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Abstract. We propose a new mechanism for integration of OWL ontologies us-
ing semantic import relations. In contrast to the standard OWL importing, we do
not require all axioms of the imported ontologies to be taken into account for
reasoning tasks, but only their logical implications over a chosen signature. This
property comes natural in many ontology integration scenarios. In this paper, we
study the complexity of reasoning over ontologies with semantic import relations
and establish a range of tight complexity bounds for various fragments of OWL.

1 Introduction and Motivation
Ontology integration is a research topic which, in particular, aims at organizing in-

formation on different domains in a modular way so that information from one ontology
can be reused in other ontologies. There is a number of approaches known in the liter-
ature [1–5, 8], which address this problem from the point of view of ontology linking
and importing, see, e.g., an overview in [6]. Integration of multiple ontologies in OWL
is organized via importing: an OWL ontology can refer to one or several other OWL
ontologies, whose axioms must be implicitly present in the ontology. The importing
mechanism is simple in that reasoning over an ontology with an import declaration is
reduced to reasoning over the import closure consisting of the axioms of the ontology
plus the axioms of the ontologies that are imported (possibly indirectly). For example,
if ontologyO1 imports ontologiesO2 andO3, each of which, in turn, imports ontology
O4, then the import closure of O1 consists of all axioms of O1 −O4.

Although the OWL importing mechanism may work well for simple ontology inte-
gration scenarios, it may cause some undesirable side effects if used in complex import
situations. To illustrate the problem, suppose that in the above example, O4 is an ontol-
ogy describing a typical university. It may include concepts such as Professor, Course,
and axioms stating, e.g., that each professor must teach some course: Professor v
∃teaches.Course. Now suppose that O2 and O3 are ontologies describing respectively,
Oxford and Cambridge universities that use O4 as a prototype. For example, O2 may
include mapping axioms OxfordProfessor ≡ Professor, OxfordCourse ≡ Course, from
which, due to the axiom in O4, it is now possible to conclude that OxfordProfessor v
∃teaches.OxfordCourse. Likewise, using similar mapping axioms in O3, it is possi-
ble to obtain that CambridgeProfessor v ∃teaches.CambridgeCourse. Finally, sup-
pose that O1 is an ontology aggregating information about UK universities, importing,
among others, the ontologies O2 and O3 for Oxford and Cambridge universities. Al-
though the described scenario seems plausible, there will be some undesirable conse-
quences in O1 due to the mapping axioms of O2 and O3 occurring in the import clo-
sure: OxfordProfessor ≡ CambridgeProfessor, OxfordCourse ≡ CambridgeCourse.



The main reason for these consequences is that the ontologies O2 and O3 happen to
reuse the same ontology O4 in two different and incompatible ways. Had they instead
used two different ‘copies’ of O4 as prototypes (with concepts renamed apart), no such
problem would take place. Arguably, the primary purpose of O2 and O3 is to provide
semantic description of the vocabulary for Oxford and Cambridge universities, and the
means of how it is achieved—either by writing the axioms directly or reusing third party
ontologies such asO4—should be an internal matter of these two ontologies and should
not be exposed to the ontologies that import them. Motivated by these observations, in
this paper we consider a refined mechanism for importing of OWL ontologies called
semantic importing. The main difference with the standard OWL importing is that each
import is limited only to a subset of symbols. Intuitively, only logical properties of
these symbols entailed by the imported ontology should be imported. These symbols
can be regarded as the public (or external) vocabulary of the imported ontologies. For
example, ontology O2 may declare the symbols OxfordProfessor, OxfordCourse, and
teaches public, leaving the remaining symbols only for the internal use. Importantly, in
our approach every ontology has its own view on ontologies it imports and the views
are independent between ontologies unless coordinated by the ‘topology’ of import re-
lations.

The main results of this paper are tight complexity bounds for reasoning over on-
tologies with semantic imports. We consider ontologies formulated in different frag-
ments of OWL starting from the Description Logic (DL) EL and concluding with the
DL SROIQ, which corresponds to OWL 2. We also distinguish the case of acyclic im-
ports, when ontologies cannot (possibly indirectly) import themselves. Our complete-
ness results for ranges of DLs are summarized in the following table, where a and c
denote the case of acyclic/cyclic imports:

DLs Completeness Theorems
EL – EL++ ExpTime a 1, 8

containing EL RE (undecidable) c 2, 9
ALC – SHIQ 2ExpTime a 3, 8
R – SRIQ 3ExpTime a 4, 8

ALCHOIF – SHOIQ coN2ExpTime a 5, 8
ROIF – SROIQ coN3ExpTime a 6, 8

An extended version of the paper containing all proofs and additional results is available
at https://arxiv.org/abs/1705.04719

2 Preliminaries
We assume that the reader is familiar with the family of Description Logics from

EL to SROIQ, for which the syntax is defined using a recursively enumerable al-
phabet consisting of infinite disjoint sets NC, NR, Ni of concept names (or primitive
concepts), roles, and nominals, respectively. The semantics of DLs is given by means
of (first-order) interpretations. An ontology is a set of concept inclusions which are
called ontology axioms. A signature is a subset of NC ∪ NR ∪ Ni. Interpretations I and
J are said to agree on a signature Σ, written as I =Σ J , if the domains of I and J
coincide and the interpretation of Σ-symbols in I is the same as in J . We denote the
reduct of an interpretation I onto a signature Σ as I|Σ . The signature of a concept C,



denoted as sig (C), is the set of all concept names, roles, and nominals occurring in C.
The signature of a concept inclusion or an ontology is defined identically.

