
Reasoning with Attributed Description Logics

Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost

Center for Advancing Electronics Dresden (cfaed), TU Dresden
firstname.lastname@tu-dresden.de

Abstract In modelling real-world knowledge, there often arises a need to represent
and reason with meta-knowledge. To equip description logics (DLs) for dealing
with such ontologies, we enrich DL concepts and roles with finite sets of attribute–
value pairs, called annotations, and allow concept inclusions to express constraints
on annotations. We show that this may lead to increased complexity or even
undecidability, and we identify cases where this increased expressivity can be
achieved without incurring increased complexity of reasoning. In particular, we
describe a tractable fragment based on the lightweight description logic EL.

1 Introduction

Modern data management has re-discovered the power and flexibility of graph-based
representation formats, and so-called knowledge graphs are now used in many practical
applications, e.g., in companies such as Google or Facebook. The shift towards graphs is
motivated by the need for integrating knowledge from a variety of heterogeneous sources
into a common format.

Description logics seem to be an excellent fit for this scenario, since they can
express complex schema information on graph-like models, while supporting incomplete
information via the open world assumption. Ontology-based query answering has become
an important research topic, with many recent results and implementations, and the W3C
OWL and SPARQL standards provide a basis for practical adoption. One would therefore
expect to encounter DLs in many applications of knowledge graphs.

However, this is not the case. While OWL is often used in RDF-based knowledge
graphs developed in academia, such as DBpedia [4] and Bio2RDF [3], it has almost
no impact on other applications of graph-structured data. This might in part be due
to a format mismatch. Like DLs, many knowledge graphs use directed, labelled graph
models, but unlike DLs they often add (sets of) annotations to vertices and edges. For
example, the fact that Liz Taylor married Richard Burton can be described by an assertion
spouse(taylor, burton), but in practice we may also wish to record that they married in
1964 in Montreal, and that the marriage ended in 1974. We may write this as follows:

spouse(taylor, burton)@bdstart : 1964, location : Montreal, end : 1974ce (1)

Such annotated graph edges today are widespread in practice. Prominent representatives
include Property Graph, the data model used in many graph databases [15], andWikidata,
the knowledge graph used by Wikipedia [18]. Looking at Wikidata as one of the few
freely accessible graphs outside academia, we obtain several requirements:

– No single purpose. Annotations are used for many modelling tasks. Expected cases
such as validity time and provenance are important, but are by far not the only uses,
as (1) (taken from Wikidata) illustrates. Besides start, end, and location, over 150
other attributes are used at least 1000 times as annotations on Wikidata.

– Multi-graphs. It can be necessary to include the same assertion multiple times with
different annotations. For example, Wikidata in addition to (1) also includes the
assertion spouse(taylor, burton)@bdstart : 1975, end : 1976ce. Property Graph also
supports multi-graphs, making these models fundamentally different from logics
with functional annotations, such as semi-ring approaches [9,16] and aRDF [17].

– Multi-attribute annotations. Wikidata (but not Property Graph) further supports
annotations where the same attribute has more than one value. Among others,
Wikidata includes, e.g., the assertion castMember(Sesame_Street, Frank_Oz)@
bdrole : Bert, role : Cookie_Monster, role : Groverce.

One can encode annotated (multi-)graphs as directed graphs, e.g., using reification [8],
but DLs cannot express much over such a model. For example, one cannot say that the
spouse relation is symmetric, where annotations are the same in both directions [14].
Other traditional KR formalisms are similarly challenged in this situation.

In a recent work, we have therefore proposed to develop logics that support sets
of attribute-value annotations natively [14]. The according generalisation of first-order
logic, called multi-attribute predicate logic (MAPL), is expressive enough to capture
weak second-order logic, making reasoning highly undecidable. We thus developed the
Datalog-like MAPL rule language (MARPL) as a decidable fragment.

In this paper, we explore the use of description logics as a basis for decidable, and even
tractable, fragments of MAPL. The resulting family of attributed DLs allows statements
such as spouse@X v spouse−@X to say that spouse is symmetric. We introduce set
variables (X in the example) to refer to annotations. We refer to variables to express
constraints over annotations and to compare attribute values between them. A challenge
is to add functionality of this type without giving up the nature of a DL.

Another challenge is that these extensions may greatly increase the complexity
of reasoning in these DLs. We show that reasoning becomes 2ExpTime-complete for
attributed ALC, and ExpTime-complete for attributed EL. Slight extensions of our
DLs even lead to undecidability. We develop syntactic constraints to recover lower
complexities, including PTime-completeness for attributed EL.

