
Unification in EL for Competency Question
Generation

Yuri Malheiros1 and Fred Freitas2

1 Universidade Federal da Paráıba (UFPB), Rio Tinto - PB, Brazil
yuri@dcx.ufpb.br

2 Universidade Federal de Pernambuco (UFPE), Recife - PE, Brazil
fred@cin.ufpe.br

Abstract. Competency Questions (CQs) are widely used in ontology
development to represent the ontology requirements. Engineers can check
if a CQ is satisfied manually or with software assistance. However, when
a CQ is not satisfied, they need to analyze the axioms to discover what
is missing. This activity may be hard and time-consuming, because of
the size of the ontology and the complexity to inspect the axioms using
inferences. In this paper, we present a method that uses unification in
EL to generate new CQs based on an unsatisfied CQ. They are used to
questioning an engineer, therefore she can provide answers to add the
missing knowledge so as to satisfy the initial CQ to the ontology. We
did two experiments using the SNOMED CT ontology. Our approach
generated questions to add the missing knowledge in 69.09% cases.

Keywords: ontology engineering; competency questions; unification

1 Introduction

For years, ontologies were developed through ad hoc efforts. There was no pat-
terns or methodologies to guide engineers during the process to build an ontology.
Thus, each team followed its own rules and set of activities [10] [12].

However, since 1990, consistent methodologies and tools have been proposed
to support ontology development. These methodologies address the tasks of cre-
ating and maintaining an ontology; thus, they specify an ontology life-cycle, de-
fine how to describe the ontology scope and requirements (this latter consisting
of the competency questions (CQs) [11]), how to create the ontology specifi-
cation, how to conduct its evolution, etc. Some well-known methodologies to
ontology development are: Methontology [8], On-To-Knowledge [19], Ontology
101 [16], and NeOn [5]. And, some popular tools are: Protégé [9], OntoStudio3,
NeOn Toolkit [5], OntoEdit [20] and WebODE [1].

Competency questions (CQs) are widely used in ontology development to
represent the ontology requirements. They are a set of questions that an ontology
must answer using the knowledge represented by its axioms. For example, in an

3 http://www.semafora-systems.com/en/products/ontostudio/

2 Yuri Malheiros and Fred Freitas

ontology about wine, we may have the CQs [16]: ‘Is bordeaux a red or white
wine?” or “Does cabernet sauvignon go well with seafood?”.

Engineers can check if a CQ is satisfied manually or with software assistance
[15]. When a CQ is not satisfied, the engineers usually need to add axioms to sat-
isfy this requirement. This work may be hard and time-consuming, particularly
in large ontologies. Furthermore, to create an ontology to model a domain is not
a simple task. A team building this kind of artifact needs to have knowledge
about logic, ontologies, the right tools, languages, and they need to know about
the domain being specified. In this way, tools and methods to aid engineers and
domain experts, could make the process of creating an ontology easier and faster.

In this paper, we present a method to help engineers to add axioms to an
ontology. Given an unsatisfied CQ, our approach uses unification in DL EL with
acyclic TBoxes [4] to generate a set new competency questions. An engineer
should answer one or more generated questions to add new knowledge that is
transformed to axioms in the ontology. The goal of the generated questions is
to guide an engineer to add axioms to satisfy the initial unsatisfied CQ, thus
helping he in the task of building an ontology.

For example, given an ontology with two axioms: Herbivore ≡ Animal u
∃eat.V egetable and Cow ≡ V ertebrate u ∃eat.Grass, an engineer could check
this CQ: “Is cow a herbivore?” with the expected answer “true”. This ques-
tion can be interpreted as the axiom Cow v Herbivore. With these axioms, a
DL reasoner cannot conclude that the CQ is satisfied, thus our approach could
suggest some questions, for instance, “Is vertebrate an animal?” and “Is grass
a vegetable?”. If an engineer answers both questions with a “yes”, the axioms
V ertebrate v Animal and Grass v V egetable will be added to the ontology.
Then, the initial CQ is checked again, and now it is satisfied.

