
Role Forgetting for ALCOQH(O)-Ontologies
Using an Ackermann-Based Approach

Yizheng Zhao and Renate A. Schmidt

School of Computer Science, The University of Manchester, UK
{yizheng.zhao,renate.schmidt}@manchester.ac.uk

Abstract. Forgetting refers to a non-standard reasoning problem concerned with
eliminating concept and role symbols from description logic-based ontologies
while preserving all logical consequences up to the remaining symbols. Whereas
previous research has primarily focused on forgetting concept symbols, in this
paper, we turn our attention to role symbol forgetting. In particular, we present
a practical method for semantic role forgetting for ontologies expressible in the
description logic ALCOQH(O), i.e., the basic description logic ALC extended
with nominals, number restrictions, role inclusions and the universal role. Being
based on an Ackermann approach, the method is so far the only approach for for-
getting role symbols in description logics with number restrictions. The method
is goal-oriented and incremental. It always terminates and is sound in the sense
that the forgetting solution is equivalent to the original ontology up to the forgot-
ten symbols, possibly with new concept definer symbols. Despite our method not
being complete, performance results of an evaluation with a prototypical imple-
mentation have shown very good success rates on real-world ontologies.

1 Introduction

The origins of interest in forgetting can be traced back to the work of Boole on proposi-
tional variable elimination and the seminal work of Ackermann [1] who recognized that
the problem amounts to the elimination of existential second-order quantifiers. In logic
the problem has been studied as the (dual) uniform interpolation problem [29, 5, 10], a
notion related to the Craig interpolation problem, but stronger. In computer science the
importance of forgetting can be found in the knowledge representation literature [21,
20, 6], specification refinement literature [2] and the area of description logic-based
ontology engineering [31, 32, 30, 11, 13, 12, 24, 23, 9, 22, 25, 3]. In ontology-based in-
formation processing, forgetting allows users to focus on specific parts of ontologies in
order to create decompositions and restricted views for in depth analysis or sharing with
other users. Forgetting is also useful for information hiding, explanation generation, and
ontology debugging and repair.

Because forgetting is an inherently difficult problem — it is much harder than stan-
dard reasoning (satisfiability testing) — and very few logics are known to be complete
for forgetting (or have the uniform interpolation property),1 there has been insufficient
research on the topic (in particular on the topic of role forgetting), and few forgetting

1 Konev et al. [12] have shown that the solution of forgetting does not always exist forALC and
EL, and the existence of forgetting a concept (role) symbol is undecidable for ALC.

tools are available. Recent work has developed practical methods for computing uni-
form interpolants for ontologies defined in expressive OWL language dialects [15, 16,
18]. These methods, which are saturation approaches based on resolution, can eliminate
both concept and role symbols and can handle ontologies specified in description logics
from ALC to ALCH and SIF . The methods have been extended to SHQ for concept
forgetting in [17]. While most of this work is focused on TBox and RBox uniform in-
terpolation, practical methods for uniform interpolation for description logicsALC and
SHI with ABoxes are described in [19, 14].

An alternative approach that performs both concept and role forgetting is described,
automated and evaluated in [34]. This approach is a semantic approach which accom-
modates ontologies expressible in description logics with nominals, role inverse, role
inclusions, role conjunction and the universal role. The foundation for this approach is
an adaptation of a monotonicity property called Ackermann’s Lemma [1], which also
provides the foundation for approaches to second-order quantifier elimination [7, 26, 8]
and modal correspondence theory [28, 4, 27].