2 Attributed Description Logics

We introduce attributed description logics by defining the syntax and semantics of
attributed ALCH, denoted ALCH@+. Adding further constructs, e.g., for defining
ALCHOIQ@+, is easy given some basic familiarity with DLs [13]. We do not make
the unique name assumption (UNA), as it can be enforced for individual names in the
DLs we study.

2.1 Syntax and Intuition
We first give the syntax and intuitive semantics of ALCH@+; the semantics will be
formalised thereafter.

Example 1. We start with a guiding example, which will be formally explained when
we define ALCH@+. Wikidata contains assertions of the form educatedAt(a_person,
a_university)@bdstart : 2005, end : 2009, degree : masterce. This motivates the following
ALCH@+ TBox axiom:

X : bdegree : masterc ∃educatedAt@X .University v MSc@bdstart : X .endce (2)

The underlying DL axiom is ∃educatedAt.University v MSc, stating that anybody
educated at some university holds an M.Sc. Axiom (2) restricts this to educatedAt
assertions whose annotations X specify the degree to be a master, where X may contain
further attribute values. Indeed, if X specifies an end date for the education, then this is
used as a start for the entailedMSc assertion. Similarly, we may express that a person that
was educatedAt some institution (where the degree attribute has some value) obtained a
degree from this institution:

educatedAt@bdegree : +c v obtainedDegreeFrom (3)

Attributed DLs are defined over the usual DL signature with sets of concept names
NC, role names NR, and individual names NI. We consider an additional set NV of (set)
variables. Following the definition of multi-attribute predicate logic (MAPL, [14]), we
define annotation sets as finite binary relations (i.e., as sets of pairs of domain elements),
understood as sets of attribute–value pairs. In particular, attributes, and in some cases also
attribute values, are syntactically denoted by individual names. To describe annotation
sets, we introduce specifiers. The set S of specifiers contains the following expressions:

– set variables X ∈ NV,
– closed specifiers bda1 : ν1, . . . , an : νnce,
– open specifiers ba1 : ν1, . . . , an : νnc,

where ai ∈ NI and νi is either +, an individual in NI or an expression of the form X .c,
with X a set variable in NV and c an individual in NI. Intuitively, closed specifiers define
specific, complete annotation sets whereas open specifiers merely provide lower bounds,
i.e., describe potentially incomplete annotation sets. We use + for “one or more” values,
while X .c refers to the (finite, possibly empty) set of all values of attribute c in an
annotation set X .

Example 2. The open specifier bdegree : masterc in Example 1 describes all annotation
sets with at least the given attribute value. The closed specifier bdstart : X .endce denotes
the (unique) annotation set with start as the only attribute, having exactly the values as
given for attribute end in X .

The set R of ALCH@+ role expressions contains all expressions r@S with r ∈ NR
and S ∈ S. The set C of ALCH@+ concept expressions is defined as follows

CF > | ⊥ | NC@S | ¬C | C u C | C t C | ∃R.C | ∀R.C (4)

AnALCH@+ concept (or role) assertion is an expression A(c)@S (or r (c, d)@S), with
A ∈ NC (or r ∈ NR), c, d ∈ NI, and S ∈ S a specifier that contains no set variables. An
ALCH@+ concept inclusion (CI) is an expression of the form

X1 : S1, . . . , Xn : Sn (C v D), (5)

where C, D ∈ C are ALCH@+ concept expressions, S1, . . . , Sn ∈ S are specifiers, and
X1, . . . , Xn ∈ NV are the set variables occurring in C, D or in S1, . . . , Sn. ALCH@+
role inclusions are defined similarly, but with role expressions instead of the concept
expressions. An ALCH@+ knowledge base is a set of ALCH@+ assertions, and role
and concept inclusions.

To simplify notation, we omit the specifier bc (meaning “any annotation set”) in role
or concept expressions, as done for University in Example 1. Moreover, we omit prefixes
of the form X : bc, which merely state that X might be any annotation set. In this sense,
any ALCH axiom is also an ALCH@+ axiom.

We follow the usual DL notation for referring to other attributed DLs. For example,
ALC@+ denotes ALCH@+ without role hierarchies. DL names without +, such as
ALCH@, refer to the according attributed DL that disallows + in specifiers.

