
On Partial Features in the DLF Dialects of
Description Logic with Inverse Features

David Toman and Grant Weddell

Cheriton School of Computer Science
University of Waterloo, Canada

{david,gweddell}@cs.uwaterloo.ca

Abstract. The DLF dialects of description logic are fragments of first
order logic with underlying signatures based on unary predicate symbols
and on unary function symbols interpreted as total functions. In ear-
lier work, we have shown how computational properties of logical conse-
quence for dialects of this family without inverse features are preserved
when unary function symbols are interpreted instead as partial functions,
and when a “∃f” concept constructor for feature value existence is added
that can be used to enforce function totality. In this paper, we resolve a
number of open problems mentioned in this earlier work that concerns
DLF dialects with inverse features. Our main result shows how the di-
alect CFDI∀−nc can be extended with a limited form of conjunction on
left-hand-sides of inclusion dependencies that enables a straightforward
simulation of partial functions together with the ∃f concept constructor.

1 Introduction

The DLF dialects of description logics (DLs) are fragments of first order logic
with underlying signatures that replace binary predicate symbols, called roles,
with unary function symbols, interpreted as total functions, called features. In
earlier work [7], we have shown how computational properties of logical conse-
quence for dialects of this family are preserved when unary function symbols
are now interpreted as partial functions, where equality is based on the so-called
strict interpretation of undefined values, and when an “∃f” concept constructor
is added for identifying subsets of a domain for which f -values must exist. Note
that the latter yields an ability to define cases in which partial functions become
total functions, such as to say that every employee has a salary, or to define cases
in which partial functions are not meaningful, such as to say that departments
do not have a salary.

In this paper, we resolve a number of open problems mentioned in this earlier
work that concern DLF dialects with inverse features, among which is the more
recent CFDI∀−nc dialect in the CFD sub-family [6]. Members of this sub-family
are distinguished by having PTIME complexity for logical consequence. One of
our results shows how CFDI∀−nc can be extended with a form of conjunction on
left-hand-sides of inclusion dependencies while still retaining PTIME complex-
ity for logical consequence. We show how the added expressiveness enables a
straightforward simulation of partial functions and the ∃f concept constructor.

The paper is organized as follows. In the next section, we provide the nec-
essary background and definitions: an overview of the syntax and semantics of
the DLF dialects, and of their general extension to partial functions as we have
proposed in [7]. In Section 3, we introduce the dialects DLFI and DLFDI, and
how, by following the same reduction introduced in [7], each can simulate their
partial extensions in a straightforward manner. The results mentioned above
regarding the dialect CFDI∀−nc are then presented in Section 4. Mainly, this en-
tails introducing an extension we call CFDI∀−kc that admits a limited use of
conjunction on the left-hand-sides of inclusion dependencies. We then show how
CFDI∀−kc can also be used to simulate its partial extension in a similar fashion
to how we did this for DLFI and DLFDI in Section 3.

2 Background and Definitions

We begin with a review of the basic definitions for member dialects of the DLF
family in which features replace roles and are interpreted as total functions.
Following this, we introduce the necessary modifications that enable features to
be interpreted instead as partial functions.

Definition 1 (Feature-based DLs) Let F and PC be sets of feature names
and primitive concept names, respectively. A path expression is defined by the
grammar “Pf ::= f.Pf | id” for f ∈ F.1 We define derived concept descriptions
by the grammar on the left-hand-side of Figure 1.

An inclusion dependency C is an expression of the form C1 v C2. A terminology
(TBox) T consists of a finite set of inclusion dependencies. A posed question Q
is a single inclusion dependency.

