KB
Input: TBox T
Output: TBox Ts, Axiom Correspondence Functionσ
Ts ← ∅
initialize axiom correspondence functionσ
initialize substitutioncache
for eachsubclass axiomα ∈ T

from α := C v D generateCα := ¬C tD
normalizeCα to NNF (pushing negation inwards)
Ts ← Ts ∪ {> v Cα}
σ({> v Cα})← α

while there exists an axiom{> v Cα} ∈ Ts s.t. can-split(Cα) 6= ∅,
Ts ← Ts − {> v Cα}
〈T, v, π,A, B〉 ← can-split(Cα)
if Lt(〈≺t (v), v〉) 6= ∃R, then

CA ← Cα[A]π; σ(CA)← σ(CA) ∪ σ(Cα); Ts ← Ts ∪ {> v CA}
CB ← Cα[B]π; σ(CB)← σ(CB) ∪ σ(Cα); Ts ← Ts ∪ {> v CB}

else
if cache(A uB) = ∅, then

let E be a new concept not defined inTs

Ts ← Ts ∪ {E v A,E v B,A uB v E}
cache(A uB)← E

elseE ← cache(A uB)
CE ← Cα[E]π; σ(CE)← σ(Cα); Ts ← Ts ∪ {> v CE}

subroutine: can-split(Cα)
let T = (Wt,≺t, Lt) be the parse tree for the disjunctionCα

if there exists a nodev ∈Wt in T s.t.Lt(v) = u with childrenA,B
let π be the position of nodev
return 〈T, v, π,A, B〉

else return∅

Table 1: Splitting a TBox

A justification is a generalization of the notion of a MUPS for arbitrary entail-
ments:

Definition 2 (Justification) LetT |= α whereα is an axiom. A fragmentT ′ ⊆ T is
a justification forα in T if T ′ |= α, andT ′′ 6|= α for everyT ′′ ⊂ T ′.

We denote byJUST(α, T) the set of all justifications forα in T .
Finer-grained justifications can be defined as follows:

Definition 3 (Precise Justification)
LetT |= α. A TBoxT ′ is aprecise justificationfor α in T if T ′ ∈ JUST(α, split TBox(T)).

We denote byJUSTp(α, T) the set of all precise justifications forα in T .
In SHOIN , entailment can be reduced to concept unsatisfiability. As a con-

sequence, it is easy to show that the problem of finding all the justifications for an

210 Regular Papers

unsatisfiable concept and the problem of finding all the justifications for a given en-
tailment can be reduced to each other. In what follows, we shall restrict our attention,
without loss of generality, to the problem of finding all the precise justifications for
an unsatisfiable concept w.r.t to aSHOIN TBox.

3 Finding Precise Justifications

The problem of finding all precise justifications for an entailmentα of a TBoxT now
reduces to the problem of finding all justifications forα in thesplit TBox(T). Thus,
we can use the algorithm listed in Table 1 to split a TBox, and then apply any decision
procedure to find all justifications for the entailment in the split version of the TBox.

We briefly sketch the algorithm we have developed in our earlier work to find all
justifications for an arbitrary entailment in a TBox. For details, we refer the reader to
the technical report [2].

The first part of the algorithm is based on the decision procedure for concept satis-
fiability in SHOIN [1], and it finds any one arbitrary justification for the entailment.
It keeps track of the axioms from the TBox responsible for each change in the com-
pletion graph, namely, the addition of a particular concept (or role) to the label of
a specific node (or edge), the addition of an equality (merge) or inequality relation
between nodes, or the detection of a contradiction (clash) in the label of a node.

In order to ensure correctness, our algorithm imposes an ordering among the de-
terministic rules: theunfolding andCE rules are only applied whenno otherdeter-
ministic rule is applicable. The rationale for this strategy relies on the definition of
justification that establishes minimality w.r.t. the number of axioms considered; the
new rules cause new axioms to be considered in the tracing process and additional
axioms should only be considered if strictly necessary.

The algorithm works on a treeT of completion graphs. that is incrementally built
using the set of availableexpansion rules, and the traces for the events triggered by the
rules are updated on the fly. For a full specification of the expansion rules, we refer
the reader to [2]. The application of non-deterministic rules results in the addition
of new completion graphs as leaves ofT, one for each different non-deterministic
choice. However, sinceC is unsatisfiable w.r.t.T , the algorithm detects a clash in
each of the leaves. Upon termination, the trace of the detected clash (or clashes) in
the leaves ofT yields a justification.

Once a single justification has been found, we find the remaining justifications by
employing a variation of the classical Hitting Set Tree (HST) algorithm.

Given a collectionS of conflict sets, Reiter’s algorithm constructs a labeled tree
calledHitting Set Tree(HST). Nodes in an HST are labeled with a sets ∈ S and:
1) if H(v) is the set of edge labels on the path from the root to the nodev, then
L(v) ∩H(v) = ∅; 2) for eachσ ∈ L(v), v has a successorw andL(〈v, w〉) = σ; 3)
if L(v) = ∅, thenH(v) is a hitting set forS.

Proceedings of DL 2006 211

In our approach, we form an HST where nodes correspond to single justification
sets (computed on the fly), edges correspond to the removal of axioms from the KB,
and in building the tree to compute all the minimal hitting sets, we in turn obtain all
the justification sets as well. The correctness and completeness of this approach is
provided in [2].

3.1 Optional Post-Processing

Having derived the justifications for the entailmentA ≡ ⊥ in the maximally split
version of KBT , we remove any term in a justification set that was introduced in the
KB in step 1 using the procedure described in Table 2. The output of this stage gives
us precise justifications for the entailment in terms of sub-axioms.

Algorithm: Remove New Terms
Input: Collection of Axiom SetsJ , Original KB T
Output: J
for eachaxiom setj ∈ J do,

while there exists a termC ′ ∈ vocab(j) s.t.C ′ /∈ vocab(T), do
S ← ∅
for eachaxiomC ′ v Ci ∈ j, do

S ← S ∪ Ci

if S 6= ∅, then
C ← C1 u C2 u ..Cn (for all Ci ∈ S)

else
C ← >

substituteC ′ with C in j

Table 2: Post-Processing

3.2 Example

We now present a detailed example to demonstrate how the algorithm finds precise
justifications correctly.

Consider a KBT composed of the following axioms:

1. A tB v ∃R.(C u ¬C) uD u E

2. A v ¬D uB u F uD u ∀R.⊥
3. E v ∀R.(¬C uG)

Note,vocab(T) = {A, B, C,D, E, F, R}, and the conceptA is unsatisfiable w.r.t
T .

GivenA, T as input, the algorithm proceeds as follows:
Step 1: After pre-processing, we obtain a maximally split equivalent KBTs:
Ts = {A v ∃R.H1; B v ∃R.H1; A v D1,2; B v D1; A v E1; B v E1; H v

C1; H v ¬C1; A v ¬D2; A v B2; A v F 2; A v ∀R.⊥2; E v ∀R.¬C3; E v
∀R.G3}.

212 Regular Papers

The superscript of each axiom inTs denotes the corresponding axiom inT that
it is obtained from. This correspondence is captured by the functionσ in the Split-
KB algorithm (see Table 1). Notice that the superscript of the axiomA v D in Ts

is the set{1, 2} since it can be obtained from two separate axioms inT . Also, we
have introduced a new conceptH in the split KB, which is used to split the concept
∃R.(C u ¬C) in axiom1.

Step 2:Now, we obtain the justifications for the unsatisfiability ofA w.r.tTs. This
gives us the following axiom setsJ :

J = {{A v ∃R.H1, H v C1, H v ¬C1}; {A v D1,2, A v ¬D2}; {A v
∃R.H1, H v C1, A v E1, E v ∀R.¬C3}; {A v ∃R.H1, A v ∀R.⊥2}}

Step 3: Finally, we remove the conceptH introduced inTs from the justification
sets inJ to get:
T ′ = {{A v ∃R.(Cu¬C)1}; {A v D1, A v ¬D2}; {A v D2, A v ¬D2}; {A v

∃R.C1, A v E1, E v ∀R.¬C3}; {A v ∃R.>1, A v ∀R.⊥2}}
As can be seen, the final output is the complete set of precise justifications for

A ≡ ⊥ in T .

4 Implementation Issues

We have shown in [3], [2] that the axiom pinpointing service used to find all justi-
fications for an entailment of aSHOIN KB performs reasonably well on a lot of
real-world OWL-DL ontologies.

The main additional overhead incurred for capturing precise justifications is due to
the pre-processing phase where we split the KB. The concern here, from a reasoning
point of view, is the introduction of GCIs during the splitting process, e.g.A ≡
B u C is replaced by (among other things)B u C v A. Even though these GCIs are
absorbed, they still manifest as disjunctions and hence adversely affect the tableau
reasoning process.2

Alternately, a more optimal implementation is the following: instead of splitting
the entire KB beforehand, we can perform alazy splittingof certain specific axioms
(on the fly) in order to improve the performance of the algorithm. The modified
algorithm with lazy splitting becomes:

• Given A unsatisfiable w.r.tT , find a single justification set,J ∈ JUST(A ≡
⊥, T)

• Split axioms inJ to giveJs. PruneJs to arrive at a minimal precise justification
setJp

2In this case, it is possible to introduce a new absorption rule in the reasoner which would transform
axioms of the formB v A,C v A,B u C v A to A ≡ B u C internally. This obviously seems odd
given that we split the KB initially and re-combine axioms back in the reasoner, but note that the goal
here is finding precise justifications.

Proceedings of DL 2006 213

• ReplaceJ by Js in T .

• Form Reiter’s HST usingJp as a node, with each outgoing edge being an axiom
α ∈ Jp that is removed fromT

The advantage of this approach is that it only splits axioms in the intermediate
justification sets in order to arrive at precise justifications, and re-inserts split axioms
back into the KB dynamically. For details of the procedure, see [2]

5 Conclusion and Future Work

We have implemented the axiom pinpointing service in the OWL-DL reasoner, Pel-
let, and exposed it in the OWL Ontology Editor, Swoop. We are in the process of
extending it to capture precise justifications.

From a UI perspective, maintaining the correspondence between the subaxioms
in the precise justification and the original asserted axioms is useful, as it allows us
to strike out irrelevant parts of the axioms directly, which is helpful to understand the
entailment better. (see Figure 5).

As future work, we plan to optimize the implementation and do a thorough per-
formance and usability evaluation.

Figure 1:Justification forMaleStudentWith3Daughters v Person in the Koala OWL Ontology

References

[1] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of IJCAI 2005, 2005.

[2] Aditya Kalyanpur, Bijan Parsia, Bernardo Cuenca, and Evren
Sirin. Axiom pinpointing: Finding (precise) justifications
for arbitrary entailments in OWL-DL, 2006. Available at
http://www.mindswap.org/papers/2006/AxiomPinpointing.pdf.

[3] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging
unsatisfiable classes in OWL ontologies.J. of Web Semantics, Vol 3, Issue 4,
2005.

[4] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. InProc. of IJCAI, 2003, 2003.

214 Regular Papers

Optimizations for Answering Conjunctive ABox
Queries: First Results

Evren Sirin and Bijan Parsia
Maryland Information and Network Dynamics Lab,

8400 Baltimore Avenue, College Park, MD, 20740 USA
evren@cs.umd.edu , bparsia@isr.umd.edu

1 Introduction

Conjunctive query answering is an important task for many applications on Semantic
Web. It is important to efficiently answer queries over knowledge bases with large
ABoxes. Although answering conjunctive queries has been studied from a theoretical
point of view, until very recently, there was no reasoner supporting such function-
ality. As a result, there is not enough implementation experience and optimization
techniques developed far answering conjunctive queries.

In this paper, we address the problem of answering conjunctive ABox queries
efficiently without compromising soundness and completeness. Our focus is on an-
swering queries asked against a very large ABox. We consider queries with only
distinguished variables. We focus on the case of distinguished variables because such
queries can be answered more efficiently and such queries occur more frequently in
realistic scenarios.

We start with the discussion of answering atomic ABox queries and then describe
a sound and complete conjunctive query answering algorithm. We then present op-
timization methods to improve the query evaluation analogous to the optimization
methods developed and studied in the context of relational databases. We discuss how
the ordering of query evaluation can affect performance, describe some simple yet ef-
fective metrics of evaluating the cost of a given ordering and present some heuristics
to find (near-)optimal orderings. In the end, we show that the cost model we described
provides a sufficiently accurate approximation to the actual query answering time.

2 Answering Atomic ABox Queries

Retrieving Instances The ground queryC(a), so-calledinstance check, is answered
by adding the negated statement¬C(a) to the ABox and checking for (in)consistency.

Proceedings of DL 2006 215

Pseudo model merging technique [2] can be used to test if the pseudo-model of the
individual can be merged with pseudo-model of the negated concept¬C to detect
obvious non-instances without doing a consistency test.

The naive way to answer the unground atomic queryC(x), so-calledinstance re-
trieval, is to iterate over all the individuals in the ABox and do a consistency check
when the above methods fail to detect an obvious instance or non-instance. Generally,
most of the remaining individuals are non-instances and would not cause an incon-
sistency when the negated statement is added to the KB.Binary instance retrieval
technique presented in [1] exploits this characteristic and combines many instance
checks in one ABox consistency test. If there is no inconsistency all candidates are
proven to be non-instances, otherwise the method splits the set of candidates into two
sets and continues.

The effectiveness of binary instance retrieval is maximized if obvious instances
are found upfront and not put into the candidate list. Model merging technique can be
used to detectobvious instancesby caching dependency set information in the pseudo
models. Model merging technique checks for possible interactions between models
but finding a clash between models does not mean these models are not mergable
because the clash might depend on a non-deterministic choice in tableau completion.
There might be other completions of the ABox without the clash. Using the cached
dependency set information in pseudo models distinguish a deterministic clash form
others and identifies where the modelscannotbe combined in any possible comple-
tion meaning that the the individual is necessarily an instance of the concept.

One case where finding obvious instances fails is the case ofdefined concepts.
Suppose a conceptC is defined asC ≡ D u ∃p.A. Any instance ofD that is related
to anA instance with ap role is also an instance ofC. Unfortunately, above methods
would fail to detect such a case. If we are trying to find the instances of a defined
concept then breaking up the concept description and applying the above method
would help us to find an instance without doing a consistency check. This technique
has proved to be very effective in our experiments.