2.2 Formal Semantics

As usual in DLs, an interpretation I = 〈∆I, ·I〉 consists of a domain ∆I and an
interpretation function ·I . Individuals c ∈ NI are interpreted as elements cI ∈ ∆I .
Concepts and roles are interpreted as relations that here include annotation sets:

– AI ⊆ ∆I × Pfin
(
∆I × ∆I

)
for a concept A ∈ NC, and

– rI ⊆ (∆I × ∆I) × Pfin
(
∆I × ∆I

)
for a role r ∈ NR,

where Pfin
(
∆I × ∆I

)
denotes the set of all finite binary relations over ∆I . Expres-

sions with free set variables are interpreted using variable assignments Z : NV →

Pfin
(
∆I × ∆I

)
. For an interpretation I and a variable assignment Z , we define the

semantics of specifiers (i.e., the sets of admissible annotation sets) as follows:

XI,Z B
{
Z (X)

}
,

bda : bceI,Z B
{
{〈aI, bI〉}

}
,

bda : X .bceI,Z B
{
{〈aI, δ〉 | there is δ ∈ ∆I such that 〈bI, δ〉 ∈ Z (X)}

}
,

bda : +ceI,Z B
{
{〈aI, δ1〉, . . . , 〈aI, δ`〉} �� ` ≥ 1 and δi ∈ ∆I

}
,

bda1 : v1, . . . , an : vnceI,Z B
{ n⋃
i=1
Ψi

��� Ψi ∈ bdai : viceI,Z
}
,

ba1 : v1, . . . , an : vncI,Z B
{
Ψ ∈ Pfin

(
∆
I × ∆I

) ��Ψ ⊇ Φ
for some Φ ∈ bda1 : v1, . . . , an : vnceI,Z

}
,

where X ∈ NV, a, ai, b ∈ NI, and vi is +, an element of NI, or of the form X .a. We can
now define the semantics of concept and role expressions:

A@SI,Z B {δ ∈ ∆I | 〈δ,Ψ〉 ∈ AI for some Ψ ∈ SI,Z } (6)

r@SI,Z B {〈δ1, δ2〉 ∈ ∆
I × ∆I | 〈δ1, δ2,Ψ〉 ∈ rI for some Ψ ∈ SI,Z } (7)

Observe that we quantify existentially over admissible annotations here (“some Ψ ∈
SI,Z”). However, variables and closed specifiers without + are interpreted as singleton

sets, so a true existential only occurs if S is an open specifier or if it contains +. All
other DL constructs can now be defined as usual, e.g., (C u D)I,Z = CI,Z ∩ DI,Z , and
(∃r .C)I,Z = {δ | there is 〈δ1, δ2〉 ∈ rI,Z with δ2 ∈ CI,Z }. Note that we do not include
annotations on >, i.e. >I,Z = ∆I , and similarly for ⊥.

Now I satisfies an ALCH@+ concept inclusion α of the form (5), written I |= α,
if for all variable assignments Z such that Z (Xi) ∈ SI,Z

i for all i ∈ {1, . . . , n}, we
have CI,Z ⊆ DI,Z . Satisfaction of role inclusions is defined analogously. Moreover, I
satisfies an ALCH@+ concept assertion A(c)@S if 〈cI,Ψ〉 ∈ AI for some Ψ ∈ SI (the
latter is well-defined since S contains no variables). Finally, I satisfies a knowledge base
if it satisfies all of its axioms. Based on this model theory, logical entailment is defined
as usual.

Example 3. Consider the concept inclusion α of Example 1 and the interpretation I over
domain ∆I = {Mary, John, TUD, start, end, 2017, 2018,master, degree}, given by

MScI = {〈Mary, {〈start, 2016〉}〉, 〈John, {〈start, 2017〉}〉},

educatedAtI = {〈Mary, TUD, {〈degree,master〉, 〈end, 2016〉}〉,
〈John, TUD, {〈degree,master〉, 〈end, 2017〉}〉}, and

UniversityI = {〈TUD, {}〉}.

Then I |= α, i.e., I satisfies α.

3 Expressivity of Attributed Description Logics

In this section, we clarify some basic semantic properties of attributed DLs and the
general relation of attributed DLs to other logical formalisms. As a first observation, we
note that already ALC@+ is too expressive to be decidable:

Theorem 1. Deciding satisfiability in attributed DLs with + is undecidable, even in
quantifier-free attributed EL with either only open specifiers or only closed specifiers.