The semantics of expressions is defined with respect to a structure I = (4, ·I),
where4 is a domain of “objects” and ·I an interpretation function that fixes the
interpretations of primitive concepts A to be subsets of 4 and primitive features
f to be total functions fI : 4 → 4. The interpretation is extended to path
expressions, idI = λx.x, (f.Pf)I = PfI ◦fI and derived concept descriptions
C as defined in the center column of Figure 1. An interpretation I satisfies an
inclusion dependency C1 v C2 if CI1 ⊆ CI2 and is a model of T (I |= T) if it
satisfies all inclusion dependencies in T . The logical implication problem asks if
T |= Q holds, that is, if Q is satisfied in all models of T . 2

Here, we do not consider so-called ABoxes, that is, sets of assertions about
membership of individuals in descriptions, nor do we consider the associated
problem of knowledge base consistency. Note, however, that such issues can be
reduced to logical implication problems involving posed questions that utilize
value restrictions and equational same-as descriptions [5].

The logical implication problem for TBoxes and posed questions character-
ized so far, that allow arbitrary concepts in inclusion dependencies, is not decid-
able for a variety of reasons. For example, see [4] for one case involving arbitrary

1 We also simplify this notation by allowing a syntactic composition “Pf1 .Pf2” that
stands for their concatenation.

Syntax Semantics: Defn of “·I”
C ::= A AI ⊆ 4 (primitive concept; A ∈ PC)
| C1 u C2 CI1 ∩ CI2 (conjunction)
| C1 t C2 CI1 ∪ CI2 (disjunction)
| ¬C 4 \ CI (negation)
| ∀Pf .C {x : PfI(x) ∈ CI} (value restriction)
| ∃f−1 {fI(x) : x ∈ 4} (inverse feature)

| C : Pf1, ...,Pfk → Pf0 {x : ∀ y ∈ CI .
∧k

i=1 Pf
I
i (x) = PfIi (y) (PFD)

→ PfI0 (x) = PfI0 (y)}

| > 4 (top)
| ⊥ ∅ (bottom)
| (Pf1 = Pf2) {x : PfI1 (x) = PfI2 (x)} (same-as)

Fig. 1. Syntax and Semantics of DLFD/CFD Concepts.

PFDs and ABoxes encoded in the above manner. However, restrictions on oc-
currences of concept constructors has led to a number of decidable fragments
that range from light-weight to expressive dialects of feature-based DLs. The
restrictions that obtain DLFI, DLFDI, CFDI∀−nc and CFDI∀−kc , the focus of
our attention, are given in Section 3 for the first two cases and in Section 4 for
the last two cases.

The two definitions that follow introduce the necessary modifications to our
characterization of feature-based DLs to accommodate features interpreted as
partial functions. To refer to such modifications, we follow a notational conven-
tion of qualifying particular dialects with the word “partial” whenever we intend
such modifications to apply, as in partial−DLFDI for example.

Definition 2 (Partial Features and Existential Restrictions) The syntax
of feature-based DLs is extended with an additional concept constructor of the
form “∃f”, called an existential restriction. Semantics is given as follows:

1. Features f ∈ F are now interpreted as partial functions on 4 (i.e., the result
can be undefined for some elements of 4); and

2. The ∃f concept constructor is interpreted as {x : ∃y ∈ 4.fI(x) = y}.

In this setting, a path function Pf naturally denotes a partial function resulting
from the composition of partial functions. We also adopt the strict interpreta-
tion of undefined values. This means that equality holds only when both of its
arguments are defined and denote the same object, and that set membership (∈)
requires only defined values to be members of its right hand side argument. 2

Observe that features are still functional, and that there is therefore no need for
a qualified existential restriction of the form “∃f.C”, with semantics given as
follows:

(∃f.C)I = {x : ∃y ∈ 4.fI(x) = y ∧ y ∈ CI}.
Indeed, such a restriction can be simulated by assuming “∃f.C” to be shorthand
for “(∃f u ∀f.C)”. Assuming this, we now write “(∃Pf)” in the following as

shorthand for “(∃f1 u ∀f1.(∃f2 u ∀f2.(. . . (∃fk) . . .)))”. All that remains for our
modifications is to revise the semantics of the PFD constructor to account for the
presence of partial features. We adopt the minimum necessary revision needed
for recognizing when one violates a PFD inclusion dependency of the form

“C1 v C2 : Pf1, . . . ,Pfk → Pf0 ” .