Given a signature Σ, suppose one wants to import into an ontology O1 the seman-
tics of Σ-symbols defined by some other ontology O2, while ignoring the rest of the
symbols from O2. Intuitively, importing the semantics of Σ-symbols means reducing
the class of models of O1 by removing those models that violate the restrictions on
interpretation of these symbols, which are imposed by the axioms of O2:

Definition 1. A (semantic) import relation is a tuple π = 〈O1, Σ,O2〉, where O1 and
O2 are ontologies and Σ a signature. In this case, we say that O1 imports Σ from
O2. We say that a model I |= O1 satisfies the import relation π if there exists a model
J |= O2 such that I =Σ J .

Example 1. Consider the import relation π = 〈O1, Σ,O2〉, with O1 = {B v C},
O2 = {A v ∃r.B, ∃r.C v D}, and Σ = {A,B,C,D}. It can be easily shown using
Definition 1 that a model I |= O1 satisfies π if and only if I |= A v D.

Note that if Σ contains all symbols in O2 then I |= O1 satisfies π = 〈O1, Σ,O2〉
if and only if I |= O1 ∪O2. That is, the standard OWL import relation is a special case
of the semantic import relation, when the signature contains all the symbols from the
imported ontology. If O has several import relations φi = 〈O, Σi,Oi〉, (1 ≤ i ≤ n),
one can define the entailment fromO by considering only those models ofO that satisfy
all imports: O |= α if I |= α for every I |= O which satisfies all π1, . . . , πn. In
practice, however, import relations can be nested: imported ontologies can themselves
import other ontologies and so on. The following definition generalizes entailment to
such situations.

Definition 2. An ontology network is a finite set N of import relations between on-
tologies. For a DL L, a L-ontology network is a network, in which every ontology is
a set of L-axioms. A model agreement for N (over a domain ∆) is a mapping µ that
assigns to every ontology O occurring in N a class µ(O) of models of O with domain
∆ such that for every 〈O1, Σ,O2〉 ∈ N and every I1 ∈ µ(O1) there exists I2 ∈ µ(O2)
such that I1 =Σ I2. An interpretation I is a model of O in the network N (notation
I |=N O) if there exists a model agreement µ for N such that I ∈ µ(O). An ontol-
ogy O entails a concept inclusion ϕ in the network N (notation O |=N ϕ) if I |= ϕ,
whenever I |=N O.

An ontology network can be seen as a labeled directed multigraph in which nodes
are labeled by ontologies and edges are labeled by sets of signature symbols. Note that
Definition 2 also allows for cyclic networks if this graph is cyclic. Note that if O |= ϕ
then O |=N ϕ, for every network N .

In this paper, we are concerned with the complexity of entailment in ontology net-
works, that is, given a network N , an ontology O and an axiom ϕ, decide whether
O |=N ϕ. We study the complexity of this problem wrt the size of an ontology network
N , which is defined as the total length of axioms (considered as strings) occurring in
ontologies from N .

3 Expressiveness of Ontology Networks
First, we illustrate the expressiveness of ontology networks by showing that acyclic

networks allow for succinctly representing axioms with nested concepts and role chains



of exponential size, while cyclic ones allow for succinctly representing infinite sets of
axioms of a special form. The lemmas given in this Section are used as building blocks
in the proofs of our hardness results in Section 4.

For a natural number n > 0, let ∃(r, C)n.D be a shortcut for the nested concept
∃r.(C u ∃r.(C u . . . n times . . . u ∃r.(C uD) . . .)), where C, D are DL concepts and
r a role (in case n = 0 the above concept is set to be D). For n > 1, let (r)n denote
the role chain r ◦ . . . n times . . . ◦ r. For a given n > 0, let 1exp(n) be the notation
for 2n and for k > 1, let (k + 1)exp(n) = 2kexp(n). Then ∃(r, C)kexp(n).D (respec-
tively, (r)kexp(n)) stands for a nested concept (role chain) of the form above having size
exponential in n. In the following, we use abbreviations ∃(r, C)n := ∃(r, C)n.> and
∃rn.C := ∃(r,>)n.C. For n > 1, the expression ∀rn.C will be used as a shortcut for
¬∃r.∃rn−1.¬C and for n > 2, ∀r<n.C will stand for ⊔16m<n∀rm.C. Let O be an
ontology and N an ontology network. O is said to be expressible by N if there is an
ontologyON inN such that {I|sig (O) | I |=N ON } = {J |sig (O) | J |= O}. In case
we want to stress the role of ontologyON in the networkN , we say thatO is (N ,ON )-
expressible. An axiom ϕ is expressible by a networkN if so is ontologyO = {ϕ}. The
next two lemmas follow immediately from the definition of expressibility.