In this paper, we follow an Ackermann-based approach to forgetting, and present a
practical method for semantic role forgetting in expressive description logics not con-
sidered so far. In particular, the method accommodates ontologies expressible in the
description logic ALCOQH and the extension with the universal role O. The extended
expressivity enriches the target language, making it expressive enough to represent the
forgetting solution which otherwise would have been lost. For example, the solution of
forgetting the role symbol {r} from the ontology {A1 v ≥2r.B1, A2 v ≤1r.B2} is
{A1 v ≥2O.B1, A1 u A2 v ≥1O.(B1 u ¬B2)}, whereas in a description logic with-
out the universal role, the uniform interpolant is {>}, which is weaker. Being based on
non-trivial generalizations of Ackermann’s Lemma, the method is the only approach so
far for forgetting role symbols in description logics with qualified number restrictions.
The method is goal-oriented and incremental. It always terminates and is sound in the
sense that the forgetting solution is equivalent to the original ontology up to the sym-
bols that have been forgotten, possibly with new concept definer symbols. Our method
is nearly role forgetting complete for ALCOQH(O)-ontologies, and we characterize
cases where the method is complete. Only problematic are cases where forgetting a
role symbol would require the combinations of certain cardinality constraints and role
inclusions. Despite the inherent difficulty of forgetting for this level of expressivity, per-
formance results of an evaluation with a prototypical implementation have shown very
good success rates on real-world ontologies.

2 ALCOQH(O) and Other Basic Notions

Let NC, NR and NO be countably infinite and pairwise disjoint sets of concept symbols,
role symbols and individual symbols (nominals), respectively. Roles in ALCOQH(O)
can be any role symbol r ∈ NR or the universal role O. Concepts in ALCOQH(O)
have one of the following forms: a | > | A | ¬C | C uD | C tD | ≥mR.C | ≤nR.C,
where a ∈ NO, A ∈ NC, C and D are any concepts, R is any role, and m ≥ 1 and
n ≥ 0 are natural numbers. Additional concepts and roles are defined as abbreviations:
⊥ = ¬>, M= ¬O, ∃R.C = ≥1R.C, ∀R.C = ≤0R.¬C, ¬≥mR.C = ≤nR.C and

¬≤nR.C = ≥mR.C with n = m − 1. Concepts of the form ≥mR.C and ≤nR.C
are referred to as qualified number restrictions (or number restrictions for short), which
allow one to specify cardinality constraints on roles. We assume w.l.o.g. that concepts
and roles are equivalent relative to associativity and commutativity of u and t, > and
O are units w.r.t. u, and ¬ is an involution.

AnALCOQH(O)-ontology is mostly assumed to be composed of a TBox, an RBox
and an ABox. A TBox T is a finite set of concept axioms of the form C v D (concept
inclusion), where C and D are concepts. An RBox R is a finite set of role axioms of
the form r v s (role inclusion), where r, s ∈ NR. We define C ≡ D and r ≡ s as
abbreviations for the pair of C v D and D v C and the pair of r v s and s v r,
respectively. An ABox A is a finite set of concept assertions of the form C(a) and role
assertions of the form R(a, b), where a, b ∈ NO, C is a concept, and R is a role. In
a description logic with nominals, ABox assertions can be equivalently expressed as
TBox axioms, namely, C(a) as a v C and R(a, b) as a v ∃R.b. Hence, in this paper,
we assume w.l.o.g. that an ontology contains only TBox and RBox axioms.

The semantics of ALCOQH(O) is defined as usual. A concept axiom C v D is
true in an interpretation I, and we write I |= C v D, iff CI ⊆ DI . A role axiom
r v s is true in an interpretation I, and we write I |= r v s, iff rI ⊆ sI . I is a model
of an ontology O iff every axiom in O is true in I. In this case we write I |= O.

Our method works with TBox and RBox axioms in clausal normal form. We assume
w.l.o.g. that a TBox literal is a concept of the form a, ¬a, A, ¬A, ≥mR.C or ≤nR.C,
where a ∈ NO,A ∈ NC,m ≥ 1 and n ≥ 0 are natural numbers,C is any concept, andR
is any role. A TBox clause is a disjunction of a finite number of TBox literals. An RBox
clause is a disjunction of a role symbol and a negated role symbol. TBox and RBox
clauses are obtained by clausification of TBox and RBox axioms, where in the latter
case role negation is introduced. This is done for consistency in presentation, replac-
ing role inclusion by disjunction as the main operator. Nominals are treated as regular
concept symbols in our method, because we are only concerned with role forgetting in
this paper. An axiom (clause) that contains a designated (concept or role) symbol S is
called an S-axiom (S-clause). An occurrence of S is assumed to be positive (negative)
in an S-axiom (S-clause) if it is under an even (odd) number of explicit and implicit
negations. For instance, r is assumed to be positive in ≥mr.A and s v r, and negative
in ≤nr.A and r v s. A set N of axioms (clauses) is assumed to be positive (negative)
w.r.t. S if every occurrence of S in N is positive (negative).