Retrieving Role Fillers In OWL-DL, the role constructors are much less expres-
sive compared to concept constructors. Therefore, verifyingp(a, b) holds only if in
the original ABox it is asserted thata andb is related byp or one of its subroles.
The interactions between the role hierarchy and number restrictions invalidate this
assumption, e.g. a super role assertion combined with cardinality restrictions may
cause the relation to hold. Transitive roles complicate the situation even more, now
a path between individuals is enough for the relation to hold. Having nominals in
the KB completely makes things even more complicated as nominals might relate
individuals from disconnected parts of the ABox.

Even if asserted facts in the ABox does not help to find identify all the role asser-
tions between individuals, the completion graph generated for the ABox consistency
test can be used to find obvious relations and non-relations. There might be a rela-

216 Regular Papers

tion between disconnected individuals only if such a relation occurs in every model.
This suggests by examining the completion graph we can still detect non-relations
because if two individuals are disconnected in a completion graph then there is at
least one model they are not related and the entailment does not hold. The details of
this approach can be found in [4] where we have described this technique in detail for
detecting non-subsumptions between concepts.

After finding all obvious relations and non-relations, one might still be left with
some possible candidates that might or might not be related. At this point, we can
reduce the queryp(x, a) (resp. p(a, x)) to an instance retrieval query for concept
∃p.{a} (resp.∃p−.{a}). If both arguments in the query are unground as inp(x, y),
then we first need to generate all candidates forx and then use the above techniques
to find correspondingy values.

3 Answering Conjunctive Queries

In this section, we consider answering arbitrary conjunctive queries. W.l.o.g. we
assume the query graph is connected. For queries with disconnected components,
we can answer each component separately and then take the Cartesian product of
generated solutions.

3.1 Query Answering Algorithm

The pseudo-code of the conjunctive query answering algorithm is given in Figure 1.
The algorithm simply iterates through all the atoms in the query and either generates
bindings for a variable or tests if the previous bindings satisfy the query atom. Gen-
erating bindings are done by invoking the instance retrieval functionretrieve which
in turn might perform several consistency checks as described earlier. Theoretically,
testing the satisfaction of a query atom might also require a consistency check. How-
ever, as explained in the previous section, most of these tests can be answered without
doing a consistency test. Especially, the retrieval operations regarding the role asser-
tions, e.g.retrieve(∃p.{u}), do not typically require any consistency check.

Initially the algorithm is invoked byAnswerQuery(K, A, ∅, ∅) whereA is an
ordering of the atoms in the query. The correctness of this algorithm is quite clear as
the satisfaction of every binding is reduced to KB entailment. Thus, this is a sound
and complete procedure for answering conjunctive queries.

The efficiency of this algorithm depends very much on the order query atoms
are processed. For example, in the queryC(x) ∧ p(x, y) ∧ D(y), supposeC has
100 instances, each instance has onep value andD has 10.000 instances. The or-
dering[C(x), p(x, y), D(y)] would be much more efficient compared to the ordering
[D(x), p(x, y), C(y)]. We would do one instance retrieval operation to get 100 in-
stances, find the correspondingp values and test whether these areD instances. The

Proceedings of DL 2006 217

function AnswerQuery(K, A, B, Sol)
input K is the input KB,A is a list of query atoms,B is the binding

built so far,Sol is the set of all bindings that satisfy the query

if A = [] then return Sol ∪ {B}
Let a = first(A) andR = rest(A)
Substitute the variables ina based on the bindings inB
if a = C(v) andK |= C(v) then return AnswerQuery(K, R, B, Sol)
if a = C(x) then

for eachv ∈ retrieve(C) do
Let Sol = AnswerQuery(R,B ∪ {x← v}, Sol)

if a = p(v , u) andK |= p(v , u) then return AnswerQuery(K, R, B, Sol)
if a = p(x, v) (resp.p(v , x)) then

for eachu ∈ retrieve(∃p.{v}) (resp.u ∈ retrieve(∃p−.{v})) do
Let Sol = AnswerQuery(K, R, B ∪ {x← u}, Sol)

if a = p(x, y) then
for eachv ∈ retrieve(∃p.>) do

for eachu retrieve(∃p.{v}) do
Let Sol = AnswerQuery(R,B ∪ {x← u} ∪ {y ← u}, Sol)

return Sol

Figure 1: Pseudo-code for the conjunctive query answering algorithm

second ordering, on the other hand, requires us to iterate over 10.000 individuals and
check for ap− value that does not exists for mostd instances.

3.2 Cost-based Query Reordering

There are several important challenges to finding an optimal query reordering. In
query optimization for relational databases, the main objective is to find an optimal
join order and generally the bottleneck is reading data from disk. In a DL reasoner,
the most costly operation is consistency checking so we should try to minimize the
number of consistency checks performed.

There are two parameters that will help us to estimate the cost of answering a
query. First we need to estimate how costly an atomic query is, e.g. for an instance
retrieval query, estimate how long it will take to find all the instances, and then esti-
mate the size of results, e.g. how many instances a concept has. These two parameters
are interdependent to some degree. For example, ifC has100.000 instances andD
has only10 instances, retrievingC instances can be more costly. However, this is
not always true because all the100.000 individuals might be considered as possible
D instances (if the methods described in Section 2 fail) and force us to do expensive
consistency tests. For this reason, there is no easy way of estimating these parame-
ters that would work for different ontologies. In the implementation section, we will
briefly describe some preliminary methods we devised to compute these parameters.

For now, we will assume that for each atomic query type there are cost functions
Cir(C), Cic(C), Crr(r) andCrc(r) that returns the cost of instance retrieval for concept

218 Regular Papers

C, the cost of a single instance checking for conceptC, the cost of role filler retrieval
for role r and the cost of verifying a role filler for roler, respectively. Note that, we
are assuming the cost of instance checking for a concept is same for all the different
individuals in the KB. This assumption may not be very accurate but considering that
we will typically deal with large number of individuals, it is not practical to compute
estimates for every individual.

In addition, we need to estimate the number of instances of a concept and how
many role fillers exist for a given individual and a role. Assuming the size estimates
are computed at a preprocessing step, we will use|C| to denote the number ofC
instances and|p| to denote the total number of tuples inp relation. The average
number ofp fillers for an individual is denoted byavg(p) and computed as|p|/|∃p.>|.

Given the parameters for the cost computation and the size estimates, algorithm
described in Figure 2 computes an estimate for the cost of query answering for a
certain ordering.

Cost estimation is linear in the number of query atoms, provided that size esti-
mates are already computed. However, there are exponentially many orderings to
try so an exhaustive search would still be very expensive. Again, as in relational
databases, it is possible to use some heuristics to prune the search space. The heuris-
tics we use are: 1) For each atom at positioni > 1 in the ordered list, there should be
at least one atom at positionj < i s.t. two atoms share at least one variable. 2) Atoms
of the formp(x, v) andp(v , x) should appear before other atoms involvingx. 3) An
atom of the formC(x) should come immediately after the first atom that containsx.

First rule is similar to the general query optimization rule that cross products
should be avoided. Second rule makes use of the fact that generally an individual
is related to limited number of other individuals. And the last rule is to discard the
orderings such as[C(x), p(x, y), q(y, z), D(y)]. This ordering is not desirable because
if p(x, y) finds a binding fory such thatD(y) is not satisfied, we would unnecessarily
retrieve theq fillers before realizing the failure.

function EstimateCost(A,B)

if A = [] then return 1
Let a = first(A) andR = rest(A)
if a = C(x) andx ∈ B then return Cic(C) + EstimateCost(R,B)
if a = C(x) andx 6∈ B then return Cir(C) + |C| ∗ EstimateCost(R,B ∪ {x})
if a = p(x, y) and{x, y} ⊆ B then return Crc(p) + EstimateCost(R,B)
if a = p(x, y) and{x, y} ∩B = {x} then return Crr(p) + avg(p) ∗ EstimateCost(R,B ∪ {y})
if a = p(x, y) and{x, y} ∩B = {y} then return Crr(p) + avg(p−) ∗ EstimateCost(R,B ∪ {x})
if a = p(x, y) and{x, y} ∩B = ∅ then return
Cir(∃p.>) + |p| ∗ Crr(p) ∗ EstimateCost(R,B ∪ {x, y})

Figure 2: Pseudo-code for estimating the cost of an ordering

Proceedings of DL 2006 219

3.3 Query Simplification

In some cases there might be redundant axioms in a query that can be safely removed
from the query without affecting the results. For example, ifC v D then the query
C(x) ∧ D(x) is logically equivalent to queryC(x). Such redundant atoms do not
cause to make additional consistency tests (methods described in Section 2 are quite
effective for these cases) but even repeating computationally cheap operations many
times causes a noticeable overhead in the end.

The idea behind query simplification is to discover redundant atoms with cheap
concept satisfiability tests. But performing too many concept satisfiability tests for
simplifications that do not occur frequently in queries is wasteful. For example, sim-
plification based on subsumption of named concepts and roles are nearly never ap-
plicable in real world queries or in the benchmarking problems for query answering.
We have pinpointed the following two common query simplifications:

• Simplify C(x) ∧ p(x, y) ∧D(y) to
– p(x, y) ∧D(y) if ∃p.> v C (Domain simplification)

– C(x) ∧ p(x, y) if C v ∀p.D (Range simplification)

Note that range simplification can also be done even if one of the atomsC(x) or
D(y) is missing since we can simply insert>(x) or >(y) as an additional atom. In
such cases global domain/range restrictions of properties can be directly used and
simplification can be done with no subsumption test.

4 Implementation and Experimental Evaluation

The optimization techniques described in this paper have been fully implemented
in OWL-DL reasoner Pellet. Right now, size estimation for concepts is done by
inspecting the completion graph generated by the initial ABox consistency test. Due
to space constraints we will only outline the size estimation algorithm w.r.t concepts
but the general idea is same for roles, too.

The size estimation algorithm iterates over a random sample of individuals in
the ABox and for each concept tries to determine if this individual is an instance of
the given concept without doing a consistency check. The techniques described in
Section 2 might returntrue , false , or unknown . A result ofunknown means
that the individual may or may not be an instance but the reasoner cannot conclude
without a consistency test. In such cases, we estimate that with probabilityκ such
individuals would indeed be instances of that concept. Thus, the total estimate for a
concept is|C| = σ ∗ (|Cknown| + κ ∗ |Cunknown|) whereσ is the sampling ratio. We
also use|Cunknown| to have an estimate aboutCir(C) andCic(C). If |Cunknown| = 0
then it means that all the individuals can be retrieved without any consistency test.
As |Cunknown| increasesCir(C) would typically increase. Of course there are other
factors affectingCir(C) but these are not yet considered in our implementation.

220 Regular Papers

In our experiments, we first tested the accuracy of the size estimation. For this
purpose, have used the data from Lehigh University Benchmark (LUBM) [5] and
ontologies Vicodi and Semintec from [3]. The following tables show the number of
individuals in each dataset, the time spent for estimating the size of all the concepts in
each dataset, and the mean normalized error over all concepts in the given ontology.
For example, an error of3.6 means that if the actual number of instances for a concept
was200, the algorithm returned200±7.2. We have changed the sampling percentage
from %20 to %100.

Sampling Percentage
Dataset Size %20 %40 %60 %80 %100
LUBM 55664 3.6 6.7 9.7 11.8 15.0
Semintec 17941 0.9 1.6 2.4 3.2 3.9
Vicodi 16942 1.8 3.4 5.1 6.9 8.6

(a) Time spent in seconds

Sampling Percentage
Dataset %20 %40 %60 %80 %100
LUBM 0.7 0.3 0.6 0.4 0.0
Semintec 6.4 4.4 4.9 3.7 0.0
Vicodi 18.5 11.3 7.6 4.7 0.9

(b) The mean normalized error

As expected, error in size estimation decreases as we inspect more and more indi-
viduals. More interestingly, for these ontologies, sizes can be computed with perfect
accuracy if all the individuals are inspected. However, computation time also in-
creases. Looking at these results we decided to use a sampling ratio of%20 which
yields fairly accurate results with reasonable computation time.

Next, we looked at the effectiveness of the cost model defined in this paper. Query
ordering has a significant effect especially when there are many atoms in the query.
Therefore, we used three conjunctive queries, Q2 (6 atoms), Q8 (5 atoms), Q9 (6
atoms), from LUBM and Q2 (5 atoms) from Semintec and Q2 (3 atoms) from Vi-
codi. We generated all the possible query orderings, pruned the orderings based on
the aforementioned heuristics and computed the time to answer each query with that
ordering. Figure 3 shows the scatter plot of different query orderings where X axis is
the estimated cost and Y axis is the actual time it took to generate the answers. The
correlation factor for each query is different ranging from low (∼ 0.5) to perfect score
(= 1). More importantly, in each case, the lowest-cost query ordering found by the
estimation algorithm is very close to the optimal value.

Next table shows these results in more detail and displays query evaluation time
(in milliseconds) for the minimum cost ordering, the minimum time ordering, the

Figure 3:The correlation between the cost estimates and the actual query evaluation time. Each data
point represents a different ordering of the corresponding query. Note that, due to simplification and
heuristic pruning, number of data points is less than all possible orderings.

Proceedings of DL 2006 221

maximum time ordering and the median of all orderings (still excluding the heuristi-
cally pruned orderings). Although the minimum cost ordering does not always take
minimum time, we can still see that the improvement in query evaluation time com-
pared to an arbitrary ordering can be more than one order of magnitude.

LUBM Q2 LUBM Q8 LUBM Q9 Semintec Vicodi
Min Cost Ordering 20 320 227 100 81
Min Time Ordering 10 285 164 100 81
Median 1183 341 311 135 255
Max Time Ordering 1233 348 400 140 2123

5 Conclusion and Discussion

In this paper, we have described several different techniques to improve conjunctive
query answering for DL reasoners. The query answering algorithm and the optimiza-
tion techniques we describe do not compromise the soundness and completeness of
the reasoner. Furthermore, the additional memory requirement is minimal (linear in
the size of TBox but independent of the size of ABox). Our preliminary experimental
evaluation shows that the preprocessing time spent for cost estimation is quite reason-
able and Pellet can very efficiently answer conjunctive queries over large ABoxes.

There are many open issues left for future work. We are investigating how to
estimate the atomic query costs more accurately. Secondly, it is not clear to what ex-
tent the effectiveness of our techniques depend on the knowledge base and the query.
For our experiments, we picked benchmark datasets that were used in recent publi-
cations and considered to be realistic. We are now looking into the evaluation of our
techniques on datasets with different characteristics, typically with more complicated
TBox components.

References

[1] V. Haarslev and R. M̈oller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents: First results. InProc. KR 2004, 2004.