Proof. We reduce from the query answering problem for existential rules, i.e., first-order
formulae of the form

∀x.p1(x1
1, . . . , x1

ar(p1)) ∧ . . . ∧ pn(xn1, . . . , xnar(pn)) → ∃y.p(z1, . . . , zar(q)), (8)

where the variables xij occur among the universally quantified variables, i.e., xij ∈ x, and
variables zi might be universally or existentially quantified, i.e., zi ∈ x ∪ y. We require
that each universally quantified variable occurs in some atom in the premise of the rule
(safety), and that each existentially quantified variable occurs only once per rule. The
latter is without loss of generality since rules that violate this restriction can be split into
two rules using an auxiliary predicate. A fact is a formula of the form q(c1, . . . , car(q)),
where ci are constants. Entailment of facts from given sets of facts and existential rules
is known to be undecidable [2,7].

To translate an existential rule of form (8), we consider DL concept names P(i) for
each predicate symbol p(i) , and individual names a1, . . . , a` , where ` is the maximal

arity of any such predicate. For each universally quantified variable x, let πx = 〈pi, k〉 be
an (arbitrary but fixed) position at which x occurs, i.e., for which x = xi

k
. The rule can

now be rewritten into the attributed DL axiom

X1 : S1, . . . , Xn : Sn (P1@X1 u . . . u Pn@Xn v P@T) ,

where the specifiers are defined as Si = bda j : Xm.ak | πxij = 〈pm, k〉ce and T = bda j : + |
z j ∈ yce ∪ bda j : Xm.ak | z j ∈ x and πz j = 〈pm, k〉ce (note that we slightly abuse | and
∪ here for a simpler presentation). For example, ∀xy.p1(x, y) ∧ p2(y, x) → ∃z.p(x, z)
would be translated to X1 : S1, X2 : S2 (P1@X1 u P2@X2 v P@bda1 : X1.a1, a2 : +ce) ,
where S1 = bda1 : X1.a1, a2 : X2.a1ce and S2 = bda1 : X2.a1, a2 : X1.a1ce. Observe
that the specifier Si for Xi may contain assignments of the form a j : Xi .a j : by our
semantics, this merely states that a j may have zero or more values, i.e., these assignments
are trivially satisfied. Facts of the form q(c1, . . . , cm) can be translated into assertions
Q(b)@bda1 : c1, . . . , am : cmce for an individual b that is used in all such assertions.

It is easy to see that entailment of facts is preserved in this translation. The translation
remains correct if we replace all closed specifiers by open specifiers, since the translated
knowledge base admits a least model where all annotation sets are interpreted to be the
smallest possible set. ut

We present two approaches for overcoming this undecidability, namely to exclude +
from attributed DLs (Section 4), and to impose additional structural restrictions on the
use of X .a (Section 5).

Example 4. It follows from Theorem 1 that ALC@+ knowledge bases may require
models with annotation sets of unbounded size. For a simpler example that may help to
illustrate the semantics of attributed DLs, consider the following knowledge base:

A(b)@bc : +c (9)
A@X v ∃r .A@bc : +, p : X .c, p : X .pc (10)

A@X u A@bp : X .cc v ⊥ (11)

Axiom (9) defines an initial A member. Axiom (10) states that all A members have
an r successor that is in A, annotated with some value for c (“current”), and values
for p (“previous”) that include all of its predecessor’s c and p values, ensuring that a
fresh individual is used as the value for c in the successor. Axiom (11) requires that
no individual in A may have a set of p values that include all of its c values, and, in
particular, may not be empty. It is not hard to see that all models of this knowledge base
include an infinite r-chain with arbitrarily large (but finite) A-related annotations sets.

It is interesting to discuss Theorem 1 in the context of our previous work on multi-
attributed predicate logic (MAPL), which generalises first-order logic with annotation
sets for arbitrary predicates [14]. Indeed, our interpretations for attributed DLs are a
special case of multi-attributed relational structures (MARS), though we do not make
the UNA. Otherwise, attributed DLs are fragments of MAPL. Our notation X .c is new,
but it can be simulated in MAPL, e.g., using function definitions [14].