The remainder of this paper is organized as follows: Section 2 provides the
background about ontology engineering, competency questions, description log-
ics ontologies, and unification; Section 3 presents our method to generate CQs;
Section 4 shows the results of an experiment to evaluate our approach; In Sec-
tion 5 we discuss the results; Section 6 presents the related work; and, Section
7 concludes the paper and shows some ideas for future works.

2 Background

This section presents concepts that serve as foundation of this work. In the fol-
lowing four sections we explain about ontology engineering, competency ques-
tions, descriptions logics ontologies, and unification.

2.1 Ontology Engineering

According to Gómez-Perez and colleagues, ontology engineering refers to the
activities related to the process, life-cycle, methods, methodologies, tools, and
languages to support the ontology development [10]. Devedzic defines that on-
tology engineering covers the set of activities done during the conceptualization,
design, implementation, and deployment of ontologies [7].

Unification in EL for Competency Question Generation 3

In some ways, the methodologies to develop ontologies are analogous to the
ones for software engineering. They provide guidance to developers and are di-
vided in phases, for example, specification, execution, and evaluation. Besides,
the process is usually iterative, and the ontology can evolve during its lifetime
in a very similar way of a software, in the sense that it requires maintenance,
versioning, etc.

2.2 Competency Questions

Competency questions [11] are a set of questions that an ontology must be
capable to answer using its axioms. The questions can be used to specify the
problems an ontology or a set of ontologies must solve. Thus, they work as
requirements specification of one or more ontologies. With a set of CQs at hands,
it is possible to know whether an ontology was created correctly, in other words,
if it contains all the necessary and sufficient axioms that correctly answer the
CQs.

The following list shows some CQs used in an ontology for public employment
services [5]:

– What is the job seeker nationality?
– What is the job seeker desired job?
– What is the required work experience for the job offer?
– Is the offered salary given in Euros?

2.3 Description Logics Ontologies

Description Logics (DLs) are a family of knowledge representation formalisms
that have been gaining growing interest in the last two decades, particularly
after OWL (Web Ontology Language) [17] was approved as the W3C standard
for representing the most expressive layer of the Semantic Web.

A DL ontology is a set of axioms ai defined over the triple (NC , NR, NO)
[3], where NC is the set of concept names or atomic concepts (unary predicate
symbols), NR is the set of role or property names (binary predicate symbols); NO

the set of individual names (constants), instances of NC and NR. NCO is the set
of classes’ instances and NRO the set or roles’ instances, with NCO∪NRO = NO.

There are two axiom types allowed in DL: (i) Assertional axioms, which are
concept assertions C(a), or role assertions r(a, b), where C ∈ NC , r ∈ NR, a, b ∈
NO and (ii) Terminological axioms, composed of any finite set of GCIs (general
concept inclusion) in one of the forms C v D or C ≡ D, the latter meaning
C v D and D v C, C and D being concepts. An ontology or knowledge base
(KB) is referred to as a pair (T ,A), where T is the terminological box (or TBox)
which stores terminological axioms, and A is the assertional box (ABox) which
stores assertional axioms. T may contain cycles, in case at least in an axiom
of the form C v D, D can be expanded to an expression that contains C. DL
semantics is defined through interpretations. An interpretation I is a non-empty

4 Yuri Malheiros and Fred Freitas

domain∆I and an interpretation function .I , then I = (∆I , .I). Further, .I maps
concept names to subsets of ∆I and role names to binary relations over ∆I [3].

Distinct DL languages can be defined according the operators they support.
In this work, we support EL ontologies with acyclic TBoxes. This DL language
is less expressive than others well know DL languages, for instance, ALC, but it
is used in very large ontologies, e.g., SNOMED CT4. Also, because its simplicity,
the inference of subsumptions is polynomial, in other words, it can be fast enough
for real life applications. The Table 1 shows the operators supported by the DL
EL and their semantics.