3 Forgetting, Ackermann’s Lemma, Obstacles to Role Forgetting

Forgetting can be formalized in two ways that are closely related: one is analogous to
model inseparability (i.e., a semantic notion based on model-conservative extensions;
see e.g. [12]), which preserves equivalence up to certain signatures (i.e., parameterized
equivalence), and the other is via uniform interpolation (i.e., a syntactic notion based on
deductive-conservative extensions; see e.g. [29]), which preserves logical consequences
up to certain signatures; see [3] a survey for their interrelation.

Our notion of forgetting is a semantic notion. By sigC(X) and sigR(X) we denote
the sets of respectively the concept and role symbols occurring in X (excluding nom-

inals), where X ranges over axioms, clauses, sets of axioms, and sets of clauses. Let
r ∈ NR be any role symbol, and let I and I ′ be any interpretations. We say I and
I ′ are equivalent up to r, or r-equivalent, if I and I ′ coincide but differ possibly in
the interpretations of r. More generally, I and I ′ are equivalent up to a set Σ of role
symbols, or Σ-equivalent, if I and I ′ coincide but differ possibly in the interpretations
of the symbols in Σ. This can be understood as follows: (i) I and I ′ have the same do-
main, i.e., ∆I = ∆I

′
, and interpret every concept symbol and every individual symbol

identically, i.e., AI = AI
′

for every A ∈ NC and aI = aI
′

for every a ∈ NO; (ii) for
every role symbol r ∈ NR not in Σ, rI = rI

′
.

Definition 1 (Role Forgetting for ALCOQH(O)). Let O be an ALCOQH(O) on-
tology and let Σ be a subset of sigR(O). An ontology O′ is a solution of forgetting Σ
from O, iff the following conditions hold: (i) sigR(O′) ⊆ sigR(O)\Σ, and (ii) for any
interpretation I: I |= O′ iff I ′ |= O, for some interpretation I ′ Σ-equivalent to I.

It follows from this that: (i) the original ontology O and the forgetting solution O′
are equivalent up to (the interpretations of) the symbols in Σ. Also (ii) forgetting solu-
tions are unique up to equivalence, that is, if bothO′ andO′′ are solutions of forgetting
Σ from O, then they are logically equivalent. In this paper, Σ is always assumed to
be a set of symbols to be forgotten. The symbol in Σ under current consideration for
forgetting is referred to as the pivot in our method. An axiom (clause) that contains an
occurrence of the pivot is referred to as a pivot-axiom (pivot-clause).

Given an ontologyO and a setΣ of concept and role symbols, computing a solution
of forgetting Σ from O can be reduced to the problem of eliminating single symbols
in Σ. This can be based on the use of a monotonicity property found in [1], referred to
as Ackermann’s Lemma. For ontologies, Ackermann’s Lemma can be formulated as the
following theorem. The proof is an easy adaptation of Ackermann’s original result [8].

Theorem 1 (Ackermann’s Lemma for Ontologies). Let O be an ontology that con-
tains axioms α1 v S, ..., αn v S , where S ∈ NC (or S ∈ NR), and the αi (1 ≤ i ≤ n)
are concepts (or roles) that do not contain S. If O\{α1 v S, ..., αn v S} is negative
w.r.t. S, thenOSα1t...tαn

is a solution of forgetting {S} fromO (i.e., Conditions (i) and
(ii) of Definition 1 hold), where OSα1t...tαn

denotes the ontology obtained from O by
substituting α1 t ... t αn for every occurrence of S in O.