At the least, this should happen when: (1) all path functions Pf0, . . . ,Pfk are
defined for a C1 object e1 and a C2 object e2, and (2) PfIi (e1) = PfIi (e2) holds
only for i > 0. This yields the following modification to the interpretation of
PFDs in the presence of partial features that we now adopt:

(C : Pf1, . . . ,Pfk → Pf0)I = {x : ∀y.y ∈ CI ∧ x ∈ (∃Pf0)I ∧ y ∈ (∃Pf0)I ∧∧k
i=1(x ∈ (∃Pfi)I ∧ y ∈ (∃Pfi)I ∧ PfIi (x) = PfIi (y))→ PfI0 (x) = PfI0 (y)}.

Observe that this definition coincides with the original semantics of the PFD
constructor given in Figure 1 when features are interpreted as total functions.

The following illustrates the use of existential restrictions and PFDs in DLF
dialects with partial features. This includes two examples of constraints men-
tioned informally in our introductory comments together with two further exam-
ples showing how PFDs can be used to capture keys and functional dependencies.
Note that all can be captured in any of the dialects mentioned below:

1. EMP v ∃salary (every employee has a salary);
2. DEPT v ¬∃salary (departments do not have a salary);
3. DEPT v DEPT : manager → id (no two departments have the same

manager); and
4. EMP v EMP : paygrade → salary (employee pay grades determine salaries).

3 Expressive Logics with Inverses in the DLF Family

We now introduce a pair of expressive feature-based DLs and show how logi-
cal consequence for their partial variants can be simulated in a straightforward
fashion. The first is called DLFI and allows both TBox and posed question de-
pendencies to contain concepts formed from primitive concepts and bottom us-
ing the following concept constructors: conjunction, disjunction, negation, value
restriction and inverse features. The second is called DLFDI, and allows, in
addition, the PFD concept constructor to appear on the right hand sides of
inclusion dependencies. Both logics are a special case of the dialect DLFAD
introduced in [3]. This earlier DL admitted qualified inverse features together
with restrictions on their use which yielded cases for which the logical implica-
tion problem was complete for EXPTIME. One of the restrictions relating to
a coherency condition on terminologies introduced in [3] is obtained when in-
verse features are unqualified, as is the case for both DLFI and DLFDI. Thus,
overall restrictions on syntax for these DLs yield expressive Boolean complete
dialects with a logical implication problem that is complete for EXPTIME as
well. Conversely, extensions, such as allowing PFDs on the left-hand sides of in-
clusion dependencies, or allowing equational constraints in the posed questions
(or equivalently ABoxes), make logical consequence undecidable [4].

We now proceed to demonstrate that partial features can be effectively sim-
ulated in DLFI and DLFDI by introducing an auxiliary primitive concept G
that stands for existing or generated objects, and by using value restrictions to
assign membership of objects generated by the ∃f constructor to this concept.
All remaining inclusion dependencies are then simply preconditioned by this
auxiliary concept.

Formally, let T be a partial−DLFI TBox in which all inclusion dependencies
are of the form > v C. We define a DLFI TBox TDLFI as

TDLFI = {G v C[∃f 7→ ∀f.G, for all f ∈ F] | > v C ∈ T }
∪ {∀f.G v G | f ∈ F},

where G is a primitive concept not occurring in T . Note that the substitution
[∃f 7→ ∀f.G, for all f ∈ F] is applied simultaneously to all occurrences of the
∃f constructor in the concept C.

Theorem 3 Let T be a partial−DLFI TBox in which all inclusion dependen-
cies are of the form > v C. Then

T |= > v C if and only if TDLFI |= G v C[∃f 7→ ∀f.G, for all f ∈ F],

for G a fresh primitive concept.

Proof (sketch): For any I where I |= TDLFI , we can define an interpretation

J = (GI , ·I|GI). It is easy to verify that J |= T and also that J |= > v C since

I |= G v C[∃f 7→ ∀f.G, for all f ∈ F].