Table 1. DL EL operators syntax and semantics

Operators Syntax Semantics

Concept A AI ⊆ ∆I

Role r rI ⊆ ∆I ×∆I

Top > >I = ∆I

Conjunction C uD CI ∩DI

Existential restriction ∃R.C {a ∈ ∆I |∃b : (a, b) ∈ RI ∧ b ∈ CI}
Concept definition A ≡ C AI = CI

2.4 Unification

A DL EL unification [4] problem is defined as a finite set: Γ = {C1 ≡? D1, ..., Cn ≡?

Dn}, where C1, D1, ..., Cn, Dn are concepts. A solution or unifier of Γ is called
σ, that is, a substitution that solves all equations σ(Ci) ≡ σ(Di), for i = 1, ..., n.
To define unification, we divide the set of concept names NC in two: Nv (concept
variables) and Nc (concept constants). The concepts in the former set may be
replaced by substitutions, while the latter must not.

For example, given an ontology with two definitions of male sports car enthu-
siast: X ≡ Human uMale u ∃loves.SportsCar and Y ≡Man u ∃loves.(Car u
Fast). Although both concepts express the same idea, we have different concepts.
Thus, this is a typical case to use unification. Defining Nv = {Man, SportsCar}
and Γ = {X ≡? Y }, the solution are the substitutions Man 7→ Human uMale
and SportsCar 7→ Car u Fast.

For acyclic TBoxes, a concept only occurs once as left-hand side, and there is
no cyclic dependencies between concept definitions. In this case, the subsumption
complexity is polynomial and the unification is NP-complete [4].

3 Generating Competency Questions

Our method generates CQs to guide an engineer to add axioms to satisfy a
previously asked unsatisfied CQ. It is necessary that a CQ can be represented

4 http://www.ihtsdo.org/snomed-ct/

Unification in EL for Competency Question Generation 5

as an axiom, thus we can define the problem as a TBox abduction problem.
Different approaches may be used to transform CQ into axioms, for instance the
transformations showed in [15].

Given a DL ontology O, a CQ α and O ∪ {α} consistent. The solution for a
TBox abduction problem is a finite set Σ, such that O∪Σ |= α and O∪Σ 6|= ⊥.
In our approach, to find Σ we solve a unification problem. All substitutions found
are transformed into equivalence axioms. For instance, X 7→ Y is transformed
into X ≡ Y . Thus, Σ is a set of these axioms.

We can convert the axioms of Σ into natural language questions. Thus, an
engineer can answer these questions. If she answers positively a generated CQ,
then this knowledge can be added to the ontology. In this way, an engineer has
an easier and natural way to add axioms to an ontology. Besides, she is guided in
this process, because the questions generated are based on the unsatisfied CQ.

There are four steps to generate CQs solving a unification problem. First,
we need to define the equation of the unification problem. Second, the variables
are defined to specify which concepts may receive a definition. After this, the
unification is processed to find the set of substitutions and their corresponding
axioms. In the end, the axioms are converted to questions in natural language.
The Figure 1 shows how the steps interact with each other.

Fig. 1. Process to generate competency questions

3.1 Defining Equations

A unification problem is a set of equations Γ = {C1 ≡? D1, ..., Cn ≡? Dn}.
To generate questions based on an unsatisfied CQ, the problem is a set with
one element representing the unsatisfied CQ. Given α the unsatisfied CQ axiom,
then Γ = {α}. It is important to notice, that a CQ axiom may be a subsumption
axiom instead of an equivalence axiom. In this case, we transform C v D into
C ≡ C uD.

3.2 Defining Variables

The variables are the concepts that may receive a definition as the solution of the
unification problem. We use the following method to define the variable concepts
based on the approach of the UEL library [2].