The idea of this theorem is based on a notion of ‘substitution’, which can informally
yet intuitively be understood as follows: given an ontology O with S ∈ sigC(O) (or
S ∈ sigR(O)) being the pivot, if there exists a concept (or a role) α such that S 6∈ sig(α)
and α defines S w.r.t. O, then we can substitute this definition for every occurrence of
S inO (S is thus eliminated fromO). This theorem also holds, when the inclusions are
reversed, i.e., S v α1, ...,S v αn, and the polarity of S in the rest of O is switched,
i.e., O\{S v α1, ...,S v αn} is positive w.r.t. S .

A crucial task in Ackermann-based approaches, therefore, is to find a definition of
the pivot w.r.t. the present ontology, that is, to reformulate all pivot-axioms with positive
occurrences of the pivot in the form α v S (or dually, with negative occurrences of the
pivot in the form S v α), where S 6∈ sig(α). In the context of this paper where axioms
are represented in clausal form, this means reformulating all pivot-clauses with positive

occurrences of the pivot in the form ¬αtS (or dually, with negative occurrences of the
pivot in the form ¬S t α), where S 6∈ sig(α).

In the case of concept forgetting, a concept symbol (or a negated concept symbol)
deep inside a clause could be moved outward by using Galois connections between ∀r
and ∀r− (e.g., a TBox clause ¬At∀r.S can be equivalently rewritten as (∀r−.¬A)tS ,
where r− denotes the inverse of r), or by exploiting the idea of Skolemization (e.g.,
an ABox clause ¬a t ∃r.¬S can be equivalently rewritten as ¬a t ∃r.b and ¬b t ¬S ,
where b is a fresh nominal). This is explained in detail in the work of [4, 27, 33, 34].

In the case of role forgetting, since every role symbol that occurs in a TBox clause
is always preceded by a role restriction operator, it is not obvious how to reformulate
the TBox pivot-clauses. Thus a direct approach based on Ackermann’s Lemma does not
seem feasible for role forgetting in ontologies with TBoxes.

How then to do role forgetting? For the translation of ontologies in first-order logic,
there are no such obstacles. We could apply Ackermann’s Lemma for first-order logic
(e.g., as in the DLS algorithm [7]) to eliminate a single role symbol. Such an indi-
rect approach requires suitable back-translation however, which is absent at present
for expressive description logics. Translating first-order formulas back into equivalent
description logic expressions is not straightforward, in particular when number restric-
tions are present in the target language. For example, the solution of forgetting the role
symbol {r} from {A1 t ≥2r.B1, A2 t ≤1r.B2} in first-order logic is the set:

{∀x(A1(x) ∨B1(f1(x))), ∀x(A1(x) ∨B1(f2(x))), ∀x(A1(x) ∨ f1(x) 6≈ f2(x)),
∀x(A1(x) ∨A2(x) ∨ ¬B2(f1(x)) ∨ ¬B2(f2(x)))},

where f1(x) and f2(x) are Skolem terms, and f1(x) 6≈ f2(x) is an inequality. Because
of the presence of the Skolem terms and the inequality, it is not clear whether this
solution can be expressed equivalently in a description logic.

4 Our Approach to Eliminating A Single Role Symbol

In this section, we introduce our approach to eliminating a single role symbol from a
set of TBox and RBox clauses expressible in ALCOQH(O). It is a direct approach
based on non-trivial generalizations of Ackermann’s Lemma. The approach has two
key ingredients: (i) transformation of the pivot-clauses into reduced form, and (ii) a set
of Ackermann rules. The Ackermann rules reflect the generalizations of Ackermann’s
Lemma and allow a role symbol to be eliminated from a set of clauses in reduced form.

Definition 2 (Reduced Form). For r ∈ NR the pivot, a TBox pivot-clause is in reduced
form if it has the form E t≥mr.F or E t≤nr.F , where E and F are concepts that do
not contain r, and m ≥ 1 and n ≥ 0 are natural numbers. An RBox pivot-clause is in
reduced form if it has the form ¬S t r or S t ¬r, where S ∈ NR and S 6= r. A set N
of clauses is in reduced form if all pivot-clauses in N are in reduced form.