For the other direction, we need to extend a model J of T to a model I of
TDLFI by setting GI = 4J and by adding missing features connecting I to
complete F ∗ trees with all nodes in (¬G)I . This way, either I coincides with
J or satisfies dependencies in TDLFI and G v C[∃f 7→ ∀f.G, for all f ∈ F]
vacuously. 2

To extend this construction to the full partial−DLFDI logic, it is sufficient
to encode the path function existence preconditions in terms of the auxiliary
concept G as follows: if A v B : Pf1, . . . ,Pfk → Pf0 ∈ T then

A u (
kl

i=0

∀Pfi .G) v B u (
kl

i=0

∀Pfi .G) : Pf1, . . . ,Pfk → Pf0 (1)

is added to TDLFDI . Here, we are assuming w.l.o.g. that A and B are primitive
concept names (DLFDI allows one to give such names to complex concepts).

Theorem 4 Let T be a partial−DLFDI TBox in which all inclusion depen-
dencies are of the form > v C or A v B : Pf1, . . . ,Pfk → Pf0. Then

T |= > v C if and only if TDLFDI |= G v C[∃f 7→ ∀f.G, for all f ∈ F], and
T |= A v B : Pf1, . . . ,Pfk → Pf if and only if TDLFDI |= (1),

for G a fresh primitive concept.

Proof (sketch): The claim follows by observing that (1) captures properly the
semantics of PFDs and then by appealing to Theorem 3. 2

Corollary 5 Logical implication is EXPTIME-complete for partial−DLFI and
for partial−DLFDI. 2

Similar results can be obtained for other members of the DLFI family.

4 Tractable Logics with Inverses in the CFD Sub-Family

We now introduce a new member of theDLFI sub-facility of DLs called CFDI∀−kc ,
and show how the added expressiveness of partial functions and existential re-
striction can be simulated in CFDI∀−kc in the same general way as was done
above for the expressive cases. (Recall that members of this sub-family have
PTIME complexity for determining logical consequence.) CFDI∀−kc is an exten-
sion of the CFD dialect CFDI∀−nc in [6], the first member of this sub-family to
allow the use of feature inversion. The extension adds to this earlier dialect a
capability for a limited use of conjunction in left-hand-sides of inclusion depen-
dencies which, among other things, yields the ability to simulate partial features
in partial−CFDI∀−kc .

Our new DL, like all members of the CFD family, allows the use of an ABox
(optionally captured by using same-as in left-hand-sides of posed questions) and
therefore requires PFDs to adhere to one of the following two forms to avoid both
undecidability [4] and indeed intractability [6]:

PFD ::= A : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf (key)
| A : Pf1, . . . ,Pfi .f, . . . ,Pfk → Pfi .g (functional dependency)

(2)

With this restriction, introduced in [6], posed questions can contain inclusion de-
pendencies formed from concepts in Figure 1, albeit with a few mild restrictions
when tractability in the size of the posed question is required. For simplicity,
however, we assume that the concepts in the posed question Q = E1 v E2

adhere to the following grammar:

E ::= A | ⊥ | E u E | ∀Pf .E | (Pf1 = Pf2).

More complex posed questions, e.g., ones that contain the PFD constructor [5],
can be equivalently expressed in the above grammar (perhaps as a sequence of
posed questions).

Inclusion dependencies C v D in a CFDI∀−kc TBox are respectively given by
the following grammars:

C ::= A | ∀f.A | A1 uA2

D ::= A | ⊥ | ∀f.A | ∃f−1 | PFD

For technical reasons we assume, w.l.o.g., that either C or D is a primitive
concept for the remainder of the paper.

In comparison to CFDI∀−nc introduced in [6], this new dialect now allows in-
clusion dependencies of the form “(A1uA2) v A3”. In general, unrestricted use of
conjunction on the left-hand side of inclusion dependencies leads to EXPTIME-
completeness of the associated reasoning problems, and so it is necessary to
somehow restrict this use of conjunction. The intuition behind the restriction

we adopt below is to limit the number of conjuncts that need to be considered
on the left-hand sides of inclusion dependencies. Unfortunately, this property
is not a simple syntactic restriction, e.g., on the form of inclusion dependen-
cies in a TBox. Indeed, it is easy to see that allowing inclusion dependencies in
CFDI∀−kc of the form above is equivalent to allowing arbitrary conjunctions (due

to inference). Hence, a CFDI∀−kc TBox is instead given as follows:

Definition 6 (Restricted Conjunction) Let T be a TBox with inclusion de-
pendencies satisfying the above grammar rules, and let k > 0. We say that T is
a CFDI∀−kc TBox if, whenever T |= (A1u · · · uAn) v B for some set of primitive
concepts {A1, . . . , An} ∪ {B}, then T |= (Ai1 u · · · uAik) v B for some k-sized
subset {Ai1 , . . . , Aik} of the primitive concepts {A1, . . . , An}. 2

The following Lemma shows that verifying whether an TBox is an CFDI∀−kc
TBox can be verified in PTIME (for a fixed k):

Lemma 7 Let T be a CFDI∀−kc TBox and k > 0. Then T is not a CFDI∀−kc
TBox if there are primitive concepts A1, . . . , Ak+1 and B such that T |= (A1 u
. . . uAk+1) v B for which the condition in Definition 6 fails.

Proof (sketch): Consider an inclusion dependency (A1 u . . . uAn) v B where
n > 2 is the smallest value such that the dependency is a logical consequence of
T and such that there no (Ai1 u · · · uAik) v B that is also a logical consequence
of T . Observe that there must be a linear input resolution proof (of the first-
order translation of the problem) of B(x) from T ∪{A1(x), . . . , An(x)} [2]. Since
the resolution steps with A1(x), . . . , An(x)} can be performed last and they all
must be present, there is a clause ¬A1(x), . . . ,¬An(x) in the proof. However,
since all input clauses to the problem are binary or ternary and since the proof
starts with ¬B(x), there must be a one-shorter clause preceding this clause in
this proof. A contradiction. 2

We now consider TBox and concept satisfiability in CFDI∀−kc , and show an
PTIME algorithm by extending the approach for CFDI∀−nc in [6].

TBox and Concept Satisfiability
It is easy to see that every CFDI∀−kc TBox T is consistent (by setting all primitive
concepts to be interpreted as the empty set). To test for (primitive) concept
satisfiability we use the following construction:

Definition 8 (TBox Closure) Let T be a CFDI∀−kc TBox in normal form. We
define Clos(T) to be the least set of subsumptions such that:

1. D v D;
2. D v E and E v F then D v F ;
3. D v E and F ⊆ E, F 6= ∅ then D v F ;
4. D v E and D v F then D v E + F (for all E + F ⊆ E ∪ F);
5. A v B ∈ T and A ⊆ D then D v B;
6. ∀f.⊥ v ⊥ and ⊥ v ∀f.⊥;
7. D v E then ∀f.D v ∀f.E;

8. D v ∃f−1 and ∀f.D v ∀f.E then D v E

where (1) D, E, and F are sets of primitive concepts of size at most k, or sets
of value restrictions with respect to a particular feature applied to such sets of
primitive concepts, where (2) E+F is a subset of size between 1 and k of E∪F ,
and where (3) A and B are concepts allowed on the left and right-hand sides of
subsumptions in T . We also conflate sets of concepts and their conjunctions and
value restriction applied to a conjunction with a conjunction of individual value
restrictions. 2

Note that Clos(T) is polynomial in |T | (and exponential in k). It is also easy to
verify that each inclusion added to Clos(T) by the inferences (1-4) in Definition 8
is logically implied by T .

Theorem 9 (Primitive Concept Satisfiability) Let T be a CFDI∀−kc TBox
in normal form and A a primitive concept description. Then A is satisfiable with
respect to T if and only if A v ⊥ 6∈ Clos(T).

Proof (sketch): Given Clos(T), an object o, and a primitive concept A, we
define the following family of subsets of PC indexed by paths of features (and
their inverses), starting from o, as follows:

1. So = {B | A v B ∈ Clos(T)};
2. Sf(x) = {B | A v ∀f.B ∈ Clos(T) and A ∈ Sx}, when f ∈ F and x not of

the form “f−(y)”; and
3. Sf−(x) = {B | ∀f.A v B and A ∈ Sx}, when A′ v ∃f−1 ∈ Clos(T), A′ ∈ Sx,

and x not of the form “f(y)”.