6 Yuri Malheiros and Fred Freitas

First, the equation is stored. Next, every axiom that defines the concepts in
the equation is stored. Then, all axioms that define the concepts of the concepts
stored previously are saved. This process continues recursively until there is no
axiom defining the concepts stored. For example, given an equation X ≡ Y , and
a set of axioms: X ≡ A; Y ≡ B; B ≡ C; D ≡ E. First, X ≡ Y is stored. Then,
the axioms that define concepts in the equations are stored, in this case, X ≡ A
and Y ≡ B. Now, recursively, the axioms defining concepts in the previously
stored axioms are stored. Thus, B ≡ C is saved. After this, the process ends.

With this set of axioms in hands, the next step is to choose the variable
concepts. For this, all concepts in the stored axioms that have no equivalence
definition are added to the set of incompletely defined concepts ψNv . In the
example, we stored {X ≡ Y,X ≡ A, Y ≡ B,B ≡ C}, then the concepts in the
axioms are {X,Y,A,B,C}. However, among these concepts, only {A,C} does
not have equivalence definitions, hence ψNv

= {A,C}.
Furthermore, in addition to the individual concepts, we also store the two by

two combination of the concepts in ψNv
, thus generating the set of incompletely

defined concepts pairs CψNv
.

3.3 Unifying

In this step we use the equation and variables defined in the previous steps. For
each element in ψNv and each pair in CψNv , we run the unification algorithm of
the UEL library [2]. Thus, following the example of the previous section, we try
to solve the unification problem three times, the first time using A as variable,
the second using C, and the last time using A and C. The result of this step is
a set of equivalence axioms that represents the substitutions.

3.4 Converting to Natural Language

The last step transforms the equivalence axioms of the previous step in natural
language competency questions.

All axioms have the form X ≡ C, such that C is a complex concept. The
algorithm to convert to natural language starts adding C to a queue and set a flag
with an empty value. Next, the algorithm gets the first element of the queue,
and tests if it is a concept, a role, an existential restriction or a conjunction.
Based on the element type and the flag value, the algorithm builds the question
step by step. If the element is an existential restriction or a conjunction, it is
broken in smaller parts that are added to the queue. However, if the item is a
concept or a role, parts of the question are generated. The process ends when
there is no element in the queue.

The algorithm processes the names of concepts and roles to transform them
into a more natural form. The process adds a space before each uppercase letter,
except the first, and convert everything to lowercase in the end. For instance, a
concept “ProcedureOnSkeletalSystem” is transformed into “procedure on skele-
tal system”.

Unification in EL for Competency Question Generation 7

The Figure 2 shows all steps of the algorithm to convert axioms into natural
language questions. It is important to notice, that when the algorithm reaches a
return (the items with quote marks) this text is concatenated with the previously
generated texts.

Fig. 2. Natural language conversion algorithm flowchart

3.5 Example

In this section, we present the whole process of generate CQs based on an un-
satisfied CQ. Consider an ontology with these axioms:

– FastEngine v CarEngine

8 Yuri Malheiros and Fred Freitas

– RaceEngine v CarEngine
– FastCar v Car u ∃engine.FastEngine
– RaceCar v Car u ∃engine.RaceEngine

Given a CQ “is race car a fast car”, or, as an axiom, RaceCar v FastCar.
First, we define the unification problem equation, that is Γ = {RaceCar v?

FastCar}. The second step defines the variables. The algorithm stores the ax-
ioms according to the process described in Section 3.2. Next, it chooses only the
concepts in the axioms that have no equivalence definitions . In this case, ψMv

=
{Car, FastEngine,RaceEngine}. Also, it saves the combination pairs of the
concepts in ψMv , creating the set: CψMv = {(Car, FastEngine), (Car,RaceEngine),
(FastEngine,RaceEngine)}.

In the third step, the unification problem is solved for each element in ψMv

and each pair in CψMv
. Using Car as variable the result is Car ≡ ∃engine.FastEngine,

and using RaceEngine as variable the result is RaceEngine ≡ FastEngine. For
the other cases, it does not find any unifier.

To conclude the process, both axioms found in the unification step are trans-
formed into natural language questions. The first axiom is transformed into the
question “does a car have engine some fast engine?”, and the second into the
question “is a race engine equivalent to fast engine?”.