The reduced forms incorporate all basic forms of TBox and RBox clauses in which
a role symbol could occur. Transforming a TBox pivot-clause into reduced form is
not always possible however, unless definer symbols are introduced. Definer symbols

Ackermann I

N ,

P+
T (r)︷ ︸︸ ︷

C1 t ≥x1r.D1, . . . , Cm t ≥xmr.Dm,
P−T (r)︷ ︸︸ ︷

E1 t ≤y1r.F1, . . . , En t ≤ynr.Fn,

P−R(r)︷ ︸︸ ︷
t1 t ¬r, . . . , tw t ¬r

N ,BLOCK(P+
T (r), E1 t ≤y1r.F1), ...,BLOCK(P+

T (r), En t ≤ynr.Fn),

BLOCK(P+
T (r), t1 t ¬r), ...,BLOCK(P+

T (r), tw t ¬r)
Ackermann II

N ,
P+
R(r)︷ ︸︸ ︷

¬s1 t r, . . . ,¬sv t r,

P−T (r)︷ ︸︸ ︷
E1 t ≤y1r.F1, . . . , En t ≤ynr.Fn,

P−R(r)︷ ︸︸ ︷
t1 t ¬r, . . . , tw t ¬r

N ,BLOCK(P+
R(r), E1 t ≤y1r.F1), ...,BLOCK(P+

R(r), En t ≤ynr.Fn),

BLOCK(P+
R(r), t1 t ¬r), ...,BLOCK(P+

R(r), tw t ¬r)
Ackermann III

N ,

P+
T (r)︷ ︸︸ ︷

C1 t ≥x1r.D1, . . . , Cm t ≥xmr.Dm,

P+
R(r)︷ ︸︸ ︷

¬s1 t r, . . . ,¬sv t r,
P−,0
T (r)︷ ︸︸ ︷

E1 t ≤0r.F1, . . . , En t ≤0r.Fn,

P−R(r)︷ ︸︸ ︷
t1 t ¬r, . . . , tw t ¬r

N ,BLOCK(P−,0
T (r), C1 t ≥x1r.D1), ...,BLOCK(P−,0

T (r), Cm t ≥xmr.Dm),

BLOCK(P−,0
T (r),¬s1 t r), ...,BLOCK(P−,0

T (r)),¬sv t r),
BLOCK(P−R(r), C1 t ≥x1r.D1), ...,BLOCK(P−R(r)), Cm t ≥xmr.Dm),

BLOCK(P−R(r),¬s1 t r), ...,BLOCK(P−R(r)),¬sv t r)
Notation in Ackermann rules (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ v, 1 ≤ l ≤ w):
1. BLOCK(P+

T (r), Ej t ≤yjr.Fj) denotes the union of following sets:
Ground BLOCK: {C1 t ≥x1O.D1, . . . , Cm t ≥xmO.Dm}
1st-tier BLOCK:

⋃
1≤i≤m

{Ej t Ci t ≥(xi − yj)O.(Di u ¬Fj)} for any i such that xi > yj

2nd-tier BLOCK:
⋃

1≤i1<i2≤m

{Ej tCi1 tCi2 t≥xO.(Di1 uDi2)t≥(xi1 +xi2−yj− (x−

1))O.((Di1 tDi2) u ¬Fj) | x ∈ {1, . . . , xmin}} for any i1 and i2 such that xi1 + xi2 > yj ,
where xmin denotes the minimum of xi1 , xi2 and xi1 + xi2 − yj .