[2] V. Haarslev, R. M̈oller, and A.Y. Turhan. Exploiting pseudo models for TBox and
ABox reasoning in expressive description logics. InIJCAR 2001, Italy, 2001.

[3] B. Motik and U. Sattler. Practical DL reasoning over large ABoxes with KAON2.
In Proc. KR-2006, 2006.

[4] Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to water: Op-
timizing description logic reasoning for nominals. InProc. KR-2006, 2006.

[5] Z. Pan Y. Guo and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems.Journal of Web Semantics, 3(2):158–182, 2005.

222 Regular Papers

Model checking the basic modalities of CTL with Description
Logic

Shoham Ben-David Richard Trefler Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

Abstract. Model checking is a fully automated technique for determining whether the behav-
iour of a finite-state reactive system satisfies a temporal logic specification. Despite the fact that
model checking may require analyzing the entire reachable state space of a protocol under analy-
sis, model checkers are routinely used in the computer industry. To allow for the analysis of large
systems, different approaches to model checking have been developed, each approach allowing for
a different class of systems to be analyzed. For instance, some model checkers represent program
state spaces and transitions explicitly, others express these concepts implicitly. The determination
of which flavour best suits a particular model must often be left to experimentation. Description
Logic (DL) reasoners are capable of performing subsumption checks on large terminologies. In
this paper, we show how to perform explicit state model checking with a DL reasoner. We formu-
late the check that a reactive system satisfies a temporal specification as a consistency check on a
terminology in the DLALC and demonstrate our method on an example.

1 Introduction

Model checking [4] (cf. [5]) is a fully automated technique for verifying that the behaviour of
a finite-state reactive system satisfies a temporal logic specification. As such, it is extremely
useful in verifying important aspects of safety critical reactive systems.

The main challenge in this area, known as thestate explosion problem, arises because
systems may have short textual descriptions encoding exponentially larger state spaces that are
analyzed by the model checker. While model checking techniques are widely used in industry
[1, 6, 11], methods of attacking the state explosion problem and increasing the applicability
of this technique are of substantial interest.

Given a finite state modelM (a non-deterministic Kripke structure), a model checker
verifies that the behaviours ofM satisfy a temporal logic specificationϕ, typically given in
Computation Tree Logic (CTL) [4], i.e.M |= ϕ.1 The following is a typical specification:
it is always the case that at most one of several concurrent processes has access to a shared
resource. Letting ci indicate that processi has access to the shared resource of interest, the
specification is expressed succinctly in CTL asAG¬(c1 ∧ c2). Here, the basic modalityAG
is composed of two temporal operatorsA, representingall future paths, andG, representing
all states on a path. Formulas of the formAG(p), with p being a Boolean expression, are of
special importance. In our experience, over 90% of the formulas written in practice can be
converted intoAG(p) form.

To cope with the state explosion problem several different techniques have been proposed.
The different approaches work well on large classes of examples but no one technique best

1 The symbol|= is overloaded. We use it in this paper both in the context of model checking and in the context
of DL reasoning.

Proceedings of DL 2006 223

suits all models. One method describes the modelsymbolicallyby representing the system
under verification by boolean functions. Two main symbolic methods are used to perform
model checking. The first, known asSMV [10], was introduced by McMillan in 1992. This
method is based on Binary Decision Diagrams (BDDs) [3] for representing the state space
as well as for performing the model checking procedure. The second is known as Bounded
Model Checking [2]. Using this method, the model under verification is translated into a
Boolean formula, and a satisfiability solver is applied to it to find a satisfying assignment.
Such an assignment, if found, demonstrates a bug in the model.

Other important methods represent states and transitions explicitly. Explicit state methods
appear to be more amenable to sophisticated state space reduction techniques. In this paper
we show how to use Description Logic reasoning to perform explicit state model checking
of the basic modalities of CTL on a synchronous model of computation, with the hope of
benefiting from the powerful DL reasoners currently available [7–9]. LetMD be a model de-
scription, whose sematics is given by the Kripke structureMMD , and letϕ be a specification.
We formulate a terminologyTMD ,ϕ over the DL dialectALC, and define a conceptCMD such
that by checking ifTMD ,ϕ |= CMD is consistent, we can determine whetherMMD |= ϕ.

In the next section we give the necessary background and definitions. Section 3 presents
the translation of a model checking problem into a terminology overALC, and demonstrate
it through an example. Section 4 concludes the paper.

2 Background and Definitions

Definition 1 (Description LogicALC) LetNC andNR be sets of atomic concepts{A1, A2, . . .}
and atomic roles{R1, R2, . . .}, respectively. The set ofconceptsC of the description logic
ALC is the smallest set includingNC that satifies the following.

– If C1, C2 ∈ C, then so are
• ¬C1 • C1 u C2

– If C ∈ C, andR ∈ NR, then so is
• ∃R.C

Additional concepts are defined as syntactic sugaring of those above:
• > = A t ¬A, for someA • ∀R.C = ¬∃R.¬C
• C1 t C2 = ¬(¬C1 u ¬C2)

An inclusion dependencyis an expression of the formC1 v C2. A terminologyT consists
of a finite set of inclusion dependencies.

Thesemanticsof expressions is defined with respect to a structureI = (∆I , ·I), where
∆I is a non-empty set, and·I is a function mapping every concept to a subset of∆I and
every role to a subset of∆I ×∆I such that the following conditions are satisfied.
• (¬C)I = ∆I \ CI • (C1 u C2)I = CI

1 u CI
2

• ∃R.C = {x ∈ ∆I | ∃y ∈ ∆I s.t.(x, y) ∈ RI ∧ y ∈ CI}
A structuresatisfies an inclusion dependencyC1 v C2 if CI

1 ⊆ CI
2 . Theconsistency

problem forALC asks ifT |= C holds; that is, if there existsI such thatCI is non-empty
and such thatCI

1 ⊆ CI
2 holds for eachC1 v C2 in T .

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. AKripke structureM
overV is a four tupleM = (S, I,R, L) where

224 Regular Papers

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every states ∈ S there

is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true in that state.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a model is
given as a set of Boolean variablesV = {v1, ..., vn}, their initial values and their next-state
assignments. The definition we give below is an abstraction of the input language ofSMV[10].

Definition 3 (Model Description) Let V = {v1, ..., vk} be a set of Boolean variables. A
Model Descriptionover V is a tupleMD = (IMD , [〈c1, c′1〉, ..., 〈ck, c′k〉]), whereIMD =
{v1 = b1, ..., vk = bk}, bi ∈ {0, 1}, andci, c′i are Boolean expressions overV .

The semantics of a model description is a Kripke structureMMD = (S, IM , R, L), where
S = 2V , L(s) = s for s ∈ S , IM = {IMD} andR = {(s, s′) : ∀1 ≤ i ≤ k, s |= ci implies
s′ |= (vi = 0) ands |= c′i ∧ ¬ci impliess′ |= (vi = 1)}.

Intuitively, a pair〈ci, c′i〉 defines the next-state assignment of variablevi in terms of the
current values of{v1, ..., vk}. That is,

next(vi) =

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state value of variables
v1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a next-state withvi = 0.

We give the definition of Basic CTL formulas below. Our definition differs from full CTL
in that temporal operators cannot be nested. Note though, that most of the formulas written in
practice can be converted intoAG(p) form, which is included in Basic CTL.

Definition 4 (Basic CTL formulas [4]) – The formula (v = 1) is an atomic CTL formula
– If p andq are atomic CTL formulas, then so are
• ¬p • p ∧ q

– If p andq are atomic CTL formulas then the following are Basic CTL formulas:
• EXp • AXp • E[pV q] • A[pV q]

– If ϕ is a Basic CTL formula then so is• ¬ϕ.
Additional operators are defined as syntactic sugaring of those above:

• E[pUq] = ¬A[¬pV ¬q] • A[pUq] = ¬E[¬pV ¬q] • AFp = A[true Up]
• EFp = E[true Up] • AGp = ¬EF¬p • EGp = ¬AF¬p

The semantics of a CTL formula is defined with respect to a Kripke structureM =
(S, I,R, L) over a set of variablesV = {v1, ..., vk}. A path inM is an infinite sequence
of states(s0, s1, ...) such that each successive pair of states(si, si+1) is an element ofR. The
notationM, s |= ϕ, means that the formulaϕ is true in states of the modelM .

– M, s |= (v = 1) iff v ∈ L(s)
– M, s |= p ∧ q iff M, s |= p andM, s |= q
– M, s |= ¬ϕ iff M, s 6|= ϕ

Proceedings of DL 2006 225

– M, s0 |= AXp iff for all paths(s0, s1, ...),M, s1 |= p
– M, s0 |= EXp iff for some path(s0, s1, ...),M, s1 |= p
– M, s0 |= A[pV q] iff for all paths(s0, s1, ...), either for alli ≥ 0,M, si |= q or there exists
n ≥ 0 such thatM, sn |= p and for all0 ≤ i ≤ n,M, si |= q

– M, s0 |= E[pV q] iff for some path(s0, s1, ...), either for alli ≥ 0, M, si |= q or there
existsn ≥ 0 such thatM, sn |= p and for all0 ≤ i ≤ n,M, si |= q

We say that a Kripke structureM = (S, I,R, L) satisfies a Basic CTL formulaϕ (M |=
ϕ) if for all si ∈ I,M, si |= ϕ.

Definition 5 (Formula type) Letϕ be a Basic CTL formula, expressed in terms ofEX,AX,
E[pV q] or A[pV q]. We say thatϕ is of Type A if the outermost path quantifier is A, and Type
E otherwise. We say thatϕ is a negatedformula if its path quantifier is preceded by an odd
number of negations.

3 Model Checking Using Description Logic Reasoning

We give a linear reduction of a model checking problem into a consistency check overALC.
LetMD = (I, [〈c1, c′1〉, ..., 〈ck, c′k〉]) be a model description for the modelMMD = (S, I,R, L),
overV = {v1, ...vk}. Letϕ be a Basic CTL formula. We generate a terminologyTMD ,ϕ, lin-
ear in the size ofMD and constant in the size ofϕ, and a conceptInit, such that by checking
if TMD ,ϕ |= Init is consistent, we can determine whetherMMD |= ϕ.

We constructTMD ,ϕ as the union of three terminologies,TMD ,ϕ = Tk ∪T type
MD ∪Tϕ where

Tk depends only on the numberk of variables inV , the terminologyT type
MD depends on the

model description as well as on thetypeof the formulaϕ (with typebeingA or E), andTϕ

depends only on the formulaϕ.
We start by describing the primitive concepts and roles which are used in all of the termi-

nologies, and then provide the construction for each of the three terminologies. We conclude
this section with a proposition that relates the consistency of the conceptInit with respect to
TMD ,ϕ to the satisfaction ofϕ in the modelMMD .

Concepts and RolesWe introduce one primitive roleR corresponding to the transition rela-
tion of the model. For each variablevi ∈ V we introduce three primitive concepts:Vi, ViN
andViT . The conceptVi corresponds to the variablevi, whereVi denotesvi = 1 and¬Vi

denotesvi = 0. The conceptViN corresponds in a similar way to the next-state value ofVi.
The conceptViT is needed to encode an execution step of the model as a sequence throughR,
as will be explained in the sequel. Finally, one primitive conceptCϕ is introduced to assist the
encoding of the specificationϕ. Depending onϕ, this concept is not always needed. In total,
for a setV with k variables, the terminologyTϕ

MD will consist of3k + 1 primitive concepts
and one role.

Constructing Tk For a transition (s, s′)∈ R in the modelMMD , the states may differ from
s′ in the values of some or all of the variablesv1, ..., vk. That is, in one transition, many
variables may simultaneously change their values. To achieve this with our single roleR, we
encode every transition of the modelMMD as a series of “micro-transitions” throughR, each
of which determines the next-state value of one variable only. To ensure that every variable

226 Regular Papers

makes a move only on its turn, we use the conceptsViT . We allow exactly one ofV1T, ..., VkT
to hold on each state, and in the correct order, by introducing the following concept inclusions.

– ViT v (∀R.Vi+1T) ¬ViT v (∀R.¬Vi+1T) for 1 ≤ i < k and
VkT v (∀R.V1T) ¬VkT v (∀R.¬V1T)

The actual model states correspond to where conceptV1T holds, after a cycle where each
of the variables has taken a turn. Thus, we have to make sure to propagateVi, ViN values
appropriately, by introducing the following inclusions for1 ≤ i ≤ k.

– WhenV1T holds,Vi should assume its next value that has been stored inViN .
(V1T u ViN) v Vi (V1T u (¬ViN)) v (¬Vi)

– PropagateVi at every step in the cycle, except the last one.
((¬VkT) u Vi) v (∀R.Vi) ((¬VkT) u (¬Vi)) v (∀R.(¬Vi))

– PropagateViN , unlessViT holds, (in which case a new value is computed).
((¬ViT)uViN)) v (∀R.ViN) ((¬ViT) u (¬ViN)) v (∀R.(¬ViN))

In total, for k variables,Tk will consist of 8k concept inclusions, each of them of constant
size.

Constructing T type
MD We now translate the model descriptionMD = (I, [〈c1, c′1〉, ..., 〈ck, c′k〉]).

Let I = {v1 = b1, ..., vk = bk}, bi ∈ {0, 1}. To encode the initial condition of the model, we
introduce the concept inclusion

– Init v (D1u, ...,uDk u V1T u ¬V2Tu, ...,u¬VkT)

WhereDi = Vi if (vi = 1)∈ I, andDi = ¬Vi if (vi = 0)∈ I. TheViTs are needed to ensure
the initial condition corresponds to a real model state (V1T), and that onlyV1 is allowed to
make a move (¬ViT).
Let the pair〈ci, c′i〉 describe the next state behavior of the variablevi. That is,

next(vi) =

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

whereci, c′i are Boolean expressions overv1, ..., vk, and{0, 1} is a non-deterministic assign-
ment, allowingvi to assume both0 and1 in the next state. LetCi be the concept generated by
replacing everyvi in ci with the conceptVi, and∧ with u. LetC ′

i be the concept correspond-
ing to c′i in the same way. We introduce the following concept inclusions.
(ViT u Ci) v ∃R.¬ViN
(ViT u ¬Ci u C ′

i) v ∃R.ViN
The encoding of the non-deterministic assignment as a concept inclusion, has two flavors,
depending on thetypeof the formulaϕ.

– If ϕ is of typeA, we call the terminologyT A
MD , and introduce the inclusion:

(ViT u ¬Ci u ¬C ′
i) v (∃R.ViN u ∃R.¬ViN).