4 Results

We did two experiments to evaluate our method. The goal of the first was mea-
suring the percentage of cases that the algorithm finds a unifier, so that the
system can generate CQs. In the second experiment, we evaluate if the gener-
ated competency questions were similar to axioms created by engineers.

The SNOMED CT ontology was used in the experiments. It is the largest on-
tology about clinical concepts with more than 350,000 concepts and 1.38 millions
relations. Many concepts in the ontology use a special role called “roleGroup”
to group some existential restrictions. However, this practice can harm the se-
mantics of the axiom, and hinder the translation to natural language. Thus,
we removed all roleGroups before the experiments, but we kept the content
inside the role. For instance, X ≡ ∃roleGroup.(∃r.Y u s.Z) was changed to
X ≡ ∃r.Y u ∃s.Z.

4.1 Creating Questions

To test the capability to generate competency questions, we created three mod-
ules extracted from the SNOMED CT ontology using the OWL-ME tool [6].
Then, we did not have a too large ontology to test. The tool creates locality-
based modules using a set of concepts as input. Thus, for each module, we used
an input of 20 randomly chosen concepts. The first module contained 3832 ax-
ioms and 775 concepts, the second 4492 axioms and 913 concepts, and the third
4738 axioms e 958 concepts.

Unification in EL for Competency Question Generation 9

Next, we chose 10 random axioms from each module. Further, we made 10
copies of each module, and remove, from each copy, one of the 10 random axioms
chosen previously. Thus, we had 30 modules, each with a missing axiom. To
ensure that the knowledge represented by the axioms was removed, we tested if
the axioms could be inferred. In all cases, they could not.

The next step was creating manually CQs that needed the axioms removed
to be satisfied. Thus, we expected that our approach would return questions to
guide us to add the axioms to satisfy the unsatisfied CQs.

Table 2. Results for the experiment to create questions experiment

Module Generated Did not generate Total

1 38 (60,32%) 25 (39,68%) 63

2 36 (66,67%) 18 (33,33%) 54

3 53 (80,30%) 13 (19,69%) 66

The Table 2 shows the results of the tests. For the 10 modules created from
the first module, we had 63 CQs, and our approach generated questions to help
satisfy 38 CQs. In other words, in 38 cases one or more unifiers were found, and
in the remainder none were found. For the 10 modules created from the second
module, we had 54 CQs, and our approach generated questions for 36 CQs. For
the last 10 modules created from the third module, we had 66 CQs, and our
approach generated questions for 53 CQs.

4.2 Axioms’ Similarity

In this experiment we tested if the axioms generated by the unification are similar
to the axioms coded by engineers. To this end, we used the same modules of the
first test. We compared if the axioms of the unification problem solution are
similar to the axioms removed in each module.

To compare axioms, we used two approaches. The first, for each axiom we
created a set of concepts according to them. For example, for an axiom X ≡ A v
∃r.B, the set is {X,A, r,B}. In the second approach, we also created a set for
each axiom, however, we did not dissociate the role from its related concept. For
example, given the same axiom X ≡ A v ∃r.B, the set in the second approach is
{X,A, r.B}. Thus, the second approach is more rigorous than the first, because
the role and its concept must appear together.

The sets were compared using the following metrics: precision, recall and f-
measure. Given Ss = {A,B,X, Y }, a set generated from a suggested axiom by
our approach, and Sc = {A,B,C}, a set generated from an axiom coded by an
engineer. The precision is 2/4, the recall is 2/3 and the f-measure is calculated
using the equation F = 2× Precision·Recall

Precision+Recall .
Table 3 shows the results of this experiment. The metric name followed by

the number 1 means that it was calculated using the first approach to generate

10 Yuri Malheiros and Fred Freitas

the sets. The metric name followed by the number 2 means that it used the
second approach to generate the sets.