. . .
mth-tier BLOCK: {EjtC1t. . .tCmt≥xO.(D1u. . .uDm)t≥(x1+. . .+xm−yj−(x−
1))O.((D1t . . .tDm)u¬Fj)t . . .t≥1O.((D1t . . .tDm)u¬Fj) | x ∈ {1, . . . , xmin}} if
x1+ . . .+xm ≥ yj , where xmin denotes the minimum of x1, . . . , xm and x1+ ...+xm−yj .
2. BLOCK(P+

T (r), tl t ¬r) denotes the set: {C1 t ≥x1tl.D1, . . . , Cm t ≥xmtl.Dm}.
3. BLOCK(P+

R(r), Ej t ≤yjr.Fj) denotes the set: {Ej t ≤yjs1.Fj , . . . , Ej t ≤yjsv.Fj}.
4. BLOCK(P+

R(r), tl t ¬r) denotes the set: {¬s1 t tl, . . . ,¬sv t tl}.
5. BLOCK(P−,0

T (r), Ci t ≥xir.Di) denotes the union of following sets:
Ground BLOCK: {Ci t ≥xiO.Di}
1st-tier BLOCK:

⋃
1≤j≤n

{Ci t Ej t ≥xiO.(Di u ¬Fj)}

2nd-tier BLOCK:
⋃

1≤j1<j2≤n

{Ci t Ej1 t Ej2 t ≥xiO.(Di u ¬Fj1 u ¬Fj2)}
. . .

nth-tier BLOCK: {Ci t E1 t . . . t En t ≥xiO.(Di u ¬F1 u . . . u ¬Fn)}
6. BLOCK(P−,0

T (r),¬sk t r) denotes the set: {E1 t ≤0sk.F1, . . . , En t ≤0sk.Fn}.
7. BLOCK(P−R(r), Ci t ≥xir.Di) denotes the set: {Ci t ≥xit1.Di, . . . , Ci t ≥xitw.Di}.
8. BLOCK(P−R(r),¬sk t r) denotes the set: {t1 t ¬sk, . . . , tw t ¬sk}.

Fig. 1. Ackermann rules for eliminating the pivot r ∈ NR from a set of clauses in reduced form

are auxiliary concept symbols that do not occur in the present ontology [16], and are
introduced as described in [35].

Theorem 2. Using definer introduction as described in [35], any ALCOQH(O) on-
tology can be transformed into a set of clauses in reduced form. The transformation
preserves equivalence up to the introduced definer symbols.

LetN be a set of TBox and RBox clauses exhibiting all different reduced forms, for
r ∈ sigR(N) the pivot. We refer to the clauses of the form C t ≥mr.D and the form
C t ≤nr.D as positive TBox premises and negative TBox premises of the Ackermann
rules, respectively. We refer to the clauses of the form ¬S t r and the form S t ¬r as
positive RBox premises and negative RBox premises of the Ackermann rules, respec-
tively. By P+

T (r) and P−T (r) we denote respectively the sets of positive TBox premises
and negative TBox premises. By P+

R(r) and P−R(r) we denote respectively the sets of
positive RBox premises and negative RBox premises. By P+(r) and P−(r) we denote
respectively the union of P+

T (r) and P+
R(r), and the union of P−T (r) and P−R(r).

The Ackermann rules, shown in Figure 1, are based on an idea of ‘combination’.
Specifically, the idea is to combine all positive premises P+(r) with every negative
premise α(r) in P−(r) (or dually, to combine all negative premises P−(r) with ev-
ery positive premise α(r) in P+(r)). The result is a finite set of clauses, denoted by
BLOCK(P+(r), α(r)) (BLOCK(P−(r), α(r))). It is observed that the result obtained
from combining P+(r) with a negative premise is always identical to the union of the
results obtained from combining respectively P+

T (r) and P+
R(r) with that premise (the

dual also holds). We therefore treat every combination ofP+(r) with a negative premise
as two separate combinations in our Ackermann rules (same for the dual), so that it can
be understood better from which premises a resulting BLOCK of clauses is obtained.