– If ϕ is of typeE, we call the terminologyT E
MD , and introduce the inclusion:

(VIT u ¬Ci u ¬C ′
i) v (∃R.ViN t ∃R.¬ViN).

In total, T type
MD will consist of one concept,Init, of size2k, and 3 concept inclusions of

constant size.

Proceedings of DL 2006 227

Constructing Tϕ Letϕ be the formula to be verified, written in terms ofEXp,AXp,E[pV q]
or A[pV q]. Let ψ be the formula derived fromϕ by peeling off all negations preceding the
outermost path quantifier, as well as the path quantifier itself. (e.g.,¬E[pV q] becomes[pV q]).
ψ can be one of two formulas only:Xp or [pV q], wherep, q are Boolean combinations of
variablesvi. LetP,Q be the translation ofp, q using the corresponding conceptsVi.

– If ψ = Xp, we introduce one concept inclusion toTϕ :
Init v ∀R.∀R...∀R︸ ︷︷ ︸

k

.P

We need a sequence ofk transitions since one transition in the modelMMD is translated
into k micro-transition in our terminology.

– If ψ = [pV q] we use the auxiliary conceptCϕ introduced for this purpose. Intuitively,
[pV q] means “p releasesq”. That is, q must hold along an execution path, unlessp ap-
pears at one stage, in which caseq is released, and does not have to hold any longer. We
introduce the following concept inclusions toTϕ.

(Cϕ u ¬P) v ∀R.Cϕ

(Cϕ u P) v ∀R.¬Cϕ

¬Cϕ v ∀R.¬Cϕ

V1T v (¬Cϕ tQ)

The first three concept inclusions above record the behavior of the conceptP .Cϕ holds in
a state if and only ifP has never held on the path leading to this state. The forth inclusion
guarantees that on all the ‘real’ execution states (whereV1T holds), ifP has not appeared
until the previous state (¬Cϕ) thenQ must hold.

In total,Tϕ will consist of at most 4 concept inclusions, with one of them possibly of sizek,
and the rest of constant size.TMD ,ϕ = Tk ∪ T type

MD ∪ Tϕ is therefore of size linear ink.
The following proposition relates the consistency of the conceptInit with respect to

TMD ,ϕ to the satisfaction ofϕ in the modelMMD . Its proof will be given in a full version of
the paper.

Proposition 6. LetMD denote a model description for a modelMMD , and letϕ be a Basic
CTL specification. Then each of the following holds.

1. If ϕ is of typeA andnot negated, thenMMD |= ϕ iff Tk ∪ T A
MD ∪ Tϕ |= init consistent.

2. If ϕ is of typeE andnot negated, thenMMD |= ϕ iff Tk ∪ T E
MD ∪ Tϕ |=init consistent.

3. If ϕ is of typeA andnegated, thenMMD |= ϕ iff Tk ∪ T A
MD ∪ Tϕ 6|=init consistent.

4. If ϕ is of typeE andnegated, thenMMD |= ϕ iff Tk ∪ T E
MD ∪ Tϕ 6|=init consistent.

3.1 An Example

We illustrate our method by an example. Consider the model description

MD = (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3} with I = {v1 = 0, v2 = 1, v3 = 0}. Figure 1 draws the states and
transitions of the Kripke structureMMD described byMD. Let the formula to be verified be

228 Regular Papers

Fig. 1.A Kripke structure forMD

ϕ = AG(¬v1 ∨ ¬v2 ∨ ¬v3). Note thatMMD |= ϕ, as can be seen in Figure 1, since the state
(1, 1, 1) can never be reached from the initial state. The terminologyTϕ

MD derived fromMD
andϕ will use the primitive concepts{V1, V2, V3, V1N,V2N,V3N,V1T, V2T, V3T} and the
primitive roleR. By the construction given in section 3, the set of concept inclusions will be
the following.

The Construction of Tk

– Concept inclusions ensuring control over the turn to make a move
V1T v (∀R.V2T) ¬V1T v (∀R.¬V2T)
V2T v (∀R.V3T) ¬V2T v (∀R.¬V3T)
V3T v (∀R.V1T) ¬V3T v (∀R.¬V1T)

– Concept inclusions to propagate the values ofVi

((¬V3T) u V1) v (∀R.V1) ((¬V3T) u (¬V1)) v (∀R.(¬V1))
((¬V3T) u V2) v (∀R.V2) ((¬V3T) u (¬V2)) v (∀R.(¬V2))
((¬V3T) u V3) v (∀R.V3) ((¬V3T) u (¬V3)) v (∀R.(¬V3))

– Concept inclusions to propagate the values ofViN
((¬V1T) u V1N) v (∀R.V1N) ((¬V1T) u (¬V1N)) v (∀R.(¬V1N))
((¬V2T) u V2N) v (∀R.V2N) ((¬V2T) u (¬V2N)) v (∀R.(¬V2N))
((¬V3T) u V3N) v (∀R.V3N) ((¬V3T) u (¬V3N)) v (∀R.(¬V3N))

– Concept inclusions to moveVi equal toViN wheneverV1T holds
(V1T u V1N) v V1 (V1T u (¬V1N)) v (¬V1)
(V1T u V2N) v V2 (V1T u (¬V2N)) v (¬V2)
(V1T u V3N) v V3 (V1T u (¬V3N)) v (¬V3)

The Construction of T type
MD We need to determine thetype of ϕ. Note thatAG(p) =

A[false V p], thusϕ can be written asϕ = A[false V (¬v1 ∨ ¬v2 ∨ ¬v3)]. The type of
ϕ is thenA. We proceed to buildT A

MD :

– The initial condition
INIT v (¬V1 u V2 u ¬V3 u V1T u ¬V2T u ¬V3T)

Proceedings of DL 2006 229

– Computation ofV1

(V1T u V1 u V2) v (∃R.(¬V1N))
(V1T u (¬(V1 u V2)) u V3) v (∃R.V1N)
(V1T u (¬(V1 u V2)) u (¬V3)) v ((∃R.V1N) u (∃R.(¬V1N)))

– Computation ofV2

(V2T u V2) v ((∃R.V2N) u (∃R.(¬V2N)))
(V2T u (¬V2)) v (∃R.(¬V2N))

– Computation ofV3

(V3T u V1) v (∃R.V3N) (V3T u (¬V1)) v (∃R.(¬V3N))

The Construction of Tϕ Sinceϕ = A[false V (¬v1 ∨ ¬v2 ∨ ¬v3)], then according to the
translation in section 3, we need to introduce a conceptCϕ, in order to record the behavior of
⊥ (the translation offalse). However, the behavior of⊥ cannot change along the execution
path, and we get that¬Cϕ is always false. Thus we can omit the conceptCϕ altogether, and
add only the concept inclusion:V1T v (¬V1 t ¬V2 t ¬V3).

By Proposition 6 we get thatMMD |= ϕ if and only if Tk∪ T A
MD ∪ Tϕ |= Init consistent.

4 Summary

In this paper we have shown that model checking the basic modalities of CTL can be per-
formed using DL reasoning. First experiments using the DL reasoner “Racer” [7] were con-
ducted, with reassuring results. In the future, we plan to test our method on real models from
the hardware industry. Several other related directions seem interesting for further investiga-
tion. Firstly, it seems possible, using additional calls to “Racer”, to handle full CTL model
checking. Secondly, we are interested in implementing symbolic model checking algorithms
in ALC and applying these different model checking approaches to available test beds.

Acknowledgements

The authors gratefully acknowledge the support for this result provided by Nortel networks
Ltd. and by NSERC Canada.

References

1. S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking at IBM.Formal Methods in System
Design, 22(2):101–108, 2003.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. InTACAS’99, 1999.
3. R. Bryant. Graph-based algorithms for boolean function manipulation. InIn IEEE Transactions on Comput-

ers, volume c-35 no. 8.
4. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching time temporal

logic. In Proc. Workshop on Logics of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.
5. E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. The MIT Press, 2000.
6. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi. Benefits of bounded

model checking at an industrial setting. InCAV’01, july 2001.
7. V. Haarslev and R. Moller. Racer system description. InInternational Joint Conference on Automated

Reasoning (IJCAR’2001), volume 2083.
8. I. Horrocks. The FaCT system. pages 307–312, 1998.
9. I. Horrocks and U. Sattler. Decidability ofSHIQwith complex role inclusion axioms.Artificial Intelligence,

160(1–2):79–104, Dec. 2004.
10. K. McMillan. Symbolic model checking, 1993.
11. K. Yorav, S. Katz, and R. Kiper. Reproducing synchronization bugs with model checking. InCHARME,

2001.

230 Regular Papers

Towards Mobile Reasoning

Thomas Kleemann

http://www.kleemann-online.com
tomkl@kleemann-online.com

Abstract. Highly optimized reasoning support for Description Logics (DLs) has been developed
during the past years. This paper presents our efforts to develop a reasoner suitable for mobile
devices, namely mobile phones.
This might become important upon the convergence of the mobile industry and the web, especially
the semantic web. Details of the implementation and current limitations provide explanations to
the differences in performance in comparison to one of the well-known desktop reasoners.

1 Motivation

Mobile phones have become an ubiquitous companion for many users. There are
western countries with more mobile contracts than inhabitants. The mobile industry
is pushing users to adopt modern 3G services, i.e. to use the mobile phone as a client
to messaging and news services. At the dawn of the semantic web we expect these
messages to be semantically annotated. The device should be able to sort out un-
wanted messages and reduce the penetration of the user to messages of interest. We
suggested a user profile and matchmaking in [6, 8] that copes with SPAM annotations.
More DL based approaches to matchmaking can be found in [9, 10].

Unlike [15] we consider privacy a major issue. Due to the nature of user profiles,
we would like to encourage users to keep their private data on their personal device.
This requires the mobile device to decide the matchmaking without support of exter-
nal reasoners. As a consequence we developed the reasoner Pocket KRHyper [7] that
runs on a mobile phone or similar devices.

The remainder of this paper presents some details of the software and hardware
environment, explains how the DL reasoning is performed, finally gives some fig-
ures on performance compared to RacerPro 1.91 that is one of the highly developed
desktop reasoners.

2 Environment

The environment of mobile phones poses several restrictions on the development of
the reasoner. Resources like computing power, memory and energy are tightly limited.
Although phones offer hundreds of MB for the storage of pictures, sounds, and ring-
tones the memory offered to applications is restricted to a few hundreds kB. This
is a hard limitation imposed by the manufacturer, that cannot be configured. Even

1 http://www.racer-systems.com

Proceedings of DL 2006 231

worse this small memory is used for the application code, the application data like
the ontology and the working set of the current computation. Consequently whenever
we had the choice between memory consumption or additional computation, we went
for the additional computation. Computing power is reduced by a factor of 50 to 100
compared to an average desktop PC.

The widest spread language on phones is JAVA 2 micro edition (J2ME)2. J2ME
is tailored for devices with limited resources. It offers a language comparable to stan-
dard JAVA 1.1.8. Unfortunately all modern container classes of JAVA2, that would
ease development and speed up execution, are missing.

3 Reasoning

The reasoning is based on a first-order model generating reasoner implementing the
hyper-tableaux calculus [1]. The use of a first-order tableaux may be a little surprise,
but turns out to be viable, as can be seen in section 4. The reasoning task offers a
timelimit and throwsExceptionsupon timing out or running into memory shortages.
Thus the application may react appropriately. The reasoner comes as a library to be
integrated into J2ME applications (midlets).

3.1 Translation

To use the FO reasoner for DL purposes the knowledge base is transformed into a
set of possibly disjunctive clauses. The approach is relational and preserves the open
world assumption. Although the result is a logic program, the restrictions of DLP [3]
do not apply.

The knowledge base is considered to be a finite set of axiomsCv D andC≡ D,
whereC, D are concepts of the DL ALC extended by inverse and transitive roles and
role hierarchies.

The transformation into sets of clauses introduces subconcepts to reduce the com-
plexity of the concept expression or axiom. As an example the axiom∃R.Cv∀S.∀T.D
is decomposed into∃R.Cv subi andsubi v ∀S.subj andsubj v ∀T.D to comply with
the transformation primitives. Table 1 gives the transformation primitives in abstract
DL syntax, a corresponding first order formula, and the generated clauses.

The clauses marked with * share variables in a disjunctive head, they are not
range-restricted. As an extension to previous work [12] Pocket KRHyper now han-
dles these clauses by generating all ground instances up to the given term weight.
Doing so often causes timeouts of the prover due to the limited resources. Clauses
marked with ** are suitable for reasoning tasks in acyclic terminologies. Decidability
commonly requires the tableau procedure to engage a blocking technique. The block-
ing techniques found in [4] may be adapted to the transformation as shown in [2].

2 http://java.sun.com/j2me/

232 Regular Papers

description logicfirst order formula clauses
CuD v E ∀x.C(x)∧D(x)→ E(x) e(x) :- c(x), d(x).
CtD v E ∀x.C(x)∨D(x)→ E(x) e(x) :- c(x).

e(x) :- d(x).
C v ¬D ∀x.C(x)→¬D(x) false :- c(x), d(x).

∃R.C v D ∀x∀y.R(x,y)∧C(y)→ D(x) d(x) :- c(y), r(x,y).
∀R.C v D ∀x.(∀y.R(x,y)→C(y))→ D(x) d(x); r(x,fR−C(x)). *

d(x) :- c(fR−C(x)).
C v DuE ∀x.C(x)→ D(x)∧E(x) e(x) :- c(x).

d(x) :- c(x).
C v DtE ∀x.C(x)→ D(x)∨E(x) e(x); d(x) :- c(x).
¬C v D ∀x.¬C(x)→ D(x) c(x); d(x). *

C v ∃R.D ∀x.C(x)→ (∃y.R(x,y)∧D(y)) d(fR−D(x)) :- c(x).
r(x, fR−D(x)) :- c(x). **

C v ∀R.D ∀x.C(x)→ (∀y.R(x,y)→ D(y)) d(y) :- c(x), r(x,y).
Rv S ∀x∀y.R(x,y)→ S(x,y) s(x,y) :- r(x,y)

R− ≡ S ∀x∀y.R(x,y)↔ S(y,x) s(y,x) :- r(x,y).
r(x,y) :- s(y,x).

R+ ∀x∀y∀z.R(x,y)∧R(y,z)→ R(x,z) r(x,z) :- r(x,y), r(y,z).
Table 1.Translation Primitives

The effective test for satisfiability of a conceptC inserts a single factC(a) into the
knowledge base.C is satisfiable if the Pocket KRHyper finds a model for the knowl-
edge base. A refutation indicates the unsatisfiability of the concept. Subsumption is
reduced to satisfiability.