Table 3. Results of the axioms similarity experiment

Module Precision (1) Recall (1) F-measure (1) Precision (2) Recall (2) F-measure (2)

1 56,88% 30,31% 35,09% 35,26% 12,15% 15,81%

2 50,42% 35,09% 36,80% 27,41% 15,48% 16,50%

3 46,69% 33,33% 35,09% 21,86% 11,32% 12,59%

5 Discussion

Our approach can generate different types of CQs. Some are simple, for instance
“does a disease of musculoskeletal system have finding site some body system
structure?”. And, some are complex, for instance, “is a malignant neoplasm of
genitourinary organ equivalent to a clinical finding, that have associated mor-
phology some mass, that have finding site some anatomical or acquired body
structure, that have finding site some anatomical structure?”.

Smaller questions are easier to understand than longer questions, because the
latter represent large axioms with many concepts, roles and relationships among
them. The unification ensures that the axioms represented by the questions
will satisfy an unsatisfied CQ; however an engineer must analyze the content of
the questions, to be sure that the knowledge make sense. The approach is not
concerned with the ontological engagement.

The algorithm generated CQs to add the missing axioms in 69.09% of the
cases, this happened because these are the cases that the unification could be
solved. The cases that no CQ was generated were the ones that it was not found
any unifier for the equation using the variables defined by our approach.

In the results of the second experiment, precision in average is higher than
recall. Our approach usually suggests axioms that have roles and concepts of
the original axiom, but, it misses some roles and concepts too. For instance, the
ontology have this axiom:

CongenitalFemaleUrogenitalAnomaly ≡
Disease uGenitourinaryCongenitalAnomaliesu
∃associatedMorphology.CongenitalAnomalyu
∃associatedMorphology.DevelopmentalAbnormalityu
∃findingSite.FemaleGenitourinarySystemStructureu
∃occurrence.Congenital

and our approach suggests a question represented by this axiom:

Unification in EL for Competency Question Generation 11

CongenitalFemaleUrogenitalAnomaly ≡ ∃occurrence.Congenital

In this example precision is 100% in both cases to generate the sets, however
recall is 22.22% in the first case and 16.67% in the second.

Sometimes, the suggested axiom has a correct role, but the concept is dif-
ferent, or vice-versa. Thus, the values of the metrics in the first case is higher
than the second case. In other cases, despite the concepts are different, they
subsume one another. For instance, in one of the tests, the original axiom has
findingSite.FaceStructure and the suggestion has FindingSite.HeadStructure.

6 Related Work

The idea of generating questions when a CQ is not satisfied is inspired in the work
of Uschold and Gruninger [21]. They published one of the first methodologies
to develop ontologies with four main steps: purpose and scope, building the
ontology, evaluation, and documentation, in which they use CQs to define the
requirements. They argued that when a CQ is not satisfied, it could be satisfied
through other questions. In our approach we implemented this idea to help
engineers to add axioms to an ontology.

The method query-the-user [18] [14] introduced a symmetric relationship
between users and a logic computer program. In other words both users and
the program can make questions and provide answers. In this method, a user
provides information during a logic program execution whenever the program
asks he. Thus, the query-the-user has many similarities with our method to
generate CQs.

7 Conclusions and Future Work

In this paper we presented a method to suggest competency questions to guide
engineers to satisfy a previous unsatisfied CQ. The method guide engineers to
add axioms to an ontology through the answers to the suggested questions.

Two experiments were performed: the first tested the capability of the ap-
proach to suggest CQ. In 69.06% of the cases the method generated questions
that represented the necessary axioms to satisfy an CQ. The second experiment
evaluated if the axioms suggested were similar to the axioms coded by engi-
neers. We tried two ways to measure the similarity through precision, recall and
f-measure. On average, the first way had f-measure 35.66%, and the second way
had f-measure 14,97%.

For future work, there is opportunity to test abduction in DL EL [13] to
generate the axioms. Moreover, we need an approach to convert the axioms
into more readable question, mainly because the large questions created based
on complex axioms. Finally, the whole approach could be extended to support
more expressive DL languages.