MAPL is highly undecidable, and MAPL Rules (MARPL) have been proposed as
a decidable fragment [14]. MARPL supports + without restrictions, and it includes
arbitrary predicate arities and more expressive specifiers (with some form of negation).
In contrast, attributed DLs add the ability to quantify existentially over annotations,
and therefore to derive partially specified annotation sets, which is the main reason
for Theorem 1. In general, attributed DLs are based on the open world assumption,
whereas MARPL could equivalently be interpreted under a closed world, least model
semantics. Nevertheless, even without + the translation from the proof of Theorem 1
allows attributed DLs to capture rule languages, as the following result shows. Here, by
Datalog we mean first-order Horn logic without existential quantifiers.

Theorem 2. Attributed DLs can capture Datalog in the sense that every set P of
Datalog rules and fact q(c1, . . . , cm) can be translated in linear time into an attributed
DL knowledge base KBP and assertion Q(b)@S, such that P |= q(c1, . . . , cm) iff
KBP |= Q(b)@S. This translation requires just u, no +, and either only open or only
closed specifiers.

The ability to capture Datalog reminds us of nominal schemas, the extension of
DLs with “variable nominals” [10,12]. Indeed, this extension can also be captured in
attributed DLs (we omit the details here). The converse is not true, e.g., since nominal
schemas cannot encode annotation sets on role assertions. Role inclusion axioms such as
spouse@X v spouse−@X are therefore impossible.

Another potentially related formalism is DL-LiteA, which supports (data) annotations
on domain elements and pairs of domain elements [5]. This extension of DLs therefore
supports some forms of ternary relations. While structurally and conceptually very
different from our present work, it seems likely that some DL-LiteA expressions can also
be captured in attributed DLs. Nevertheless, the use case and complexity properties of
DL-LiteA are different from the logics we study here, and it remains for future work to
explore attributed DL-Lite in more detail.

4 Reasoning in ALCH@

We now focus on attributed DLs without +, for which we show reasoning to be decidable,
albeit at a higher complexity. We then derive conditions under which the complexity
remains unchanged. We establish our results for the case of ALCH@.

For a first positive result, we consider ground ALCH@, for which knowledge bases
do not contain any set variables. We can translate any ALCH knowledge base into
groundALCH@ by replacing each concept name A and role name r by A@bc and r@bc,
respectively. Theorem 3 shows that, conversely, we can translate any ground ALCH@
KB into an ALCH KB of polynomial size.

Theorem 3. Satisfiability of ground ALCH@ knowledge bases is ExpTime-complete.

Proof. Hardness is immediate since ALCH@ generalises ALCH. For membership, we
reduce ALCH@ satisfiability to ALCH satisfiability. Given an ALCH@ KB KB, let
KB† denote the ALCH KB that is obtained by replacing each annotated concept name

A@S with a fresh concept name AS , and each annotated role name r@S with a fresh
role name rS , respectively. We then extend KB† by all axioms

AS v AT , where AS and AT occur in translated axioms of KB†, and (12)

rS v rT , where rS and rT occur in translated axioms of KB† (13)

such that T is an open specifier, and the set of attribute–value pairs a : b in S is a superset
of the set of attribute–value pairs in T . We show that KB is satisfiable iff KB† is satisfiable.
The claim then follows from the well-known ExpTime-completeness of satisfiability
checking in ALCH. Given an ALCH@ model I of KB, we directly obtain an ALCH
interpretation J over ∆I by undoing the renaming and applying I, i.e., by mapping
AS ∈ NC to A@SI , rS ∈ NR to r@SI , and a ∈ NI to aI . Clearly, J |= KB†. Conversely,
given anALCHmodelJ of KB†, we construct anALCH@-interpretation I over domain
∆I = ∆J ∪ {?}, where ? is a fresh individual name, and define aI B aJ for all a ∈ NI.
For a ground closed specifier S = bda1 : b1, . . . , an : bnce, we set ΨS B SI . Similarly,
for a ground open specifier S = ba1 : b1, . . . , an : bnc, we define ΨS B SI ∪ {〈?,?〉}.
Furthermore, let AI B {〈a,ΨS〉 | a ∈ AJ

S
for some specifier S} and rI B {〈a, b,ΨS〉 |

〈a, b〉 ∈ rJ
S

for some specifier S}. Then I |= KB, where ? ensures that axioms such as
> v A@ba : bc u ¬A@bda : bce remain satisfiable. ut

For obtaining upper bounds in the case of general ALCH@, we now show that any
ALCH@ knowledge base can be translated into a ground ALCH@ knowledge base,
albeit at the cost of an exponential increase in size.

Theorem 4. Satisfiability of ALCH@ knowledge bases is in 2ExpTime.