3.2 Optimizations

Common to DL reasoners are many optimizations [5]. In the following section some
counterparts within the FO reasoner are presented.

Backjumping. Backjumping is a technique to reduce the unnecessary evaluation of
branches, that do not contribute to the clash in a branch. In hyper-tableaux the ’hyper’
eventually tracks back over multiple branching points to avoid the same.

Semantic Branching. This optimization is derived from DPLL. As hyper-tableaux
is also a descendant from DPLL a corresponding technique known as complement
splitting is in use. Semantic branching adds the complement of already inspected
branches to subsequent branches. This avoids the redundant inspection of clashed
terms. Different from semantic branching the complements of subsequent branches
are added to the branches, that are inspected first. Because of the symmetry the effect
is the same for cases where all branches are closed.

Boolean Constraint Propagation. The current mobile implementation of the hyper-
tableaux tries to choose the disjunctive clause for the next expansion, that will imme-
diately clash one of its branches. This is similar to BCP.

Proceedings of DL 2006 233

Lazy Unfolding. Beyond these optimizations a behavior similar to lazy unfolding is
introduced by the transformation step. All subexpressions are named, and the trans-
formation step tries to identify with already known subexpressions. The FO tableaux
will expand these subexpressions only if no clash has been found prior to expansion.

Absorption. Absorption is left to the preprocessing of the knowledge base. It absorbs
general concept inclusions (GCI) into the definition of concepts. For a DL tableaux
this reduces the number of disjunctive branches. Here absorption reduces the number
of cases, that require the enumeration of all ground instances, see section 4 for an
example.

Reducing Memory Consumption. Currently the J2ME environment does not offer
an preinstalled XML-parser. So we decided to use the lisp-like KRSS [11] syntax.
The lisp-parser is significantly smaller than an XML-parser.

The clausal knowledge base is partitioned. The knowledge base keeps track of
these parts by setting a mark at each such step, so it is possible to revert it to the state
it had before an update or query. This allows for the addition of clauses generated for
query processing and a subsequent removal of them. The repeated transformation of
unchanged DL axioms to clauses is avoided. The query related clauses are added and
retracted as required by the query processing.

Any form of indexing or caching requires additional memory. Because the mem-
ory constraints of the used platforms are tight, we dropped most of these enhance-
ments. Consequently the current solution does not scale (wrt. the size of the model to
search) as well as desktop reasoners.

3.3 Engineering

The development of a reasoning engine is a challenging and error-prone task. To cope
with these difficulties we adopted the idea of unit testing. Unit testing automates the
execution of (parts of) your software on predefined tests with known results. The ease
of use and high degree of automation enables the early detection of software glitches
and sideeffects of changes throughout the whole development cycle.

The tests are divided into a first-order part and a DL part. For the first-order rea-
soning kernel we used a subset of the TPTP [13]. These clausal problems are fed into
the reasoner and evaluated by the FO tableaux. The result of the reasoning process is
compared to the known result.

Starting with some ’benchmarks’ taken from the DIG page3 many own tests, that
focus on specific implementation details, were added to test the DL part. The results
in the following section are derived from scaled tests. The automation of the tests
includes the comparison of predefined results with the actual result of the reasoner.

3 http://dl.kr.org/dig/

234 Regular Papers

test knowledge base comments
1 C≡C1; Ci vCi+1 test the propagation of individuals and the ability to

handle long branches
2 C≡C1; Ci vCi+1; Cm+1 v⊥ like test1 but not satisfiable; test refutations on long

branches
3 C≡ ∃R.C1; Ci v ∃R.Ci+1 test the handling of role successors
4 C≡ ∃R.C1; Ci v ∃R.Ci+1; Cm+1 v⊥ like test 3, but with a refutation at the end of the

branch
5 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1 test the handling of role successors and concept in-

clusions
6 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1; ∃R.Cm+1 v⊥ like test 5 with a closing inclusion
7 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1; >v ∀R.¬Cm+1 like test 6 but with differently formulated closing,

that derives from a range restriction
8 C≡ ∃R.C1; ∃R.Ci v ∃R.Ci+1; >v ∀R.⊥ similar to test 7 but branches may be closed prior

to the evaluation of the inclusions
9 C≡ ∃R.C0; ∃R.Ci v ∃R.Ci+1; >v ∀R.⊥ this time the inclusions are not related to the defi-

nition of C. Still not satisfiable.
10 C≡ ∃R.C0; Ci+1u∀R.Ci+2 v ∃R.Ci ; Ci+1 v ∃R.Ci+2 this test demonstrates the effect of not range-

restricted clauses for FO model generators
11 C≡ ∃R.C0; Ci+1 v ∃R.Ci+2u (∃R.¬Ci+2t∃R.Ci) Absorption in a preprocessing step solves this prob-

lem
12 C≡ ∃R1.C1; Ri v Ri+1 test handling of role hierarchies
13 C≡ ∃R1.C1; Ri v Ri+1; >v ∀Rm+1.⊥ test refutation at the end of role hierarchies

Table 2.Testsuite

4 Comparison

Based on the test cases for DL reasoning a generator of tests was developed. These
tests are used in multiple sizes wrt. the number of axioms to offer a view into the
scalability of the reasoning solution. In the primary application of Pocket KRHyper
all models or refutations were computed in short branches of a tableaux (less than 25
proof steps) because the applications ontology was about 200 concepts large but not
so deeply nested.

To the best of my knowledge there are no competing reasoners on mobile phones.
So I decided to compare the performance with RacerPro 1.9. The JAVA-library is
compiled for the desktop version of JAVA (J2SE) without changes in the code. Conse-
quently all indexing and caching is still missing even though the desktop environment
would allow for the additional space. The integration of RacerPro into the automated
test routine uses its socket interface. The syntax of the test cases is compatible due to
the use of KRSS.

Out of more than 50 tests the following section describes about a dozen tests
to give an idea of the characteristics of Pocket KRHyper. The tests presented here
are limited to satisfiability tests with satisfiableand unsatisfiable concepts. This is
suitable to describe the behavior of subsumption tasks with positive and negative
outcome. Checking for subsumption and non-subsumption is not a trivial task for
all first-order reasoners, who are possibly better suited to find refutations than mod-
els [14].

Proceedings of DL 2006 235

4.1 Testsuite

All tests are scaled to the sizesm∈ {2,5,10,20,50}. Table 2 lists the tests, where
i ∈ {1,2, ...m} for the corresponding size.C possibly indexed are concepts,R possi-
bly indexed are roles. All 65 tests check for the satisfiability of conceptC. A JAVA
application runs all tests with Pocket KRHyper and RacerPro, compares the results
and collects the execution time in ms for the reasoning tasks. Some comments in
Table 2 indicate the targeted feature of the test.

The automated execution of these tests led to quite stable results wrt. the time
needed. Surprisingly only Racer had some glitches, where every now and then but
reproducible single tests performed quite bad beyond the time-limit of 1500ms. In
the calculation of the graphical representation (see Fig. 1) of the runtimes the median
of five runs was taken to eliminate this phenomenon. The times for the FO reasoner
include the transformation into clauses. Table 3 gives exact values, — indicates a
timeout. All times are in milliseconds taken on a contemporary personal computer
running WindowsXP with Java Runtime 1.5 (J2SE). Reasoners are Pocket KRHyper
via the library and RacerPro 1.9 via TCP-Socket. Due to limitations in precision all
runtimes below 10ms are presented as≤10ms.

4.2 Evaluation

Some weaknesses of the first-order approach are quite obvious. Test 10 is never solved
within the timelimit. This is a consequence of the necessary enumeration of ground
instances. The only solution to this problem is an improved preprocessing as test 11
indicates. As one might expect both tests are performing well with Racer. The only
surprise is the increased runtime for test 10 with size 5 compared to the same test
in size 10. An additional weakness is the scalability for tests 3 and 4. Following the
transformation steps, a lot of functions are used. Pocket KRHyper tries to reduce
the amount of storage and compares all new facts with existing ones in the current
branch. This comparison is carried out by a unification method. This method suffers
from the deeply nested functions and a lack of caching of intermediate results. In

test1 2 3 4 5 6 7 8 9 10 11 12 13
m reasoner
m=2 racer20 10 10 10 10 10 20 10 20 10 10 10 10

pKrh 30 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 — ≤ 10 ≤ 10 ≤ 10
m=5 racer20 10 20 20 20 30 20 10 20 90 20 10 20

pKrh ≤10 ≤ 10 20 30 10 11 ≤ 10 ≤ 10 ≤ 10 — ≤ 10 ≤ 10 ≤ 10
m=10 racer20 30 20 20 30 30 30 30 20 50 30 30 30

pKrh ≤10 ≤ 10 90 70 30 20 40 ≤ 10 30 — ≤ 10 ≤ 10 ≤ 10
m=20 racer50 40 40 40 50 50 50 71 40 90 60 40 41

pKrh 30 ≤ 10 701 681 100 100 130 ≤ 10 ≤ 10 — ≤ 10 20 20
m=50 racer91 100 90 90 90 100 100 90 90 241 170 90 90

pKrh 60 20 — — 981 1001 1402 20 20 — 140 40 60

Table 3.Runtimes in comparision of Pocket KRHyper and RacerPro 1.9

236 Regular Papers

1 2 3 4 5 6 7 8 9 10 11 12 13

0
25
50
75

100
125
150

175

200

225

250

2
5

10
50

Pocket KRHyper

2
5
10
20
50

tim
e

in
 m

s

1 2 3 4 5 6 7 8 9 10 11 12 13

0
25
50
75

100
125
150
175

200
225

250

2
5

10
50

RacerPro 1.9

2
5
10
20
50

tim
e

in
 m

s

Fig. 1.Runtimes in milliseconds, max. 250ms, timelimit 1500ms

contrast Racer scales well for these two problems up to sizes between 100 and 200.
Only above these limits Racer performs bad.

Besides these weaknesses the first-order model generation approach gives com-
petitive runtimes compared to a well established DL reasoner. For small test cases
(up to 10) and special cases (e.g. role hierarchies: test 12 and 13) the performance is
usually better than Racer. This is not to speak of superior performance, because Racer
is designed for a richer DL and has to maintain all indexes and caches, that will speed
up subsequent queries into the same TBox. One of Pocket KRHyper s nice features is
the symmetry of satisfiable and non-satisfiable problems or respectively subsumption
testing. The lack of scalability is most of all a consequence of the dropped indexing.
That was chosen deliberately because of the tightly limited memory in mobile phones.

Tests 8 and 9 demonstrate thelocal character of the FO tableaux and the transfor-
mation. The additional axioms in the knowledge base do not significantly influence
the time for answering the satisfiability. This is an important property for the suitabil-
ity into a resource scarce environment.

5 Conclusion

In this paper some details about the Pocket KRHyper approach to DL reasoning were
presented. Although the mobile reasoner was successful in its original application a
more thorough testing and comparison was due. Out of many tests 13 were described
in detail. For many other features like inverse roles or explicit disjuncts the compar-
ison revealed similar results. Overall the developed reasoner proved to be a useful
tool. The need to look into very specific details of the implementation and not into
the average capability or performance to solve problems motivated the disregard of
existing benchmarks.

Proceedings of DL 2006 237

Of course Racer is not the only competing system4. To ease our purposes Racer
supported the same syntax and I consider this a good basis for further developments.
Especially because Racer is going to implement the SWRL rule language I will re-
visit the comparison. Rules are a natural extension for the first-order reasoner. In fact
merely an interface has to be added. That was one of the reasons not to specialize
the reasoning procedure for DL purposes. Furthermore the transformation is likely
to include more features like normalizations and absorption in future versions. The
current version of Pocket KRHyper is available for download at sourceforge5.

Finally I would like to thank Racer-Systems for granting a license for the cur-
rent version. Compared to version 1.7 many improvements make a difference in this
comparison.

References
1. Peter Baumgartner. Hyper Tableaux — The Next Generation. Technical Report 32–97, Universität Koblenz-

Landau, 1997.
2. Peter Baumgartner, Ulrich Furbach, Margret Gross-Hardt, and Thomas Kleemann. Model based deduction

for database schema reasoning. In Susanne Biundo, Thom Frühwirth, and G̈unther Palm, editors,KI 2004:
Advances in Artificial Intelligence, volume 3238, pages 168–182. Springer Verlag, 2004.

3. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic programs: Combining
logic programs with description logic. InProc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 48–57. ACM, 2003.

4. Volker Haarslev and Ralf M̈oller. Expressive ABox Reasoning with Number Restrictions, Role Hierarchies,
and Transitively Closed Roles. InKR2000: Principles of Knowledge Representation and Reasoning, pages
273–284. Morgan Kaufmann, 2000.

5. I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.Journal of Logic and
Computation, 9(3):267–293, 1999.

6. Thomas Kleemann and Alex Sinner. Description logic based matchmaking on mobile devices. In Joachim
Baumeister and Dietmar Seipel, editors,Proc. of 1st Workshop on Knowledge Engineering and Software
Engineering - KESE2005, Koblenz, ISSN 1860-4471, pages 37–48, 2005.

7. Thomas Kleemann and Alex Sinner. Krhyper - in your pocket, system description. In Robert Nieuwenhuis,
editor,Automated Deduction - CADE-20: 20th International Conference on Automated Deduction, volume
3632 ofLecture Notes in Computer Science, pages 452–458. Springer Verlag, 2005.

8. Thomas Kleemann and Alex Sinner. User profiles and matchmaking on mobile phones. In Oscar Bartenstein,
editor,Proc. of 16th International Conference on Applications of Declarative Programming and Knowledge
Management INAP2005, Fukuoka, 2005.

9. Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web technology. In
Proc. of the Twelfth International World Wide Web Conference (WWW’2003), pages 331–339. ACM, 2003.

10. Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Marina Mongiello. Abductive match-
making using description logics. InProc. of IJCAI’03, pages 337–342, 2003.

11. Peter F. Patel-Schneider and B. Swartout. Description-logic knowledge representation system specification,
November 1993.

12. A. Sinner and T. Kleemann. Krhyper - in your pocket, system description. InProc. of Conference on
Automated Deduction, CADE-20. Springer Verlag, 2005.

13. G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.Journal of Automated
Reasoning, 21(2):177–203, 1998.

14. Dmitry Tsarkov and Ian Horrocks. DL reasoner vs. first-order prover. InProc. of the 2003 Description Logic
Workshop (DL 2003), volume 81 ofCEUR (http://ceur-ws.org/), pages 152–159, 2003.