Lemma 1. Every ontologyO is (N ,O)-expressible, whereN is the network consisting
of the single import relation 〈O,∅,∅〉. If an ontology Oi is (Ni,O′i)-expressible, for
a network Ni, ontology O′i, and i = 1, 2, then O1 ∪ O2 is (N ,ON )-expressible, for
ontology ON = ∅ and a network1 N = N1 ∪N2 ∪ {〈ON , sig (Oi),O′i〉}i=1,2.

For an axiom ϕ and a set of concepts {C1, . . . , Cn}, n > 1, let us denote by
ϕ[C1 7→ D1, . . . , Cn 7→ Dn] the axiom obtained by substituting every concept Ci
with a concept Di in ϕ. For an ontology O, let O[C1 7→ D1, . . . , Cn 7→ Dn] be a
notation for

⋃
ϕ∈O ϕ[C1 7→ D1, . . . , Cn 7→ Dn].

Lemma 2. Let L be a DL and O an ontology, which is expressible by a L-ontology
network N . Let C1, . . . , Cn be L-concepts and {A1, . . . , An} a set of concept names
such that Ai ∈ sig (O), for i = 1, . . . , n and n > 1. Then ontology Õ = O[A1 7→
C1, . . . , An 7→ Cn] is expressible by a L-ontology network, which is acyclic if so is N
and has size polynomial in the size of N and Ci, i = 1, . . . , n.

Proof Sketch. Denote Σ = {A1, . . . , An} and let Σ′ = {A′1, . . . , A′n} be a set of
fresh concept names. Consider ontology O′ = O ∪ {Ai ≡ A′i}i=1,...,n. By Lemma
1, O′ is (N ′,ON ′)-expressible, for an ontology ON ′ and an acyclic L-ontology net-
work N ′ having a linear size (in the size of N ). Consider ontology network N ′′ =
〈ON ′′ , (sig (O′) \Σ) ∪Σ′,ON ′〉, where ON ′′ = ∅. Then obviously, ontology O′′ =
O[A1 7→ A′1, . . . , An 7→ A′n] is (N ′′,ON ′′)-expressible. Similarly, by Lemma 1, on-
tology O′′C = O′′ ∪ {A′i ≡ Ci}i=1,...,n is (Ñ ,OÑ )-expressible, for an ontology OÑ
and an acyclic L-ontology network Ñ having a linear size (in the size ofN and Ci, for
i = 1, . . . , n). Clearly, it holds OÑ |=Ñ Õ and it is easy to show that Õ is (Ñ ,OÑ )-
expressible.

Now we formulate the results on the expressiveness of acyclic EL-, ALC-, and R-
ontology networks.

1 Note that the size ofN is linear in the sizes ofN1 andN2.



Lemma 3. An axiom ϕ of the form Z ≡ ∃(r,A)1exp(n).B, where Z,A,B ∈ NC, and
n > 0, is expressible by an acyclic EL-ontology network of size polynomial in n.

Proof Sketch. We show by induction on n that there exists an acyclic EL-ontology
network Nn and ontology On such that ϕ is (Nn,On)-expressible. For n = 0, we
define N0 = {〈O0,∅,∅〉} and O0 = {Z ≡ ∃r.(A u B)}. In the induction step,
let {Z ≡ ∃(r,A)1exp(n−1).B} be (Nn−1,On−1)-expressible, for n > 1. Consider
ontologies O1

copy = {B ≡ U}, O2
copy = {U ≡ Z}, On = ∅. Let Nn be the union

of Nn−1 with the set of the following import relations: 〈Oicopy, {Z,A,B, r},On−1〉,
for i = 1, 2, 〈On, {Z,A,U, r},O1

copy〉, and 〈On, {U,A,B, r},O2
copy〉. Let us verify

that {I|sig (ϕ) | I |=Nn
On} = {I|sig (ϕ) | I |= ϕ}. By the induction assumption

we have On−1 |=Nn
Z ≡ ∃(r,A)1exp(n−1).B. Then by the definition of Nn, it holds

O1
copy |=Nn

Z ≡ ∃(r,A)1exp(n−1).U and O2
copy |=Nn

U ≡ ∃(r,A)1exp(n−1).B and
thus, On |=Nn

{Z ≡ ∃(r,A)1exp(n−1).U, U ≡ ∃(r,A)1exp(n−1).B}, which yields
On |=Nn

ϕ. To complete the proof, we show that any model I |= ϕ can be expanded
to a model Jn |=Nn

On by setting UJn = (∃(r,A)1exp(n−1).B)I .