Proof. Let KB be an ALCH@ KB, and let NKB
I the set of individual names occurring

in KB, extended by one fresh individual name x. The grounding ground(KB) of KB
consists of all assertions in KB, together with grounded versions of inclusion axioms.
Let I be an interpretation over domain ∆I = NKB

I satisfying aI = a for all a ∈ NKB
I ,

and Z : NV → Pfin
(
∆I × ∆I

)
be a variable assignment. Consider a concept inclusion

α of the form X1 : S1, . . . , Xn : Sn (C v D). We say that Z is compatible with α if
Z (Xi) ∈ SI,Z

i for all 1 ≤ i ≤ n. In this case, the Z-instance αZ of α is the concept
inclusion C ′ v D′ obtained by

– replacing each variable Xi with bda : b | 〈a, b〉 ∈ Z (Xi)ce, and
– replacing every assignment a : Xi .b occurring in some specifier by all assignments

a : c such that 〈b, c〉 ∈ Z (Xi).

Then ground(KB) contains all Z-instances αZ for all concept inclusions α in KB and all
compatible variable assignments Z; and analogous axioms for role inclusions. In general,
there may be exponentially many different instances for each terminological axiom in
KB, thus ground(KB) is of exponential size. We conclude the proof by showing that
KB is satisfiable iff ground(KB) is satisfiable, the result then follows from Theorem 3.
By construction, we have KB |= ground(KB), i.e., any model of KB is also a model of
ground(KB). Conversely, let I be a model of ground(KB). Without loss of generality,
assume that xI , aI for all a ∈ NKB

I \ {x} (it suffices to add a fresh individual since x

does not occur in KB). For an annotation set Ψ ∈ Pfin
(
∆I × ∆I

)
, we define repx (Ψ)

to be the annotation obtained from Ψ by replacing any individual δ < I (NKB
I) in Ψ by

xI . We let ∼ be the equivalence relation induced by repx (Ψ) = repx (Φ) and define an
interpretation J over domain ∆J B ∆I , where AJ B {〈δ,Φ〉 | 〈δ,Ψ〉 ∈ AI and Ψ ∼ Φ}
for A ∈ NC, rJ B {〈δ, ε,Φ〉 | 〈δ, ε,Ψ〉 ∈ rI and Ψ ∼ Φ} for r ∈ NR, and aJ B aI for
all individual names a ∈ NI. It remains to show that J is indeed a model of KB. Suppose
for a contradiction that there is a concept inclusion α that is not satisfied by J (the case
for role inclusions is analogous). Then we have some compatible variable assignment Z
that leaves α unsatisfied. Let Zx be the variable assignment X 7→ repx (Z (X)) for all
X ∈ NV. Clearly, Zx is also compatible with α. But now we have CJ ,Z = CI,Zx for all
ALCH@ concepts C, yielding the contradiction I 6 |= αZx . ut

This upper bound for ALCH@ is tight. The full proof can be found in [11].

Theorem 5. Satisfiability of ALCH@ knowledge bases is 2ExpTime-hard.

Proof (sketch). We reduce theword problem for exponentially space-boundedAlternating
Turing Machines (ATMs) [6] to the entailment problem for ALCH@ KBs. We construct
the tree of all configurations reachable from the initial configuration, encoding the
transitions in the edges of the tree. Individual tape cells are represented as concepts
carrying an annotation encoding the cell position (as a binary number) and the cell’s
content. We mark the current head position with an additional concept. This allows
us to copy each non-head position of the tape to successors in the configuration tree,
while changing the tape cell at the head position and moving the head depending on
the transition from the preceding configuration. As acceptance of a given configuration
depends solely on the state and the successor configurations, we can propagate acceptance
backwards from the leaves of the configuration tree to the initial configuration. ut

5 Tractable Reasoning in Attributed EL

In this section, we consider attributed DLs that are based on the EL family of description
logics, and we establish various related complexity results. In particular, we study EL@,
the fragment of ALC@ which uses only ∃, u, > and ⊥ in concept expressions.

Unfortunately, Theorem 2 shows that EL@ is ExpTime-complete, even with severe
syntactic restrictions. To overcome this source of complexity, one must impose a bound
on the number of set variables per concept inclusion. In addition, we exclude X .a:

Theorem 6. Let ` ≥ 0 be a natural number. Checking satisfiability of EL@ knowledge
bases with at most ` variables per axiom, and without expressions of the form X .a is
PTime-complete.