We say that Sx is defined if it conforms to one of the three above cases, and that
it is consistent if ⊥ 6∈ Sx.

It is easy to see that

1. If Sf(x) is not consistent, then Sx is not consistent.
2. If Sf−(x) is defined and not consistent, then Sx is not consistent.

We build a model of T in which o ∈ AI for some o ∈ 4 as follows:

– 4 = {x | Sx is defined};
– fI = {(x, f(x)) | Sf(x) is defined} ∪ {(f−(x), x) | Sf−(x) is defined}; and

– AI = {x | Sx is defined, A ∈ Sx}.

Observe all defined sets Sx must be consistent. Otherwise, A (∈ S0) must be
inconsistent, implying in turn that A v ⊥ ∈ Clos(T), a contradiction. Hence,
I = (4, .I) is a model of T (it satisfies all dependencies in Clos(T)) such that
o ∈ AI . 2

Note that the model witnessing satisfiability of A does not contain any identical
path agreements and hence vacuously satisfies all PFDs in T .

E(Pf1,Pf2)→ E(Pf2,Pf1)
E(Pf1,Pf2) ∧ E(Pf2,Pf3)→ E(Pf1,Pf3)
E(Pf1,Pf2)→ E(Pf1 .f,Pf2 .f), for {Pf1 .f,Pf2 .f} ⊆ PF(T ,Q)
E(Pf1,Pf2) ∧ CC(Pf1)→ CC(Pf2)

CC1uC2(Pf)→ CC1(Pf) and CC1uC2(Pf)→ CC2(Pf)
C∀ Pf′ .C(Pf)→ CC(Pf .Pf′) for Pf .Pf′ ∈ PF(T ,Q)
C(Pf1=Pf2)(Pf)→ E(Pf .Pf1,Pf .Pf2)
CC:Pf1,...,Pfk→Pf0(Pf) ∧ CC(Pf′) ∧ (

∧
0<i≤k E(Pf .Pfi,Pf

′ .Pfi))→ E(Pf .Pf0,Pf
′ .Pf0))

CA1(Pf) ∧ . . . ∧ CAk (Pf)→ CD(Pf) for all (A1 u . . . uAk v D) ∈ T
CA(Pf .f)→ CD(Pf) for all (∀f.A v D) ∈ T

Fig. 2. Expansion Rules.

The above theorem can be used to check satisfiability of complex (non-
PFD) concepts; e.g., satisfiability of ∀Pf .B w.r.t. T can be tested by checking
satisfiability of a new primitive concept A w.r.t. (the normalized version of)
T ∪ {A v ∀Pf .B}.

The theorem also provides a technique for checking satisfiability of finite
conjunctions of primitive concepts with respect to T :

Corollary 10 Let T be a CFDI∀−kc TBox in normal form and A1, . . . , Ak prim-
itive concepts. Then A1u . . .uAk is satisfiable with respect to T if and only if A
is satisfiable with respect to T ∪ {A v A1, . . . , A v Ak}, for A a fresh primitive
concept (note that T ∪ {A v A1, . . . , A v Ak} is a CFDI∀−kc TBox whenever T
is). 2

Logical Implication and Knowledge Base Consistency
Allowing inverse features affects how PFDs interact with a posed question. In
particular, PFDs in which all path functions have a common prefix may apply
to (pairs of) anonymous individuals mandated by the existence of anonymous
inverse features. In general, to enforce PFDs with respect to a posed question
while avoiding any need to explicitly create anonymous predecessor objects, we
add additional logically implied PFDs to a given TBox as follows:

Definition 11 (PFD Enrichment for Inverses) Let T be a CFDI∀−kc TBox
in normal form such that A v B : f.Pf1, . . . , f.Pfk → f.Pf ∈ T (A v B :
f.Pf1, . . . , f.Pfk → id ∈ T) where Pfi 6= id for all 1 ≤ i ≤ k. Then we require
that A v ∀f.A′, B v ∀f.B′, and A′ v B′ : Pf1, . . . ,Pfk → Pf (A′ v B′ :
Pf1, . . . ,Pfk → id), where A′ and B′ are fresh primitive concepts, are also in T .
(For further details on this, see [1].) 2

With these restrictions we can now show that the logical implication problem
for CFDI∀−kc is in PTIME. Our proof is based on encoding a given problem as
a collection of Horn clauses. The reduction introduces terms that correspond to
path expressions, and relies on the fact that the number of required terms is
polynomial in the size of the problem itself.

Definition 12 (Expansion Rules) Let T and Q be a partial−CFD terminol-
ogy and a posed question, respectively. We write CON(T ,Q) to denote the set
of all subconcepts appearing in T and Q, define PF(T ,Q) to be the set

{Pf .Pf ′ | Pf is a prefix of a path expression in Q and
Pf ′ is a feature occurring in T or id},

write CC to denote unary predicates for C ∈ CON(T ,Q), and introduce a unary
predicate D and a binary predicate E, with all predicates ranging over the uni-
verse PF(T ,Q). The expansion rules for a given terminology T , denoted R(T),
are defined in Figure 2. To deal with the possibility of inconsistency, we add the
following rule that can be applied after the rules in Figure 2 are are exhaustively
applied.2

If CA1
(Pf), . . . ,CAk

(Pf) ∈ R(T) for some Pf ∈ PF(T ,Q) and A1u. . .uAk

is not consistent in T then add C⊥(Pf) to R(T).

A goal for each concept E is a set of ground assertions defined as follows:

GE =

{CA(id)} for E = A;

{C⊥(id)} for E = ⊥;

{E(Pf1,Pf2)} for E = (Pf1 = Pf2);

GE1 ∪ GE2 for E = E1 u E2; and

{CC(Pf ′ .Pf) | CC(Pf) ∈ GE′}
∪ {E(Pf ′ .Pf1,Pf

′ .Pf2) | E(Pf1,Pf2) ∈ GE′} for E = ∀Pf ′ .E′.
Given two concept descriptions E1 and E2, we say that

R(T) ∪ {CE1
(id)} |= GE2

if GE2
⊆ M for every minimal ground model M of R(T) over PF(T ,Q) that

contains CE1
(id) and D(id). 2

Intuitively, PF(T ,Q) represents a finite graph of objects, predicates E(Pf1,Pf2)
express equality of the objects at the end of paths Pf1 and Pf2, and predicates
CC′(Pf) express that the object at the end of path Pf is in the interpretation
of concept C ′. Note that the expansion rules do not need to take inverses into
account due to Definition 11.

Logical implication for CFDI∀−kc TBoxes T and posed questions Q can now
be solved as follows:

Theorem 13 Let T be a terminology and Q a posed question of the form
E1 v E2 in CFDI∀−kc . Then

T |= Q iff R(T) ∪ {CE1(id)} |= GE2 or
R(T) ∪ {CE1

(id)} |= G∀Pf .⊥(id) for some Pf ∈ PF(T ,Q).

Proof (sketch): If C⊥(Pf) for Pf ∈ PF(T ,Q) appear in M , where M is the least
model of R(T) ∪ {CE1

(id)} R(T), then the concept E1 is unsatisfiable w.r.t. T
2 Observe that this is where we rely on the our previous PTIME result concerning the

satisfiability of finite conjunctions of primitive concepts.

since only implied facts appear in M , and therefore the subsumption holds for
any E1 and T .