The following claim is proved identically to Lemma 3:

Lemma 4. An axiom of the formZ v ∃(r,A)1exp(n).B,Z ≡ ∀r1exp(n).A, or (r)2exp(n)

v s, where Z,A,B ∈ NC, r, s are roles, and n > 0, is expressible by an acyclic EL-,
ALC-, andR-ontology network, respectively, having size polynomial in n.

We continue with results on the expressiveness of acyclicR-ontology networks.

Lemma 5. An axiom ϕ of the form Z v ∀r2exp(n).A, where Z,A ∈ NC and n > 0, is
expressible by an acyclicR-ontology network of size polynomial in n.

Proof. Consider ontology O = {Z v ∀s.A, (r)2exp(n) v s}. Clearly, it holds
O |= ϕ and any model I |= ϕ can be expanded to a model J |= O by setting
sJ = ((r)2exp(n))I . By Lemmas 1, 4, O is expressible by an acyclic R-ontology net-
work of size polynomial in n, from which the claim follows.

Similarly, we demonstrate that an axiom of the form Z v ∀r<2exp(n).A, where
Z,A ∈ NC and n > 0, is expressible by an acyclicR-ontology network of size polyno-
mial in n and show the next statement, which is an analogue of Lemma 4 for the case
of double exponent.

Lemma 6. An axiom ϕ of the form Z v ∃(r,A)2exp(n).B, where Z,A ∈ NC and
n > 0, is expressible by an acyclicR-ontology network of size polynomial in n.

Proof. Consider ontology Ō = {Z v ∃s.>, Z v ∀s<2exp(n).X, Z v ∀s2exp(n).Y,
s v r}. By Lemmas 1, 5, and the claim above, we show that Ō is expressible by an
acyclicR-ontology network of size polynomial in n. Then by Lemma 2, so is ontology
O = Ō[X 7→ A u ∃s.>, Y 7→ A u B]. Clearly, we have O |= ϕ. Now let I be
an arbitrary model of ϕ and for m = 2exp(n), let x0, . . . , xm be arbitrary domain
elements such that x0 ∈ ZI , 〈x0, x1〉 ∈ rI , and 〈xi, xi+1〉 ∈ rI , xi ∈ AI , for 1 6 i <
m, and xm ∈ AIuBI . Let J be an expansion of I in which sJ = {〈xi, xi+1〉}06i<m.
Then we have J |= O, from which the claim follows.



Lemma 7. An axiom ϕ of the form Z ≡ ∀r2exp(n).A, where Z,A ∈ NC and n > 0, is
expressible by an acyclicR-ontology network of size polynomial in n.

Proof. Consider ontology Ō = {Z v ∀r2exp(n).A, Z̄ v ∃r2exp(n).Ā}. By Lemmas
1, 5, 6, Ō is expressible by an acyclicR-ontology network of size polynomial in n and
by Lemma 2, so is ontology O = Ō[Z̄ 7→ ¬Z, Ā 7→ ¬A]. It remains to note that O
and {ϕ} are equivalent, so the claim is proved.

We conclude this section with lemmas formulating the expressibility of substitutions
by ontology networks.

Lemma 8. Let L be a DL and O an ontology, which is expressible by a L-ontology
network N . Let C1, . . . , Cm be L-concepts and {A1, . . . , Am} a set of concept names
such that Ai ∈ sig (O), for i = 1, . . . ,m and m > 1. Then for k = 1, 2 and n > 0,
ontology Õ = O[A1 7→ ∀rkexp(n).C1, . . . , Am 7→ ∀rkexp(n).Cm] is expressible by a
L′-ontology network, which is acyclic if so is N and has size polynomial in the size of
N , n, and Ci, for i = 1, . . . ,m, where: L′ = L if L contains ALC and k = 1, or
L′ = L if L containsR and k = 2.

Proof. The proof uses Lemmas 4, 7 and is identical to the proof of Lemma 2.

The next statement can be shown similarly by using Lemma 3:

Lemma 9. In the conditions of Lemma 8, ontology Õ = O[A1 7→ ∃r1exp(n).C1, . . . ,
Am 7→ ∃r1exp(n).Cm], for n > 0, is expressible by a L′-ontology network, which is
acyclic if so isN and has size polynomial in the size ofN , n, and Ci, for i = 1, . . . ,m,
where L′ = L if L contains EL.

Lemma 10. Let L be a DL andO an ontology, which is (N ,ON )-expressible, for a L-
ontology networkN and an ontologyON . Let {A1, . . . , An}, n > 1, be concept names
such that Ai ∈ sig (O), for i = 1, . . . , n, and let {C1, . . . , Cn} be L-concepts, where
every Ci is of the form ∃(r,D)p.Ai, for some role r, concept name D, and p > 1. Then
ontology Õ =

⋃
m>0Om, where O0 = O and Om+1 = Om[A1 7→ C1, . . . , An 7→

Cn], for all m > 0, is expressible by a cyclic L-ontology network.