15. Wolfgang Wahlster. Smartweb: Mobile applications of the semantic web. InGI Jahrestagung (1), pages
26–27, 2004.

4 see http://www.cs.man.ac.uk/˜ sattler/reasoners.html for a comprehensive list
5 http://sourceforge.net/projects/mobilereasoner

238 Regular Papers

Part III

Posters

Euclidian Roles in Description Logics

Giorgos Stoilos and Giorgos Stamou
National and Technical University of Athens

Department of Electrical and Computer Engineering

Abstract

In the current paper we investigate the role of Euclidian roles in De-
scription Logics.

1 Introduction

The last years much research effort has been spend towards increasing the ex-
pressiveness of Description Logics with respect to what can be said about roles.
For example, in [2] the Description Logic RIQ is extended with several role
axioms, like reflexive and irreflexive role axioms, disjoint role axioms and simple
negation on roles. These extensions has motivated us to investigate possibilities
of extending Description Logics with other role axioms. In the following we
investigate the extension of DLs with Euclidian role axioms.

Euclidian roles are widely used in Modal Logics [1]. Formally, a role R is
called Euclidian iff for each x, y, z, R(x, y) and R(x, z) imply R(y, z). Syntacti-
cally in order for a DL language L to include Euclidian role axioms we have to
extend the RBox to allow expressions of the form Eucl(R). The semantics of such
axioms are derived quite straightforwardly. Given an interpretation I = (∆I , ·I),
I satisfies Eucl(R) if for all x, y, z ∈ ∆I , {〈x, y〉, 〈x, z〉} ⊆ RI → 〈y, z〉 ∈ RI . As
with transitive role axioms, in order to efficiently handle Euclidian roles we have
to understand the Euclidian closure of a relation R and handle properly value
restrictions, ∀R.C. In Figure 1 (a) we can see the Euclidian closure of a relation
R. As we can see the models of such role axioms include a root node, while all
other nodes are interconnected with each other plus with themselves. That is
because from R(x, y) ∧ R(x, y) we derive R(y, y). It is important to note here
that the inverse of a Euclidian role is not necessarily Euclidian. An interesting
question that is raised about Euclidian roles is if the can or can’t be used in
qualified number restrictions. We remind here that if transitive roles are used
in QCRs then the resulting logic is undecidable. It turns out that similarly if

Proceedings of DL 2006 241

Euclidian roles are used in number restrictions, then the language is undecid-
able. More interestingly, if the inverse of a Euclidian role is used in a QCR,
then the language is again undecidable, although the inverse of a Euclidian role
is not necessarily Euclidian. The proof of this claim uses a reduction from the
classical domino problem. Figure 1 (b), (c) and (d) illustrate the visualization
of the grid and role hierarchy, where Sε

ij are Euclidian roles.

Figure 1: The (a) Euclidean closure, (b) grid, (c) role hierarchy and (d) coinci-
dence enforcing

As it happens with many role axioms of SRIQ [2], it comes to no surprise
that Euclidian roles are a syntactic sugar for SRIQ. More precisely, an axiom
Eucl(R) can be represented by the RIA R−R v R. This means that if 〈x, y〉 ∈
(R−)I (or 〈y, x〉 ∈ RI) and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI , which capture the
semantics of Euclidian roles. Moreover, in [2] the definition of simple roles is also
extended to cover the new expressive means of the language. As it was expected,
according to the definition in [2], a role R that is defined by the Euclidianity
RIA is not simple, since it is defined in terms of itself and its inverse, hence
Euclidian roles are not simple and cannot participate in QCRs. Additionally,
an inverse role R− is simple if R is [2], which agrees with our comment about
the inverses of Euclidian roles.

References

[1] J.Y. Halpern and Y.Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54(3):319–379,
1992.

[2] I. Horrocks, O. Kutz, and U. Sattler. The irresistible SRIQ. Proc. of the
International Workshop on OWL: Experiences and Directions, 2005.

242 Posters

Experiences with Load Balancing and Caching for

Semantic Web Applications

Alissa Kaplunova, Atila Kaya, Ralf Möller
Hamburg University of Technology (TUHH)

al.kaplunova|at.kaya|r.f.moeller@tu-harburg.de

1 Introduction

In our work we consider applications which generate queries w.r.t. many different
knowledge bases. We presuppose that for a particular KB there exists many possible
query servers. In order to successfully build applications that exploit these KB servers,
an appropriate middleware is required. In particular, if there are many servers for a
specific KB, the middleware is responsible for managing request dispatching and load
balancing. Load balancing must be accompanied by middleware-side caching in order
to reduce network latency.

In our view the KB servers we consider are managed by different organizations.
Therefore, DL applications used in some company need some gateway inference server
that provides local caching (in the intranet) to: (i) reduce external communication
and (ii) avoid repetitive external server access operations in case multiple intranet
applications pose the same queries.

In our case study we investigate a server for answering OWL-QL− queries1. This
server (called RacerManager) acts as a proxy that delegates queries to back-end DL
reasoners (RacerPro servers) that manage the KB mentioned in the query and load
KBs on demand. Compared to previous versions, the functionality of RacerManager
has been substantially enhanced. We address the problems of load balancing and
caching strategies in order to exploit previous query results (possibly produced by dif-
ferent users of the local site). Caching is investigated in the presence of incrementally
answered OWL-QL− queries. In addition, the effects of concurrent query executions
on multiple (external) inference servers and corresponding transmissions of multiple
partial result sets for queries are studied.

2 OWL-QL− Server as a Middleware

Reasoning over ontologies with a large number of individuals in ABoxes is a big chal-
lenge for existing reasoners. To deal with this problem, RacerPro supports iterative
query answering, where clients may request partial result sets in the form of tuples.
For iterative query answering, RacerPro can be configured to compute the next tu-
ples on demand (lazy mode). Moreover, it can be instructed to return cheap (easily
inferable) tuples first.

Although these configuration options enable the reasoner to achieve significant
performance improvements for a single client, this effect decreases in scenarios where
multiple clients pose queries concurrently. In fact, a single RacerPro instance cannot
process several client requests in parallel. Thus, as long as RacerPro is processing a
clients request, which usually includes activities such as parsing the query, reading
the corresponding knowledge base, classifying it, finding requested number of answer
tuples and returning them, all other clients have to wait in a queue.

1OWL-QL− stands for OWL-QL with distinguished variables only.

Proceedings of DL 2006 243

Motivated by the concurrency problem, our OWL-QL− server is implemented to
act as a load-balancing middleware between clients and multiple RacerPro instances.
We chose a common n-tier architecture as the base layout. RacerManager can initialize
and manage an array of RacerPro instances. Multiple clients can use the web service
offered by RacerManager to send their OWL-QL− queries concurrently. With respect
to the states of the managed RacerPro instances and a naive load-balancing strategy
(similar to round-robin), RacerManager dispatches the queries to RacerPro instances.
More precisely, given a query, which requires some ontology, RacerManager prefers
RacerPro instances, which already worked on this ontology. Before a OWL-QL−

query is send to a reasoner instance, it is translated to the new Racer Query Language
(nRQL) by the translator module. Preliminary test results showed that, the proposed
architecture prevents clients from blocking each other, as it is the case if multiple
clients interact with a single reasoner.

Additionally, irrespective of load balancing and query dispatching, a client may
benefit from the caching mechanism offered by RacerManager. In case he sends a
query, which has been posed before, answer tuples are delivered directly from the
cache. If the client requires more tuples than available in the cache, only the missing
number of tuples are requested from an appropriate RacerPro instance. The cache
expiration can be set to an arbitrary duration or turned off. In the latter case, the
cache will never be cleared.

3 Features and Limitations

When developing the OWL-QL− server, our main goal was to ensure scalability and
high performance. Therefore we only take into account OWL-QL features, that could
be efficiently implemented in the middleware tier. In fact, some features such as
may-bind variables implemented by the middleware using rolling-up techniques and
disjunctive queries would result in excessive computing and increased communication
with reasoners. In our opinion, they should be supported by reasoners directly.

We presuppose that for many Semantic Web applications, conjunctive queries with
must-bind (distinguished) variables will be enough. Therefore, our current implemen-
tation supports such queries. Furthermore, it handles queries that include a premise
(if-then queries). The server does not support scenarios where multiple knowledge
bases are to be used to answer a query or where a knowledge base is not specified by
the client. Furthermore, RacerManager does not provide proofs about the reasoning
made.

4 Future Work

In our future work we will conduct comprehensive experiments in order to empirically
evaluate RacerManager. Moreover, we will compare alternative strategies to determine
more efficient load balancing and cache usage algorithms.

It is obvious, that in some situations the single RacerManager server may itself
become a bottleneck. One possible solution is to replicate it and to set up a HTTP
or hardware dispatcher in front of RacerManager instances.

From our point of view, there are some open questions regarding the implemen-
tation of the OWL-QL standard which we will address in the future, e.g.: (i) How
should queries without a KB reference be handled in different scenarios? (ii) In which
scenarios should clients share results obtained by other clients? (iii) Is expiration of
query results important for applications? (iv) Are subscription services required?

244 Posters

How sensor data interpretation could benefit from

description logics: Position paper

Sylvia Melzer, Ralf Möller
Hamburg University of Technology, Germany
{sylvia.melzer, r.f.moeller}@tuhh.de

In many areas the interest in real-time and content-based data dissemination is
increasing. Sensor data might be sent to an interested client automatically (via pub-
lish/subscribe facilities) or might be downloaded on demand by sending a query (pull
model). Data dissemination and data access are important aspects in a sensor-based
environment and both have a wide influence on the architectual design for an indi-
vidual sensor data supply. Even simple sensors provide individual records of data by
supporting web service calls (maybe via a proxy). In this scenario web service architec-
tures are faced with high data rates, large profile population, variable query life span
and high result volume. Technical details and an implementation of a service-based
publish/subscribe communication architecture is described in detail in [2].

Content-based publish/subscribe systems support the required flexibility to inter-
pret complex queries. Figure 1 illustrates a publish/subscribe system for sensor data
information.

Sensors deliver sensor data like multimedia data to the broker system which is a
service. Based on the content of information and the user profiles (called demand

sensors

clients

Broker KBB

Ch1 Ch2

… …

…

service profiles

for channels

(Si,KBSi)

demanddemand

demand

subscription

(D,KBD)

servicei

Figure 1: publish/subscribe system

Proceedings of DL 2006 245

subscriptions, or demands D for short) the broker system delivers information to the
client. Clients subscribe to the service with their demand profiles. After low-level
filtering, aggregating, and combining raw sensor data, the broker component provides
certain sensor data information channels (Chi). Channels are described with some
profiles (called service profiles (S)) as well. Both parts, services and demands are
described with tuples (Si,KBSi) or (Di,KBDi). All knowledge bases KBS/D refer to
some broker-specific background knowledge base KBB.

If a certain demand subscription is sent to the broker, the problem is to find
relevant channel-based services such that match with the demand specification. In
the literature, several formalizations of this process are discussed [1, 3]:

• Satisfiability of the conjunction Si uDi of supply and demand description with
respect to KBSi ∪KBDi ∪KBB.

• Subsumption Si v Di between supply and demand descriptions w.r.t. a back-
ground ontology KBSi ∪KBDi ∪KBB.

In our scenario, the situation is slightly more complicated because some demands
can only be fulfilled if some channels are combined (see the combination of Ch1 and
Ch2 for the left client in Figure 1). In addition, maybe some filtering has to be done
at client-side because there is no perfect match with existing services (channels) and
incoming demands. In this context a feedback process (i.e. output data is fed back
to the input of the system), currently discussed in BOEMIE1, proves that clients get
more relevant and enriched information because of the evolution of knowledge bases
and the fusion of information from different channels in a bootstrapping fashion. In the
e-commerce literature, service and demand adaptions have already been investigated
in terms of service negotiation. According to this view, abduction and contraction
operators can be used to configure supplies such that they match modified demands.
This theory also provides a foundation for channel fusion (service modification) and
a posteriori client-side filtering (demands taylored towards available services).

References

[1] Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic
web technology. Int. J. of Electronic Commerce, 8(4):39–60, 2004.

[2] Sylvia Melzer. A content-based publish-subscribe architecture for individualized
sensor data supply (in German). Master thesis, Hamburg University of Technology,
January 2006.

[3] David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillo. A semantic web
approach to service description for matchmaking of services. In Proceedings of the
International Semantic Web Working Symposium (SWWS), 2001.

1BOEMIE (Bootstrapping Ontology Evolution with Multimedia Information Extraction) is an IST
6th Framework Programme Project (FP6-027538)

246 Posters

Cost-efficient web service composition for
processes with distributed retrieval queries:

Position paper

Irma Sofia Espinosa Peraldi and Ralf Möller
Hamburg University of Technology
Software Systems Institute (STS)

Hamburg, Germany
sofia.espinosa@tuhh.de, r.f.moeller@tuhh.de

1 Problem description

In the near future, description logic reasoning services will be offered as web
services and initial versions of, for instance, OWL QL web services have already
been developed (e.g., [1]). Due to the high acceptance of web service technolo-
gies to support processes across heterogeneous architectures, the amount of web
service offering similar functionality is proliferating. Thus, the problem of select-
ing a particular service binding in order to minimize resource consumption in a
web service composition has emerged. In particular we investigate optimization
strategies for web service compositions that define large-scale inference processes
with query correlation. Due to the business logic behind the process, there is
an implicit knowledge about the enquired domain, the processing order of the
queries and if a query subsumes another. Furthermore, the web service partners
of such a composition provide reasoning services over (possibly heterogeneous)
ontologies. Thus, the optimization criteria we are interested in is very much
service-dependent, where reasoning tasks with query subsumption, optimization
techniques with Abox indexing and KB availability are being considered.

2 Approach

The optimization problem is expressed in terms of a configuration problem in
which the web service partners (DL reasoners) become objects to be combined
such that they satisfy the given criteria. The optimization algorithm was de-
signed such that it can handle multiple criteria expressed as constraints, which

Proceedings of DL 2006 247

are hard criteria that can not be relaxed, and objectives with no total order, of
which a minimum or maximum number should not be violated. Furthermore,
the considered criteria have dynamic values, due to the exposure of the web
services partners to other (competing) calls for instance retrieval. Thus, it is
not possible to a priori determine an execution plan. Therefore, we pursued
an approach proposed by [3] using the notion of Pareto dominance, for local
optimization, where for each invocation step in the composition, the set of given
web service partners are being compared against the multiple objectives along
the dimensions. A relaxation process is applied in case of over constraining. For
details on the implementation see [4].