Proof. Hardness follows from the hardness of EL [1]. For membership, we polynomially
reduce EL@ satisfiability to ELH satisfiability. Indeed, the grounding used in Theorem 4
can be restricted to annotation sets that are described in (ground) specifiers that are found
in the knowledge base, since no new sets can be derived without X .a. The bounded
number of variables then ensures that the grounding remains polynomial. ut

It is indeed necessary to bound the number of set variables.
Theorem 7. Satisfiability checking for EL@ knowledge bases without expressions of the
form X .a is ExpTime-hard.

Proof. The proof also uses an encoding of Datalog. For each rule, we introduce a CI:
each variable x occurring in the premise of the rule, is represented by a set variable X
defined as X : bc, and the conjunction of Datalog atoms p(xp1, . . . , xpar(p)) is represented
by a conjunction of corresponding concept expressions ∃p@Xp1 .>u· · ·u∃p@Xpar(p) .>.
It is easy to see that this encoding captures the original semantics and does not contain
expressions of the form X .a. ut

To extend Theorem 6, we can allow some uses of X .a under further restrictions:
Theorem 8. Let `, k ≥ 0 be arbitrary, but fixed natural numbers. Checking satisfiability
of EL@ knowledge bases is PTime-complete for KBs where
(A) axioms contain at most ` variables,
(B) any closed or open specifier contains at most k expressions of the form X .a, and,
(C) if any specifier contains an assignment a : X .b, then it does not contain any other

assignment a : ν for the same attribute a.

Proof. As in Theorem 6, we can obtain a polynomial grounding, but we may need to
consider annotation sets that are not explicitly specified in the original knowledge base.
However, due to condition (C), as the set of values for any attribute we only need to
consider one of the polynomially many sets of values given explicitly through ground
assignments in specifiers. Considering any combination of these value sets for any of
the ≤ k attributes that use X .a in assignments results in a polynomially large set of
annotation sets. ut

Clearly, satisfiability ofALCH@ KBs obeying these conditions is ExpTime-complete.

Theorem 9. Let KB be an EL@ KB and consider conditions (A)–(C) of Theorem 8 with
` = 1 and k = 2. Then deciding satisfiability of KB is
(1) ExpTime-hard if KB satisfies only conditions (B) and (C),
(2) ExpTime-hard if KB satisfies only conditions (A) and (C), and
(3) coNP-hard1 if KB satisfies only conditions (A) and (B).

Proof. (1) The proof uses an encoding of Datalog. For each rule, we introduce a concept
inclusion: each variable x occurring in the rule is represented by a set variable X
defined as X : bc, and Datalog atoms p(xp1, . . . , xpar(p)) are represented by concept
expressions ∃p@Xp1 .> u · · · u ∃p@Xpar(p) .>.

(2) The proof works by a modification of the Datalog encoding in the proof of Theorem 2.
Instead of using one universally quantified variable per atom in the premise of a
rule, we use a single variable X defined as X : bx1 : X .x1, . . . , xn : X .xnc, where
x1, . . . , xn are the variables in the encoded rule. We can now encode Datalog atoms
p(xp1, . . . , xpar(p)) with concept expressions P@ba1 : X .xp1, . . . , aar(p) : X .xpar(p) c.
Observe that this can be used to capture the original semantics and obeys the
additional restrictions.

1 This can be strengthened to PSpace-hardness [11], but here we just want to show intractability.

(3) The proof is by reduction from SAT. Let ϕ = (ϕ1 ∧ . . . ∧ ϕn) be a propositional
formula in conjunctive normal form, where each ϕi is a disjunction (li1 ∨ . . . ∨ li

`i
).

Let a1, . . . , am be the propositional variables in ϕ. We construct a knowledge base
KBϕ that contains the following axioms for all i = 0, . . . ,m − 1:

Ai@X v ∃r .Ai+1@bt : ai+1, t : X .t, f : X . f c (14)
Ai@X v ∃r .Ai+1@b f : ai+1, t : X .t, f : X . f c (15)

For a disjunction ϕi = (li1 ∨ . . . ∨ li
`i

), we use ai
j to denote the variable in the literal

lij , and we set pij B t if lij = ai
j , and pij B f if lij = ¬ai

j . Now KBϕ further contains:

Am v T0 Ti−1 u Am@bpi1 : ai
1, . . . , pi`i : ai

`i
c v Ti Tn v ⊥ (16)

Then KBϕ is unsatisfiable if and only if ϕ is satisfiable.
ut

6 Conclusion

The practical impact of current knowledge representation formalisms in graph-based
knowledge management is severely limited by the inability of the former to handle
meta-data in the form of sets of attribute–value pairs. While some such annotations
are dealing with concrete data, such as validity times, the problem is orthogonal to the
logic’s datatype support, and surfaces already when dealing with purely abstract data. We
therefore believe that KR formalisms must urgently take up the challenge of incorporating
annotation structures into their expressive repertoire.