Otherwise, if R(T)∪{CE1(id)} 6|= GE1 , then there must be a model M of R(T)∪
{CE1(id)} such that G 6∈ M for some G ∈ GE1 . We construct an interpretation
IM such that IM |= T but IM 6|= Q. The interpretation IM contains an object o
for each equivalence class defined on the set PF(T ,Q) by the interpretation of E.
The class membership of these objects is determined by the membership of the
corresponding path in the interpretations of the CC predicates in M . Note that,
due to the syntactic restriction imposed on PFDs, this is sufficient to satisfy
all PFDs in T since any precondition or a non-trivial consequence of a PFD
can only manifest on some path belonging to PF(T ,Q) and beginning at the
distinguished object o. To complete the construction of IM , we simply attach a
unique complete tree F∗ labeled as in Theorem 9 to each leaf node (i.e., a node
that is missing successors). Nodes of these complete trees belong to all primitive
descriptions in IM and thus satisfy T . Conversely, assume R(T) ∪ {CE1(id)} |=
GE1

but that T 6|= Q. Then there must be an interpretation I and an object
o ∈ 4 such that I |= T and o ∈ EI1 − EI2 . Thus, there is a model MI of R(T)
such that CE1

(id) ∈ MI . In this model, the element id ∈ PF(T ,Q) serves as
the counterpart of the object o and the interpretations of the predicates CC and
E is extracted from I by navigating all (pairs of) path functions in PF(T ,Q).
However, since o 6∈ EI2 , it must be the case that MI is a strict subset of the least
model of R(T) ∪ {CE1

(id)}; a contradiction. 2

Corollary 14 Let T be a terminology and Q a posed question in CFDI∀−kc .
Then the implication problem T |= Q is complete for PTIME. 2

Knowledge base consistency can now be reduced to logical implication as shown
in [5].

Logical Consequence in partial−CFDI∀−kc
The following definition now shows how CFDI∀−kc is able to simulate its extension
with partial functions and existential restrictions in a straightforward manner.

Definition 15 Let T be a partial−CFDI∀−kc TBox. We define a CFDI∀−(k+1)c

TBox TCFDI∀−
(k+1)c

associated with T by initializing with the inclusion depen-

dency ∀f.G v G and then mapping inclusion dependencies in T to TCFDI∀−
(k+1)c

according to the following:

A1 v B 7→ (A1 uG) v B
(A1 uA2) v B 7→ (A1 uA2) v A3, (A3 uG) v B (where A3 is fresh)
∀f.A1 v B 7→ ∀f.A1 v A2, (A2 uG) v B (where A2 is fresh)
A1 v ∃f 7→ A1 v ∀f.G 2

Indeed, it is easy to verify that TCFDI∀−
(k+1)c

is a CFDI∀−(k+1)c TBox and that:

Theorem 16 Let T be a partial−CFDI∀−kc TBox and Q a posed question. Then

T |= Q if and only if TCFDI∀−
(k+1)c

|= Q[∃f 7→ ∀f.G, for all f ∈ F]. 2

References

1. Jason St. Jacques, David Toman, and Grant E. Weddell. Object-relational queries
over CFDInc knowledge bases: OBDA for the SQL-Literate. In Proc. International
Joint Conference on Artificial Intelligence, IJCAI, pages 1258–1264, 2016.

2. John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
3. David Toman and Grant E. Weddell. On the interaction between inverse features

and path-functional dependencies in description logics. In Proc. Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 603–608, 2005.

4. David Toman and Grant E. Weddell. On keys and functional dependencies as first-
class citizens in description logics. J. Aut. Reasoning, 40(2-3):117–132, 2008.

5. David Toman and Grant E. Weddell. Applications and extensions of PTIME de-
scription logics with functional constraints. In Proc. Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 948–954, 2009.

6. David Toman and Grant E. Weddell. On adding inverse features to the description
logic CFD∀nc. In PRICAI 2014: Trends in Artificial Intelligence - 13th Pacific Rim
International Conference on Artificial Intelligence, Gold Coast, QLD, Australia,
December 1-5, 2014., pages 587–599, 2014.

7. David Toman and Grant E. Weddell. On partial features in the DLF family of
description logics. In Richard Booth and Min-Ling Zhang, editors, PRICAI 2016:
Trends in Artificial Intelligence - 14th Pacific Rim International Conference on
Artificial Intelligence, Phuket, Thailand, August 22-26, 2016, Proceedings, volume
9810 of Lecture Notes in Computer Science, pages 529–542. Springer, 2016.