Proof Sketch. Let σ = {B1, . . . , Bk} =
⋃
i=1,...,n(sig (Ci) ∩ NC) and σ′ = {B′1, . . . ,

B′k} be a set of fresh concept names disjoint with σ and sig (O). Let {C ′1, . . . , C ′n}
be ‘copy’ concepts obtained from C1, . . . , Cn by replacing every Bi with B′i, for i =
1, . . . , k. Consider ontologies ÕN ′ = { Bi ≡ B′i }i=1,...,k, O′ = { Ai ≡ C ′i }i=1,...,n,
and an ontology network N ′ given by the union of N with the set of import relations
〈ÕN ′ , sig (O),ON 〉, 〈ÕN ′ , Σ′,O′〉, 〈O′, Σ, ÕN ′〉, whereΣ′ = (Σ \σ)∪σ′ andΣ =
sig (O) ∪

⋃
i=1,...,n sig (Ci). We claim that ontology Õ is (N ′, ÕN ′)-expressible.

Denote Õ′ =
⋃
m>0O′m, where O′m = Om[B1 7→ B′1, . . . , Bk 7→ B′k], for all m >

0. First, we show by induction that ÕN ′ |=N ′ Om, for all m > 0. The induction
base for n = 0 is trivial, since we have O0 = O and O is (N ,ON )-expressible,
〈ÕN ′ , sig (O),ON 〉 ∈ N ′, and thus, ÕN ′ |=N ′ O. Suppose ÕN ′ |=N ′ Om, for some
m > 0. Since 〈O′, Σ, ÕN ′〉 ∈ N ′, we have O′ |=N ′ Om and thus, by the equivalences
in O′, it holds O′ |=N ′ O′m+1. Since 〈ÕN ′ , Σ′,O′〉, we have ÕN ′ |=N ′ O′m+1 and
hence, by the equivalences in ÕN ′ , it holds that ÕN ′ |=N ′ Om+1. Finally, in the full
proof we show that any model I of Õ can be expanded to a model J |=N ′ ÕN ′ , which
shows that Õ is (N ′, ÕN ′)-expressible.



4 Hardness Results
We use reductions from the word problem for Turing machines (TMs) and alternat-

ing Turing machines (ATMs) to obtain most of the hardness results. We define a Turing
Machine (TM) as a tuple M = 〈Q,A, δ〉, with qh ∈ Q being the accepting state, and
assume w.l.o.g. that configuration of M is a word in the alphabet Q∪A. An initial con-
figuration is a word of the form b . . . bq0b . . . b, where q0 ∈ Q and b ∈ A is the blank
symbol. It is a well-known property of the transition functions of Turing machines that
the symbol c′i at position i of a successor configuration c′ is uniquely determined by a
4-tuple of symbols ci−2, ci−1, ci, ci+1 at positions i− 2, i− 1, i, and i+ 1 of a config-
uration c. We assume that this correspondence is given by the (partial) function δ′ and

use the notation ci−2ci−1cici+1
δ′7→ c′i.

Theorem 1. Entailment in acyclic EL-ontology networks is ExpTime-hard.

Proof Sketch. We reduce the word problem for TMs making exponentially many steps to
entailment in EL-ontology networks. LetM be a TM and n = 1exp(m) an exponential,
for m > 0. Consider an ontology O defined for M and n by the following axioms:

A v ∃rn·(2n+3).(q0 u ∃(r, b)2n+2), where A 6∈ Q ∪ A (1)

∃r2n(X u ∃r.(Y u ∃r.(U u ∃r.Z))) vW, for XY UZ δ′7→W (2)
∃r.qh v H, ∃r.H v H, where H 6∈ Q ∪ A (3)

The first axiom gives a r-chain containing n+ 1 segments of length 2n+ 3, which are
used to store fragments of consequent configurations of M . We assume the following
enumeration of segments in the r-chain: . . .︸︷︷︸

sn

.. . . .︸︷︷︸
s1

q0b . . . b︸ ︷︷ ︸
s0

, i.e., s0 represents a

fragment of the initial configuration c0 of M . For 0 6 i < n, every i-th and (i + 1)-st
segments in the r-chain are reserved for a pair of configurations ci, ci+1 such that ci+1