We have presented a very first study of a potential solution for this issue in the context
of description logics, thereby introducing the family of attributed DLs. Our findings differ
significantly from recent results on rule-based logics that support similar annotations,
since the open world assumption of DLs can make reasoning more complicated. We
have identified decidable cases, for which we have developed a general grounding-based
decision procedure. Two special cases, namely ground knowledge bases and structural
restrictions on the use of set variables, were shown to avoid the increase in reasoning
complexity that this approach may otherwise incur.

Many questions are left open in this work. The extension of our approaches to more
expressive DLs with features like nominals or number restrictions is not completely
trivial, since equality reasoning would require a more advanced axiomatisation during
grounding. Similarly, structural restrictions of highly expressive DLs, especially RBox
regularity, need to be extended to the new setting.

At the same time, more work is needed to lay the foundations of practical reasoning
algorithms in attributed DLs. We believe that approaches similar to the one used for
practical reasoning with nominal schemas might be effective here. Finally, there are
surely further expressive mechanisms related to modelling with annotations which should
be considered and investigated in future studies of the new field.

Acknowledgements. This work is partly supported by the German Research Foundation
(DFG) in CRC 912 (HAEC) and in Emmy Noether grant KR 4381/1-1.

References
1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A. (eds.)

Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 364–369. Professional
Book Center (2005)

2. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O.
(eds.) Proc. 8th Colloquium on Automata, Languages and Programming (ICALP’81). LNCS,
vol. 115, pp. 73–85. Springer (1981)

3. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a mashup
to build bioinformatics knowledge systems. J. of Biomedical Informatics 41(5), 706–716
(2008)

4. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia – A crystallization point for the Web of Data. J. of Web Semantics 7(3), 154–165
(2009)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking data
to ontologies: The description logic dl-lite_a. In: Proceedings of the OWLED*06 Workshop
on OWL: Experiences and Directions, Athens, Georgia, USA, November 10-11, 2006 (2006)

6. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of the ACM 28(1), 114–133
(1981)

7. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependencies and
their inference problem. In: Proc. 13th Annual ACM Symposium on Theory of Computation
(STOC’81). pp. 342–354. ACM (1981)

8. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to
the linked data web. In: Proc. 13th Int. Semantic Web Conf. (ISWC’14). LNCS, vol. 8796, pp.
50–65. Springer (2014)

9. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the
Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China. pp. 31–40 (2007)

10. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL: Nominal
schemas for integrating rules and ontologies. In: Proc. 20th Int. Conf. on World Wide Web
(WWW’11). pp. 645–654. ACM (2011)

11. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: Ontologies
for knowledge graphs. Tech. rep., TU Dresden (2017), https://iccl.inf.tu-dresden.de/web/
Techreport3032/en

12. Krötzsch, M., Rudolph, S.: Nominal schemas in description logics: Complexities clarified. In:
Baral, C., De Giacomo, G., Eiter, T. (eds.) Proc. 14th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’14). pp. 308–317. AAAI Press (2014)

13. Krötzsch, M., Simančík, F., Horrocks, I.: Description logics. IEEE Intelligent Systems 29,
12–19 (2014)

14. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised property
graphs. In: Proc. 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17). AAAI Press
(2017), to appear; available at https://iccl.inf.tu-dresden.de/web/Inproceedings3141

15. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the American
Society for Information Science and Technology 36(6), 35–41 (2010)

16. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for representing and
reasoning with annotated Semantic Web data. In: Fox, M., Poole, D. (eds.) Proc. 24th AAAI
Conf. on Artificial Intelligence (AAAI’10). AAAI Press (2010)

17. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans. Comput. Logic
11(2), 10:1–10:41 (2010)

18. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun. ACM
57(10) (2014)

https://iccl.inf.tu-dresden.de/web/Techreport3032/en
https://iccl.inf.tu-dresden.de/web/Techreport3032/en
https://iccl.inf.tu-dresden.de/web/Inproceedings3141