12 Yuri Malheiros and Fred Freitas

References

1. Arṕırez, J.C., Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Webode: a scal-
able workbench for ontological engineering. In: Proceedings of the 1st international
conference on Knowledge capture. pp. 6–13. K-CAP ’01, ACM, New York, NY,
USA (2001), http://doi.acm.org/10.1145/500737.500743

2. Baader, F., Borgwardt, S., Mendez, J.A., Morawska, B.: Uel: Unification solver for
EL. In: Proc. of the 25th Int. Workshop on Description Logics (DL’12). vol. 846,
pp. 26–36. Citeseer (2012)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA (2003)

4. Baader, F., Morawska, B.: Unification in the description logic EL. In: Rewriting
techniques and applications. pp. 350–364. Springer (2009)

5. del Carmen Suárez-Figueroa, M., de Cea, G.A., Buil, C., Dellschaft, K., Fernández-
López, M., Garćıa, A., Gómez-Pérez, A., Herrero, G., Montiel-Ponsoda, E., Sabou,
M., Villazon-Terrazas, B., Yufei, Z.: Neon methodology for building contextualized
ontology networks (Feb 2008)

6. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: an empirical study. Description Logics 573 (2010)

7. Devedzić, V.: Understanding ontological engineering. Commun. ACM 45(4), 136–
144 (Apr 2002), http://doi.acm.org/10.1145/505248.506002

8. Fernandez-Lopez, M., Gomez-Perez, A., Juristo, N.: Methontology: from ontolog-
ical art towards ontological engineering. In: Proceedings of the AAAI97 Spring
Symposium. pp. 33–40. Stanford, USA (March 1997)

9. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of protégé: an environment for
knowledge-based systems development. International Journal of Human-computer
studies 58(1), 89–123 (2003)

10. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: With
Examples from the Areas of Knowledge Management, E-Commerce and the Se-
mantic Web. Advanced Information and Knowledge Processing, Springer (2004),
http://books.google.com.br/books?id=UjS0N1W7GSEC

11. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies.
In: IJCAI95 Workshop on Basic Ontological Issues in Knowledge Sharing (1995)

12. Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Commu-
nications of the ACM 45(2), 61–65 (2002)

13. Halland, K., Britz, K.: Abox abduction in alc using a dl tableau. In: Proceedings of
the South African Institute for Computer Scientists and Information Technologists
Conference. pp. 51–58. ACM (2012)

14. Hammond, P., Sergot, M.: Apes: augmented prolog for expert systems. Logic Based
Systems Ltd 40 (1984)

15. Malheiros, Y., Freitas, F.: A method to develop description logic ontologies iter-
atively with automatic requirement traceability. In: Informal Proceedings of the
27th International Workshop on Description Logics, Vienna, Austria, July 17-20,
2014. pp. 646–658 (2014)

16. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology 32(1), 1–25 (2001)

17. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL web ontology language seman-
tics and abstract syntax. W3C recommendation, W3C (February 2004), http://

Unification in EL for Competency Question Generation 13

www.w3.org/TR/2004/REC-owl-semantics-20040210/, published online on Febru-
ary 10th, 2004 at http://www.w3.org/TR/2004/REC-owl-semantics-20040210/

18. Sergot, M.: A query-the-user facility for logic programming. Wiley-Interscience
(1987)

19. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1), 26–34 (Jan 2001), http://dx.doi.org/10.1109/
5254.912382

20. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: Ontoedit:
Collaborative ontology development for the semantic web. In: Proceedings of the
First International Semantic Web Conference on The Semantic Web. pp. 221–
235. ISWC’02, Springer-Verlag, London, UK, UK (2002), http://dl.acm.org/

citation.cfm?id=646996.711413

21. Uschold, M.: Building ontologies: Towards a unified methodology. In: In 16th An-
nual Conf. of the British Computer Society Specialist Group on Expert Systems.
pp. 16–18 (1996)