3 Contribution

Until now no solution has been presented to optimize large-scale inference pro-
cesses (represented as web service compositions), where on the one side, the
correlation of the process’s queries is being considered, and on the other side,
reasoning tasks and optimization techniques offered by several DL reasoning ser-
vices (representing the web service partners of the composition), is being used
as criteria for optimizing resource consumption. In the current implementation
only RacerPro[2] reasoners can be used to obtain required information about
loaded Tboxes and Aboxes, about Abox index structures being computed, about
whether a new query is subsumed by another query already answered by some
server etc. However, since web service architecture are more and more accepted,
current proposals for DL reasoner communication languages such as DIG might
be extended with corresponding facilities in the future.

References

[1] J. Galinski, A. Kaya, and R. Möller. Development of a server to support the formal
semantic web query language OWL-QL. In I. Horrocks, U. Sattler, and F. Wolter,
editors, Proc. International Workshop on Description Logics, 2005.

[2] Racer Systems GmbH & Co. KG. Racerpro 1.9. WWW page, March 2005.
http://www.racer-systems.com (10.03.06).

[3] D. Navinchandra. Exploration and innovation in Design. Towards a Computational
Model. Springer-Verlag, 1 edition, 1991.

[4] I. S. Espinosa Peraldi. Cost-efficient web service compositions. Master thesis, TU
Hamburg-Harburg, June 2005.

248 Posters

Static Knowledge Representation of Multi-Agent
System’s Specification by Description Logics

Haiyan Che1, Jigui Sun1,2 and Haibo Yu1

1College of Computer Science and Technology, Jilin University
Changchun 130012, China

{chehy,jgsun,yuhb}@jlu.edu.cn
2Key Laboratory of Symbolic Computation and

Knowledge Engineering of Ministry of Education, Jilin University
Changchun 130012, China

Abstract

Modularity and rigor are two key elements for multi-agent technology.
Hong Zhu’s multi-agent system (MAS) development method provides
proper language facilities supporting modularity. To enhance this method
with rigor advocates a DL method to map the specification of MAS into
a DL TBox. Thus, we can use the existing DL reasoners and systems to
verify and validate some system’s properties.

1 Introduction

Agent technology has been predicted to be the next generation mainstream
computation paradigm. However, lack of rigor and language facilities directly
supporting modularity and abstract mechanisms hamper the wide-scale adoption
of it. Hong Zhu et al. contribute on the research of such language facilities.
They advocate a model driven method for MAS development, which designs
and implements CAMLE (Caste-centric Agent-oriented Modeling Language and
Environment) [1] providing tools for constructing graphic MAS models, auto-
matically checking consistency between various views and models, and auto-
matically transforming these models into formal specifications in SLABS [2]. To
enhance Hong Zhu’s method with rigor, we propose a DL method to map the
specification of MAS written in SLABS into a DL TBox. Taking advantage of
DL’s decidability and its existing reasoners and systems, we can perform certain
reasonings about the system’s properties.

Proceedings of DL 2006 249

2 Static Knowledge Representation with Des-

cription Logic ALCNIF reg

The most important language facilities in SLABS are caste, agent and scenario.
A MAS is regarded as a set of agents, and castes are the classifiers of agents,
or the roles agents play. They define templates of the structure and behavior
characteristics of agents. Scenarios are defined as the behavior patterns of the
agents in an agent’s environment, perceiving which the agent can decide its
action rather than driven by message communications. To represent the static
part of the MAS’s specification we choose ALCNIF reg, which extends ALC
with unqualified number restrictions (N), inverse roles (I), agreement (F), and
the composition of roles (reg).Based on the translation method from object-
oriented model to DLs proposed by Calvanese et al. [3] we define a map from
SLABS to DLs, which maps each caste and agent definition to corresponding
concept, and depicts the instance relationship between agent and caste by the
concept constructor of role agreement.

3 Conclusion

This paper advocates a DL method to formalize the specification and perform
certain reasonings about the properties of MAS. ALCNIF reg is chose to repre-
sent the static part of the specification and the satisfiability of concepts w.r.t.
acyclic TBoxes is decidable with the complexity of NExpTime-complete [4]. To
make our method practicable we need extend basic DL to represent dynamic
knowledge as our further work.

References

[1] Zhu, H. and Shan, L., Caste-Centric Modelling of Multi-Agent Systems:
The CAMLE Modelling Language and Automated Tools, in Beydeda, S.
and Gruhn, V. (eds) Model-driven Software Development, Research and
Practice in Software Engineering, Vol. II, Springer (2005) 57-89

[2] Zhu, H., ”SLABS: A Formal Specification Language for Agent-Based Sys-
tems”, Int. J. of Software Engineering and Knowledge Engineering 11(5)
(2001) 529-558

[3] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-
based representation formalisms. J. of Artificial Intelligence Research, 11
(1999) 199-240

[4] F. Baader, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Descrip-
tion Logic Handbook: Theory, Implementation and Applications, Cam-
bridge University Press (2003)

250 Posters

A Tableaux-based Mobile DL Reasoner

F. Müller and M. Hanselmann and T. Liebig and O. Noppens
Ulm University, D-89069 Ulm, Germany

{felix.mueller|michael.hanselmann}@uni-ulm.de

This is a preliminary experience report about designing and implementing
a tableaux-based DL reasoner suitable to run on a mobile device. For now the
reasoning system only offers pure TBox subsumption. Currently there is no pre-
processing for efficient taxonomy computation nor ABox support. The reasoner
supports the DIG standard for client communication.

Nowadays most mobile devices are capable of running Java programs using
the Micro Edition of the Java 2 platform (J2ME). In order to gain valuable
experience in the course of developing a mobile DL reasoner we took the most
ambiguous challenge by choosing the greatest common environment, namely
pure J2ME, on very limited devices, namely mobile phones.

Our approach is based on the well-known tableaux algorithm which is used
in most modern DL reasoning systems. This has the advantage of starting with
a relatively simple base algorithm which can be successively extended in order
to support additional language constructs. The mobile reasoner currently can
handle ALCN KBs with unique definitions.

Experience has shown that a wide range of optimization techniques typi-
cally improve the performance of a naive tableaux implementation by orders
of magnitude [1]. The most important ones are lazy unfolding, absorption and
dependency directed backtracking. Not all of them are relevant within the cur-
rent implementation due to the restricted expressivity of the supported language
(e. g. absorption can be dropped in absence of GCIs).

Within our mobile setting of very restricted memory and processing resources
it is not only important to utilize those optimizations but to implement them in
a resource-saving way. In this respect, the right choice of lean data structures is
of exceptional importance. Our solution consists of an array based index model
in order to implement an extended lazy unfolding technique called normalizing
and naming/tagging (e.g. see [2]) very efficiently. Naming means that all concept
expressions and sub-expressions are recursively indexed with an unambiguous
identifier. In order to save memory we use integers as identifiers for concepts
as well as expressions in contrast to strings or even Java objects. For example,
an expression D u ∀r.E may be successively named as follows: 3 → (D u ∀r.E),

Proceedings of DL 2006 251

4 → D, and 5 → ∀r.E (E will then be named within a recursive call). Note
that before introducing a new name the algorithm has to look-up whether this
expression has already been named. A negated expression will receive a negative
integer. All named TBox axioms, sub-axioms and elements have an associated
integer matrix encoding their definition. Consider the TBox axiom A ≡ Du∀r.E
and 6 → E, 1 → A. As a result of the naming phase the following integer arrays

(among others) are generated: for 1 (resp. A): kn 4 5 where kn is an integer
which encodes that the following entries are conjunctively connected. 5 (∀r.E) in

turn is represented with km 6 where km encodes a universal quantification over a
particular role, namely r (we use a special bit encoding in order to map language
constructor, role, etc. into one integer). It can easily be seen that this reflects
the original axiom by replacing the identifiers with their given expressions.

The encoding from above is of advantage for detection of obvious syntactical
clashes even between complex expressions which is known to be one of the most
effective optimizations [1]. For example, we can use a fast integer operation in
order to detect A and ¬A within a tableaux node simply by locally sorting it
and checking whether there are two succeeding elements whose sum is 0.

Our implementation successfully runs using the freely available Sun Wireless
Toolkit emulator software as well as on real mobile phones. In order to test our
reasoner we added a DIG/1.1 interface which allows to use Protégé as a front-end
within the emulator setting. For linking Protégé with the reasoner running on
a real phone we developed a small desktop application which serves as a proxy.
More precisely, the proxy receives HTTP DIG messages from a client and will
pass those via Bluetooth to the mobile reasoner.

To our knowledge, there is no related work except Pocket KRHyper [3] a port
of a subset of the hyper tableau calculus to a mobile phone. Pocket KRHyper
covers unfoldable ALCI TBoxes extended by role hierarchies using a variant
of the KRSS syntax. As far as can be seen within the log files of the system,
FaCT++ seems to utilize a similar internal naming approach.

References

[1] Ian Horrocks. Applications of Description Logics: State of the Art and
Research Challenges. In Proc. of the 13th Int. Conf. on Conceptual Structures
(ICCS’05), pages 78–90, 2005.

[2] Ian Horrocks and Peter Patel-Schneider. Optimising Description Logic Sub-
sumption. Journal of Logic and Computation, 9(3):267–293, June 1999.

[3] Alex Sinner and Thomas Kleemann. KRHyper – In Your Pocket. In Proc. of
the International Conference on Automated Deduction (CADE-20), volume
3632 of LNCS, pages 452–458. Springer Verlag, 2005.

252 Posters

Computing Maximally Satisfiable Terminologies
for the Description Logic ALC with GCIs

Kevin Lee and Thomas Meyer
NICTA and University of New South Wales, Sydney, Australia

{kevin.lee, thomas.meyer}@nicta.com.au
Jeff Z. Pan

University of Aberdeen, Aberdeen, UK
jpan@csd.abdn.ac.uk

1 Introduction
Existing description logic reasoners provide the means to detect logical errors
in ontologies, but lack the capability to resolve them. We present a tableau-
based algorithm for computing maximally satisfiable terminologies in ALC. Our
main contribution is the ability of the algorithm to handle GCIs, using a refined
blocking condition that ensures termination is achieved at the right point during
the expansion process. Our work is closely related to that of [1], which considered
the same problem for assertional (Abox) statements only, and [2], which deals
only with unfoldable terminologies for ALC.

2 Reasoning with Unsatisfiability
The algorithm receives as input a Tbox T and a concept name A in ALC, and
returns as output the maximally A-satisfiable subsets (A-MSSs) of T . Each sen-
tence in T is labelled with a unique propositional atom, hence T will be a set of
labelled axioms of the form (C v D)p and (C

.
= D)p. Our algorithm starts by

creating an Abox A containing only the labelled assertion A(x)>, where x is an
individual name. It then proceeds by continuously applying the expansion rules
below, first to A, and then to the Aboxes created subsequently, until none of the
rules are applicable. Note that clash-detection is not a condition for termina-
tion. Also, we assume that all concept assertions are in negation normal form.
The expansion rules make use of the following abbreviations and definitions:
A⊕C(x)φ stands for: (A\{C(x)ψ})∪{C(x)φ∨ψ} if C(x)ψ ∈ A, and A∪{C(x)φ}
otherwise. Similarly, A⊕R(x, y)φ stands for: (A\{R(x, y)ψ})∪{R(x, y)φ∨ψ} if
R(x, y)ψ ∈ A, andA∪{R(x, y)φ} otherwise. We refer to a labelled concept asser-
tion C(x)φ as A-insertable iff, whenever there is a ψ such that C(x)ψ ∈ A, then

Proceedings of DL 2006 253

u-rule if C1 u C2(x)φ ∈ A, and either C1(x)φ or C2(x)φ is A-insertable,
then A′ := (A⊕ C1(x)φ)⊕ C2(x)φ.

t-rule if C1 t C2(x)φ ∈ A, and both C1(x)φ and C2(x)φ are A-insertable,
then A′ := A⊕ C1(x)φ, A′′ := A⊕ C2(x)φ.

∃-rule if ∃R.C(x)φ ∈ A, x is not blocked, and either R(x, y)φ or C(y)φ is A-insertable,
then A′ := (A⊕R(x, y)φ)⊕C(y)φ, where y is a new individual name and y > y′ for all individual
names y′ in A.

∀-rule if {∀R.C(x)φ, R(x, y)ψ} ⊆ A, and C(y)φ∧ψ is A-insertable,
then A′ := A⊕ C(y)φ∧ψ .

v-rule if (C v D)φ ∈ T , ¬C tD(x)φ is A-insertable for some individual name x,
then A′ := A⊕ ¬C tD(x)φ.

.
=-rule if (C

.
= D)φ ∈ T , (¬C tD) u (C t ¬D)(x)φ is A-insertable for some individual name x,

then A′ := A⊕ (¬C tD) u (C t ¬D)(x)φ.

φ 6|= ψ. After constructing an expansion tree using the above expansion rules,
we compute a propositional formula called the clash-resolve formula as follows:
Suppose A1, . . . ,An are the complete Aboxes obtained from the expansion. A
particular clash {C(x)φ1 ,¬C(x)φ2} ⊆ Ai is expressed by the propositional for-
mula φ1 ∧ φ2. Now suppose there are ki clashes in Ai, and let ψi,1, . . . , ψi,ki be
the formulas expressing all the clashes in Ai. The clash-resolve formula associ-
ated with T and A is:

∨n
i=1

∧ki
j=1 ¬ψi,j. To compute the A-MSSs, simply find the

prime implicants of the clash-resolve formula. Each prime implicant is of the
form (¬p1∧ . . .∧¬pm), and the corresponding A-MSS can be found by removing
from the original set of axioms T the axioms whose labels are p1, . . . , pm.

Our result also show that classical blocking does not always block correctly
at the right point, hence it will not always yield the desired results. The reason
is that the labels associated with sentences are not taken into account when
blocking is performed. Therefore, we define the refined blocking condition as
follows: An individual y is blocked by x iff y > x and for every C(y)ψ ∈ A, it is
the case that C(x)φ ∈ A for some φ such that ψ |= φ.

3 Conclusion and Future Work
We presented an algorithm for computing maximally satisfiable terminologies
for description logic represented in ALC. Unlike the existing algorithms, our
proposed algorithm could also handle GCIs. We outlined some limitations with
the classic subset blocking in the labelled satifiablity algorithm and addressed
these issues by proposing a refined blocking condition. For future work, we will
investigate on extending our algorithm to more expressive description logics,
such as SI and ALCN .