is a successor of ci. Axioms (2), with X,Y, U, Z,W ∈ Q ∪ A, represent transitions
of M and define the ‘content’ of (i + 1)-st segment based on the ‘content’ of i-th
segment. Finally, axioms (3) are used to initialise the halting marker H and propagate
it to the ‘left’ of the r-chain. We show that M accepts the empty word in n steps iff
O |= A v H . For the ‘only if’ direction we assume there is a sequence of configurations
c0, . . . , cn such that for all 0 6 i < n, ci+1 is a successor configuration of ci and qh
is the state symbol in cn. Let I be a model of O and a domain element such that
a ∈ AI . Then by axiom (1), there is an r-chain outgoing from x, which contains
segments s0, . . . , sn of length 2n + 3, where s0 represents a fragment of c0. It can
be shown by induction that due to axioms (2), every segment si represents a fragment
of ci, for 1 6 i 6 n, and contains the state symbol from ci. Then by axiom (3), it
follows that a ∈ HI . For the ‘if’ direction, one can provide a model I of O such that
AI = {a} is a singleton, qhI = HI = ∅, and I gives an r-chain outgoing from a,
which contains n+ 1 segments representing fragments of consequent configurations of
M , neither of which contains qh. To complete the proof of the theorem we show that
ontology O is expressible by an acyclic EL-ontology network of size polynomial in m.
Consider axiom (1) and a concept inclusion ϕ of the form A v ∃rn·(2n+3).B, where
B is a concept name. Observe that it is equivalent to A v ∃rp.∃rp︸ ︷︷ ︸

2 times

.∃rn.∃rn.∃rn︸ ︷︷ ︸
3 times

.B,



where p = 1exp(2m). Consider axiom ψ of the form A v B. By iteratively applying
Lemma 9 we obtain that ψ[B 7→ ∃rp.∃rp.B] is expressible by an acyclic EL-ontology
network of size polynomial in m. By repeating this argument we obtain the same for
ϕ. Further, by Lemma 2, the axiom θ = ϕ[B 7→ q0 u B] is expressible by an acyclic
EL-ontology network of size polynomial in m. Again, by iteratively applying Lemma
9 together with Lemma 2 we conclude that θ[B 7→ ∃(r, b)2n+2] is expressible by an
acyclic EL-ontology network of size polynomial in m and thus, so is axiom (1). The
expressibility of axioms (2) is shown identically. The remaining axioms of ontology O
are EL-axioms whose size does not depend on m. By applying Lemma 1 we obtain
that there exists an acyclic EL-ontology network N of size polynomial in m and an
ontology ON such that O is (N ,ON )-expressible and thus, it holds ON |=N A v H
iff M accepts the empty word in 1exp(m) steps.

Theorem 2. Entailment in cyclic EL-ontology networks is RE-hard.

Proof Sketch. For a TM M , we define an infinite ontology O, which contains variants
of axioms (1-2) from Theorem 1 and additional axioms for a correct implementation of
transitions of M :

A v ∃rk.(∃vl.L u ε u ∃r.(q0 u ∃(r, b)2l+2)), where A,L, ε 6∈ Q ∪ A (4)

∃r.∃vk.L v ∃vk.L, k > 0 (5)

∃vk.L u ∃r2k+4.ε v ε, k > 0 (6)

∃vk.L u ∃r2k+1.(X u ∃r.(Y u ∃r.(U u ∃r.Z))) vW, for XY UZ δ′7→W (7)

∃vk.L u ∃r2k.(b u ∃r.(ε u ∃r.(Y u ∃r.(U u ∃r.Z)))) vW, for bY UZ δ′7→W (8)

∃vk.L u ∃r2k.(b u ∃r.(b u ∃r.(ε u ∃r.(U u ∃r.Z)))) vW, for bbUZ δ′7→W (9)

∃vk.L u ∃r2k.(X u ∃r.(b u ∃r.(b u ∃r.(ε u ∃r.Z)))) vW, for XbbZ
δ′7→W (10)

qh v H, ∃r.H v H, where H 6∈ Q ∪ A (11)

Axioms (4) give an infinite family of r-chains, each having a ‘prefix’ of length k + 1,
for k > 0 (reserved for fragments of consequent configurations of M ), and a ‘postfix’
containing a chain of length 2l+ 3, for l > 0, which represents a fragment of the initial
configuration c0. Propagated to the ‘left’ by axioms (5), concept ∃vk.L indicates the
length of the ‘postfix’ for c0 on every r-chain given by axioms (4). The concept ε is
used to separate fragments of consequent configurations of M and is propagated by
axioms (6). The family of axioms, (7)-(10), with X,Y, U, Z,W ∈ Q ∪ A and k > 0,
implements transitions of M . Concept ∃vk.L guarantees that transitions have effect
only along r-chains which represent a fragment of c0 of length 2k + 3. Since ε 6∈
Q ∪ A, the transitions involving ε are implemented separately by axioms (8)-(10). The
more involved implementation of transitions (in comparison to Theorem 1) allows to
prevent defect situations, when there are two consequent segments si,si+1 of an r-
chain, which represent fragments of configurations ci,ci+1 of M , respectively, but ci+1

is not a successor of ci. In Theorem 1, the prefix of length n · (2n+ 3) given by axiom
(1) guarantees a correct implementation of up to n transitions of the TM. The situation
is different in the infinite case, since the prefix reserved for fragments of consequent
configurations of M can be of any length, due to axioms (4).