References

[1] Franz Baader and Bernhard Hollunder. Embedding Defaults into Termi-
nological Knowledge Representational Formalisms. Journal of Automated
Reasoning, 14:149–180, 1995.

[2] Stefan Schlobach. Diagnosing terminologies. In Proceedings of AAAI05,
pages 670–675, 2005.

254 Posters

Pellet System Description

Evren Sirin and Bijan Parsia
Maryland Information and Network Dynamics Lab,

8400 Baltimore Avenue, College Park, MD, 20740 USA
evren@cs.umd.edu , bparsia@isr.umd.edu

The description logicSHOIN (D) has attracted considerable interest as the foun-
dation of the W3C standard Web Ontology Language variant, OWL-DL. Pellet is a
sound and complete tableau reasoner forSHOIN (D) and incorporates a number of
key features such as conjunctive ABox query, axiom pinpointing, rules,E-connection
reasoning, and novel optimizations for nominals. In this paper we summarize Pellet’s
features and special capabilities.

Novel Optimizations Pellet implements most of the state of the art optimization
techniques provided in the DL literature, e.g.absorption, dependency-directed back-
jumping, etc. In addition, there are also many novel optimization techniques im-
plemented in Pellet especially to deal with nominals and large ABoxes. See [3] for
details about these techniques.

Axiom pinpointing Axiom pinpointing is a non-standard DL inference service that
provides ajustification for any arbitrary entailment derived by a reasoner from an
OWL-DL knowledge base. Given a KB and any of its logical consequences, the
axiom pinpointing service determines the premises in the KB that are sufficient for
the entailment to hold. The justification is useful for understanding the output of
the reasoner, which is key for many tasks, such as ontology debugging, design and
evolution. See [2] for more details about axiom pinpointing service in Pellet.

Conjunctive ABox query Query answering is yet another important feature for Se-
mantic Web. Pellet includes a query engine that answers conjunctive ABox queries.
In the presence ofnon-distinguished variables, the well-known “rolling-up” tech-
nique is used to answer tree-shaped queries. If there are only distinguished variables
then every query atom can be answered in isolation and arbitrary shaped queries can
be handled. See [4] for an explanation of thequery simplificationandquery reorder-
ing techniques implemented in Pellet.

Proceedings of DL 2006 255

E-Connections E-Connections are a framework for combining several families of
decidable logics. In [1] we have proposed tableau algorithms for differentE-Connection
languages involving Description Logics so that an ontology can be refer to another
ontology without fully importing the contents of that ontology. Pellet has been ex-
tended with tableau-based decision procedures forE-Connection languages involving
combinations ofSHOIN (D) ontologies [1].

Rules Pellet has support forAL-log (Datalog +SHOIN (D)) via a coupling with
a Datalog reasoner. It incorporates the traditionalAL-log algorithm and a new pre-
compilation technique that is incomplete but more efficient. Pellet also has an exper-
imental implementation of a direct tableau algorithm for a DL-safe rules extension to
SHOIN (D) [5]. Preliminary empirical results have been encouraging and we think
that the DL-safe implementation is practical for small to mid-sized ontologies esp.
when the full expressivity ofSHOIN (D) is needed.

Usability Pellet provides many different interfaces. Pellet has a command line in-
terface, an interactive web form, DIG protocol support, and programmatic interface
with bindings to Jena and OWL-API libraries. It is used in conjunction with ontology
editors Swoop, Protege, and TopBraid Composer.

See the Pellet Web page athttp://www.mindswap.org/2003/pellet for
downloads and more detailed information about the system including the performance
evaluation and comparison with other systems.

References

[1] B. Cuenca Grau, B. Parsia, and E.Sirin. Combining OWL ontologies usingE-
connections.Journal of Web Semantics, 4(1), January 2005.

[2] A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and E. Sirin. Axiom pinpointing: Find-
ing (precise) justifications for arbitrary entailments in OWL-DL, 2006. Available
at http://www.mindswap.org/papers/TracingTechReport.pdf.

[3] E. Sirin, B. Cuenca-Grau, and B. Parsia. From wine to water: Optimizing de-
scription logic reasoning for nominals. InInternational Conf. on the Principles
of Knowledge Representation and Reasoning (KR-2006), 2006.

[4] E. Sirin and B. Parsia. Optimizations for answering conjunctive abox queries:
First results. InProc. of the Int. Description Logics Workshop (DL 2006), 2006.

[5] B. Parsia V. Kolovski and E. Sirin. Extending theSHOIQ(D) tableaux with
dl-safe rules: First results. InProc. of the Int. Description Logics Workshop (DL
2006), 2006.

256 Posters

Topological Reasoning in Basic Description
Logics

Matteo Cristani, Nicoletta Gabrielli and Paolo Torelli
Dipartimento di Informatica

Università di Verona

Strada Le Grazie 15, 37134 Verona (ITALY)

1 Introduction

In the recent past, several scholars have shown interest in the development of
an integration between general classification reasoning, as typically performed
in Description Logic frameworks [DL2003], and Spatial Reasoning [CohnH01],
usually carried out in a constraint-based context. Two approaches have been
carried out in the recent past. One is based upon the extension ALCRP(D)
of ALC with concrete domains, where the spatial reasoning capabilities of the
framework are deployed by means of standard topological interpretation of ra-
tional numbers [HaLM1999]. The other one, instead, is based on the extension
ALCIRCC [Wess2002] of ALC with role formation operators that are limited in
scope to the definition of an algebraic-logic framework for spatial reasoning quite
well-known in the reference literature and usually referred to as the Region Con-
nection Calculus [Rand1989, Rand1992]. The goal of both these approaches is
the representation of the topological properties and relationships between spatial
objects that are in fact elements of the domain of the interpretation.

This work aims at representing the topological properties of the sets of ele-
ments that correspond to the interpretations of the concepts defined in a ALC
terminology. In particular we introduce a rewriting operator that can be proved
to behave as a Kuratowski closure. With this closure operator we define the
notion of connection between concepts. The definition of a closure operator
induces a topology [Kell1975] on the domain of the interpretation in which con-
cepts can be open or closed and therefore they can be connected or not. The
notion of connection between concepts deals with the knowledge ontology, in
fact we aspect that for example the concept of forest will be not connected with
the concept of car.

The introduction of rewriting operators in a description logic cannot interfere
with the complexity of decision algorithms, so that if we introduce a rewriting

Proceedings of DL 2006 257

operator in a description logic L that is decidable, then L remains decidable.
However, a rewriting operator has its own computational cost, which is the
complexity of applying the operator to generic descriptions of L. The complexity
of the rewriting operator is therefore worth computing.

In particular, we obtain three results. First, the extended case complex-
ity - in which the Kuratowski operator is introduced in ALCU - is ExpTime,
hence remaining decidable. The second result is that we have the same average
case complexity as ALCU . The third aspect is that complexity is theoretically
scalable with the operators.

References

[DL2003] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.
Patel-Schneider. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press,
2003.

[CohnH01] A. G. Cohn, S. M. Hazarika, Qualitative Spatial Representa-
tion and Reasoning: An Overview., In Fundamenta Informaticae
volume 46, number 1-2, 2001, pp. 1-29

[HaLM1999] V. Haarslev, C. Lutz, R. Möller. A Description Logic with
Concrete Domains and a Role-forming Predicate Operator. Jour-
nal of Logic Computation, Jun 1999; number 9, pp. 351-384.

[Kell1975] J. L. Kelley. General Topology. Springer-Verlag, 1975.

[Rand1989] D. A. Randell, A. G. Cohn. Modelling topological and metri-
cal properties of physical processes. In Proceedings of the 1st Inter-
national Conference on Knowledge Representation and Reasoning
(KR-89), May 1989, pp. 55-66. Morgan Kaufmann, Toronto, ON,
Canada

[Rand1992] D. A. Randell, Z. Cui, A. G. Cohn. A spatial logic based
on regions and connection. In Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and Rea-
soning (KR-92), October 1992, pp. 165-176. Morgan Kaufmann,
Cambridge, MA, USA.

[Wess2002] M. Wessel. Qualitative Spatial Reasoning with the ALCIRCC
Family - First Results and Unanswered Questions. University of
Hamburg, Computer Science Department, 2002 - 2003

258 Posters

The New ICom
– Demo Paper –

Pablo Fillottrani, Enrico Franconi, Sergio Tessaris
Free University of Bozen-Bolzano, Italy

lastname @inf.unibz.it

ICom is an advanced CASE tool, which allows the user to design multiple
UML class diagrams with inter- and intra-model constraints. Complete logical
reasoning is employed by the tool to verify the specification, infer implicit facts,
devise stricter constraints, and manifest any inconsistency.

For the ontology creation and maintenance tasks, ICom interface supports
ontology engineers in engineering ontologies that meets clear and measurable
quality criteria. Indeed, recently we observe the development of large numbers
of ontologies. These ontologies have, however, usually been developed in an
ad hoc manner by domain experts, often with only a limited understanding of
the semantics of ontology languages. The result is that many ontologies are of
low quality—they make poor use of the languages in which they are written
and do not accurately capture the author’s rich knowledge of the domain. This
problem becomes even more acute as ontologies are maintained and extended
over time, often by multiple authors. Poor quality ontologies usually require
localised “tuning” in order to achieve the desired results within applications.
This leads to further degradation in their overall quality, increases the brittleness
of the applications that use them, and makes interoperability and reuse difficult
or impossible. To overcome these problems tools are needed which support the
design and the development of the basic infrastructure for building, merging,
and maintaining ontologies.

The Ontology Editor works on projects, which may contain one or more UML
class diagram. The diagrams are referred as models. Multiple projects can be
opened at the same time, but objects cannot be moved across them. Only one
project is visible at a time and the editing of each project is independent. The
user can switch between different projects using the tabs at the bottom of the
project area.

Figure 1 shows the main window of the Ontology Editor editing a single
model. Classes are represented by boxes and n-ary associations by diamonds.
Associations have so-called association classes specifying their name and at-
tributes. Isa relationships are represented as arrows with a disc in the middle
(e.g. see Enterprise and Business Organization).

Proceedings of DL 2006 259

Figure 1: Ontology Editor main window

Although the Ontology Editor can be used as a standalone modelling tool,
exploiting its full capabilities require the coupling of the system with any DIG
enabled Description Logic reasoner [3, 1]. The leverage of automated reasoning
to support the domain modelling is enabled by a precise semantic definition of
all the elements of the class diagrams. The diagrams and inter-model constraints
are internally translated into a class-based logic formalism. The same under-
lying logic enables the use of a view definition language to specify additional
contraints, not captured at the diagram level. The next section introduces this
logic-based modelling language.

After the verification process, the system provides the user with a visual
account of the deductions by modifying the appearance of the model diagrams
in the project. The user can discard the deductions and the entire project will
be returned to its original state (and any information about unsatisfiability will
be discarded). Alternatively, the equivalence, subsumption association, and role
cardinality deductions can be added permanently to the project by committing
them.

ICom is a fairly mature project, its first release has been published in 2001
(see [4, 2]). This paper presents the new improved version of the tool. Although
the theoretical underpinning is the same, ICom in its current version underwent
major changes in several crucial aspects. First of all, the diagrammatic repre-
sentation is now based on UML rather than Entity Relationship diagrams. The
graphical interface has been completely rewritten to improve the usability and
intuitiveness of the tool. Interoperability with other tools is a crucial aspect; so,
import and export modules have been developed for XMI 2.x [5] and Description
Logics based ontology languages.

260 Posters

References

[1] Sean Bechhofer. The dig description logic interface: Dig/1.1. Technical report,
University of Manchester, 2003.

[2] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description logic framework for information integration. In Proc.
of the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR’98), pages 2–13, 1998.

[3] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for
conceptual data modeling. In Jan Chomicki and Günter Saake, editors, Logics for
Databases and Information Systems. Kluwer, 1998.

[4] Enrico Franconi and Gary Ng. The icom tool for intelligent conceptual modelling.
In 7th Intl. Workshop on Knowledge Representation meets Databases (KRDB’00),
2000.

[5] OMG, 2005. http://www.omg.org/technology/documents/formal/xmi.htm.

Proceedings of DL 2006 261

262 Posters

Index

Artale, Alessandro 97

Baader, Franz . 15
Ben-David, Shoham 223
Booth, Richard 253

Calvanese, Diego 51, 62
Che, Haiyan . 249
Cristani, Matteo 257
Cuenca Grau, Bernardo 175, 208

De Giacomo, Giuseppe 51
Ding, Yu . 143

Eiter, Thomas. .62

Fillottrani, Pablo 259
Fokoue, Achille 135
Franconi, Enrico 259

Gabrielli, Nicoletta257
Gardiner, Tom . 167
Glimm, Brite . 3

Haarslev, Volker 143, 151, 159
Halaschek-Wiener, Christian 200
Hanselmann, Michael 251
Hladik Jan . 74
Horrocks, Ian 3, 167, 175
Hudek, Alexander K. 86

Kalyanpur, Aditya 200, 208
Kang, Dazhou 39, 111
Kaplunova, Alissa 243
Kaya, Atila . 243
Kershenbaum, Aaron.135
Kleemann, Thomas 231
Kolovski, Vladimir 192
Kutz, Oliver . 175

Lee, Kevin . 253
Lembo, Domenico 51
Lenzerini, Maurizio.51
Li, Yanhui. .39, 111
Liebig, Thorsten 251
Liu, Hongkai . 27

Lu, Jianjiang 39, 111
Lukácsy, Gergely 183
Lutz, Carsten 15, 27, 97

Möller, Ralf 151, 243, 245, 247
Müller, Felix . 251
Ma, Li . 135
Mellish, Chris . 127
Melzer, Sylvia. .245
Meyer, Thomas 253
Miličić, Maja. .27

Nagy, Zsolt . 183
Noppens Olaf . 251

Ortiz, Magdalena 62

Pan, Jeff 119, 127, 253
Parsia, Bijan. . .192, 200, 208, 215, 255
Peñaloza Rafael . 74
Peraldi, Irma Sofia Espinosa 247

Rosati, Riccardo 51

Sattler, Ulrike 3, 175
Sirin, Evren 192, 200, 215, 255
Stamou, Giorgos 119, 241
Stoilos, Giorgos 119, 241
Sun, Jigui . 249
Suntisrivaraporn, Boontawee 15
Szeredi, Peter . 183

Tessaris, Sergio 259
Toman, David. .97
Torelli, Paolo . 257
Trefler, Richard 223
Tsarkov, Dmitry 167

Weddell, Grant 86, 223
Wessel, Michael 151
Wolter, Frank . 27

Xu, Baowen 39, 111

Zuo, Ming . 159

263