We prove that M halts iff O |= A v H . Suppose that c0 is an accepting config-
uration and M halts in n steps; w.l.o.g. we assume that n > 1. Let I be a model of
O and a ∈ AI a domain element. Due to axioms (4), I is a model of the concept
inclusion: A v ∃rn·(2n+4).(∃vn.L u ε u ∃r.(q0 u ∃(r, b)2n+2)) and thus, I gives a
r-chain containing n + 1 segments of length 2n + 3 separated by ε. By using argu-
ments from the proof of Theorem 1, it can be shown that due to axioms (5) - (10),
these segments represent fragments of consequent configurations of M , starting with
c0, and there is an element b in the r-chain such that b ∈ qhI . Then by axiom (11), it
holds a ∈ HI . For the ‘if’ direction, one can show that if M does not halt, then there
exists a model I of O such that qhI = HI = ∅, AI = {a} is a singleton and there
are infinitely many disjoint r-chains {Rm,n}m,n>1 outgoing from a, such that every
Rm,n represents a fragment of c0 of length n and has a prefix of length m + 1 repre-
senting fragments of consequent configurations of M , each having length 6 2n + 3.
To complete the proof of the theorem we show that ontology O is expressible by a
cyclic EL-ontology network. Let us demonstrate that so is the family of axioms (4).
Let ϕ = A v B be a concept inclusion and B,B1, B2 concept names. By Lemma
10, ontology O1 = {ϕ[B 7→ ∃rk.B] | k > 0} is expressible by a cyclic EL-ontology
network. Then by Lemma 2, ontology O2 = O1[B 7→ B1 u ε u ∃r.(q0 u B2)] is ex-
pressible by a cyclic EL-ontology network. By applying Lemma 10 again, we conclude
that so is ontology O3 =

⋃
l>0O2[B1 7→ ∃vl.B1, B2 7→ ∃(r, b)2l.B2], i.e., the on-

tology given by axioms A v ∃rk.(∃vl.B1 u ε u ∃r.(q0 u ∃(r, b)2l.B2)), for k, l > 0.
Further, by Lemma 2, we obtain that O2[B1 7→ L, B2 7→ ∃(r, b)2] is expressible by
a cyclic EL-ontology network and hence, so is the family of axioms (4). A similar ar-
gument shows the expressibility of ontologies given by axioms (5)-(10). The remaining
subset of axioms (11) of O is finite. By Lemma 1, there exists a cyclic EL-ontology
networkN and an ontology ON such that O is (N ,ON )-expressible and thus, it holds
ON |=N A v H iff M halts.

Theorem 3. Entailment in ALC-ontology networks is 2ExpTime-hard.

Proof Sketch. The proof is by reduction of the word problem for 1exp(n)-space bounded
ATMs to entailment in ALC-ontology networks. We demonstrate that under a minor
modification the construction from Theorem 7 in [7] shows that there exists a ALC-
ontology O and a concept name A such that O 6|= A v ⊥ iff a given 1exp(n)-space
bounded ATMM accepts the empty word. The ontology contains axioms with concepts
of the form ∃(r, C)1exp(n).D and ∀r1exp(n).D. By using Lemmas 4, 8, we show that ev-
ery axiom ofO containing concepts of size exponential in n is expressible by an acyclic
ALC-ontology networkN of size polynomial in n. Then by applying Lemma 1 we ob-
tain that there exists an acyclic ALC-ontology network N of size polynomial in n and
an ontologyON such thatO is (N ,ON )-expressible and thus, it holdsON |=N A v ⊥
iff M accepts the empty word. Since AExpSpace = 2ExpTime, we obtain the re-
quired statement.

Theorem 4. Entailment inR-ontology networks is 3ExpTime-hard.

Proof Sketch. Given a 2exp(n)-space bounded ATM M and a number n > 0, we con-
sider ontology O from the proof of Thm. 3 for M and let O′ be the ontology obtained
from O by replacing every concept of the form ∃(r, C)1exp(n).D and ∀r1exp(n).D with
∃(r, C)2exp(n).D and ∀r2exp(n).D, respectively. A repetition of the proof of Thm. 3



using Lemmas 1, 6, 8 shows that there is an acyclic R-ontology network N of size
polynomial in n and an ontology ON such that O′ is (N ,ON )-expressible and thus,
ON |=N A v ⊥ iff M accepts the empty word. Since A2ExpSpace = 3ExpTime,
we obtain the required statement.

Theorem 5. Entailment in ALCHOIF-ontology networks is coN2ExpTime-hard.

Proof Sketch. The theorem is proved by reduction of the N2ExpTime-hard problem of
domino tiling of size 2exp(n)×2exp(n) to (non-)entailment inALCHOIF-ontology
networks. Under a minor modification the construction from Theorem 5 in [7] shows
that there exists a ALCHOIF-ontology O and a concept name A such that O 6|= A v
⊥ iff a given domino system admits a tiling of size 2exp(n) × 2exp(n), for n > 0.
Ontology O contains axioms with concepts of the form ∃r1exp(n).C and ∀r1exp(n).C.
By using the same arguments as in the proof of Theorem 3 we show that there is a
ALCHOIF-ontology network N of size polynomial in n and an ontology ON such
that ON |=N A v ⊥ iff the domino system does not admit a tiling.

Theorem 6. Entailment inROIF-ontology networks is coN3ExpTime-hard.

Proof Sketch. The proof is by reduction of the N3ExpTime-hard problem of domino
tiling of size 3exp(n) × 3exp(n) to (non-)entailment in ROIF-ontology networks.
The proof employs a modification of the ontologyO from the proof of Thm. 5 which is
obtained like in the proof sketch to Thm. 4.

5 Membership Results
As a tool for proving upper complexity bounds, we demonstrate that entailment in

a network N can be reduced to entailment from (a possibly infinite) union of ‘copies’
of ontologies appearing in N . For an ontology network N , let us denote sig (N ) =⋃
〈O1,Σ,O2〉∈N (sig (O1) ∪ Σ ∪ sig (O2)). An import path in N is a sequence p =
{O0, Σ1,O1, . . . ,On−1, Σn,On}, n ≥ 0, such that 〈Oi−1, Σi,Oi〉 ∈ N for each i,
with 1 ≤ i ≤ n. We denote by len(p) = n and last(p) = On the length of p and the
last ontology on the path p. By paths(N ,O) we denote the set of paths that originate
in O. For every symbol X ∈ sig (N ) and every import path p in N , take a distinct
symbol Xp of the same type (concept name, role name, or individual) not occurring in
sig (N ). For each import path p in N , define a renaming θp of symbols in sig (N )
inductively as follows. If len(p) = 0, we set θp(X) = X for every X ∈ sig (N ).
Otherwise, p = p′ ∪{On−1, Σn,On} for some path p′ and we define θp(X) = θp′(X)
if X ∈ Σn and θp(X) = Xp otherwise. A renamed import closure of an ontology O in
N is defined by Õ =

⋃
p∈paths(N ,O) θp(last(p)).

Lemma 11. If I |= Õ then I |=N O and for every I |=N O there exists J |= Õ such
that J =sig (N ) I.

Theorem 7. LetN be an ontology network,O an ontology inN , and α an axiom such
that sig (α) ⊆ sig (N ). Then O |=N α iff Õ |= α.

Theorem 7 provides a method for reducing the entailment problem in ontology net-
works to entailment from ontologies. Note that, in general, the renamed closure Õ of an



ontology O in a (cyclic) network N can be infinite (even if N and all ontologies in N
are finite). There are, however, special cases when Õ is finite. For example, if all import
signatures in N include all symbols in sig (N ), then it is easy to see that Õ is equiva-
lent to the union of ontologies appearing inN . Õ is also finite if paths(N ,O) is finite,
e.g., ifN is acyclic. In this case, the size of Õ is at most exponential in O. If there is at
most one import path between every pair of ontologies (i.e., if N is tree-shaped) then
the size of Õ is the same as the size ofN . This immediately gives the upper complexity
bounds on deciding entailment in acyclic networks.

Theorem 8. Let L be a DL with the complexity of entailment in [co][N]TIME(f(n))
([co] and [N] denote possible co- and N-prefix, respectively). Let N be an acyclic on-
tology network andO an ontology inN such that Õ is a L-ontology. Then for L-axioms
α, the entailment O |=N α is decidable in [co][N]TIME(f(2n)). If N is tree-shaped
then deciding O |=N α has the same complexity as entailment in L.

The next theorem is proved by the compactness theorem for First-Order Logic by
showing that the renamed import closure of an ontology is recursively enumerable.

Theorem 9. Let L be a DL, which can be translated to FOL, N an ontology network,
and O an ontology in N such that Õ is a L-ontology. Then for L-axioms α, the entail-
ment O |=N α is semi-decidable.

6 Conclusions
We have introduced a new mechanism for ontology integration based on semantic

import relations between ontologies. Reasoning over ontologies with semantic imports
can be reduced to reasoning over the union of ontologies obtained as ‘copies’ of ontolo-
gies from the import closure under an injective renaming of signature symbols. We have
shown that this gives an upper bound on the complexity of reasoning with acyclic se-
mantic imports, which is one exponential harder than entailment in the underlying DLs,
from EL to SROIQ. Our hardness results demonstrate that the increased complexity
of reasoning is unavoidable. When cyclic imports are allowed, the complexity jumps to
undecidability, even if every ontology in a combination is given in the DL EL. These
complexity results are shown for situations when the imported symbols include roles. It
is natural to ask whether the complexity drops when only concept names are imported.
The second parameter which may influence the complexity of reasoning is the semantics
which is ‘imported’. In the proposed mechanism, importing the semantics of symbols is
implemented via agreement of models of ontologies. One can consider refinements of
this mechanism, e.g., by carefully selecting the classes of models of ontologies which
must be agreed. The third way to decrease the complexity is to restrict the language in
which ontologies are formulated. We conjecture that reasoning with cyclic imports is
decidable for ontologies formulated in the family of DL-Lite.
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