For differentP+
T (r),P+

R(r),P−T (r),P−R(r) and α(r), the combination is performed
as 8 different cases (see Figure 1). For most of these cases, the idea is analogous to that
of Ackermann’s Lemma (and its dual), where the pivot is eliminated by substituting its
definition found w.r.t. the present premises for every occurrence of the pivot in these
premises. Only for Cases 1 and 5, the combination has a different flavor; their idea is
illustrated with two concrete examples.
Case 1: Combining P+

T (r) with a negative TBox premise in P−T (r), e.g., Ej t≤yjr.Fj
(1 ≤ j ≤ n), yields a set of TBox clauses, denoted by BLOCK(P+

T (r), Ej t≤yjr.Fj).
Example 1. Combining P+

T (r) = {A1 t ≥2r.B1, A2 t ≥1r.B2} with {A t ≤1r.B}
yields a set BLOCK(P+

T (r), At≤1r.B) that contains the following subsets of clauses:
Ground BLOCK: {A1 t ≥2O.B1, A2 t ≥1O.B2}
1st-tier BLOCK: {A tA1 t ≥1O.(B1 u ¬B)}
2nd-tier BLOCK: {A tA1 tA2 t ≥1O.(B1 uB2) t ≥2O.((B1 tB2) u ¬B).

Case 5: CombiningP−,0T (r) with a positive TBox premise inP+
T (r), e.g.,Cit≥xir.Di

(1 ≤ i ≤ m), yields a set of TBox clauses, denoted by BLOCK(P−,0T (r), Cit≥xir.Di).
In this case, P−,0T (r) denotes the set of negative TBox premises of the form E t≤0r.F
(i.e., the cardinality constraints are 0).

Example 2. Combining P−,0T (r) = {A1 t ≤0r.B1, A2 t ≤0r.B2} with {A t ≥2r.B}
yields a set BLOCK(P−,0T (r), At≥2r.B) that contains the following subsets of clauses:

Ground BLOCK: {A t ≥2O.B} 1st-tier BLOCK: {A tA1 t ≥2O.(B u ¬B1)}
2nd-tier BLOCK: {A tA1 tA2 t ≥2O.(B u ¬B1 u ¬B2)}.

How are the Ackermann rules used? For a set N of clauses in reduced form, de-
pending on which kinds of premises the setN contains, we apply different Ackermann
rules (to the premises to eliminate the pivot). Specifically, if N contains only positive
TBox premises, as well as negative premises, we apply the Ackermann I rule. IfN con-
tains only positive RBox premises, as well as negative premises, we apply the Acker-
mann II rule. IfN contains both positive TBox and RBox premises, as well as negative
premises, we apply the Ackermann III rule. Note that there is a gap in the scope of the
rules in the Ackermann III rule; it is applicable only to the cases where all negative
TBox premises (if they are present inN) are of the form E t ≤0r.F (i.e., the cardinal-
ity constraints are 0). IfN contains only positive (negative) premises, we substitute the
universal role (the negated universal role) for every occurrence of the pivot in N .

Theorem 3. Let I be any ALCOQH(O)-interpretation. For r ∈ NR the pivot, when
an Ackermann rule is applicable, the conclusion of the rule is true in I iff for some
interpretation I ′ r-equivalent to I, the premises are true in I ′.

This implies that the conclusion of an Ackermann rule is a solution of forgetting the
pivot from the premises of the rule.

5 Description of the Forgetting Method

Given an ontology O of axioms and a set Σ of role symbols to be forgotten, the forget-
ting process in our method comprises three main phases: (i) the conversion of O into
a set N of clauses (the first phase), (ii) the Σ-symbol elimination phase (the central
phase), and (iii) the definer elimination phase (the final phase). It is assumed that as
soon as a forgetting solution is computed, the remaining phases are skipped.

The first phase: The first phase of the forgetting process internalizes all ABox
assertions inO (if they are present inO) into TBox axioms, and then transformsO into
a set N of clauses using standard clausal form transformations.

The central phase: Central to the forgetting process is the Σ-symbol elimination
phase, which is an iteration of several rounds in which the elimination of Σ-symbols
is attempted. Specifically, the method attempts to eliminate the Σ-symbols one by one
using the approach as described in the previous section. In each elimination round, the
method performs two steps. The first step transforms every TBox pivot-clause (not in
reduced form) into reduced form, so that one of the Ackermann rules can be applied.
The second step then applies the Ackermann rule to the pivot-clauses to eliminate the
pivot. Upon the intermediate result being returned at the end of each round, the method
repeats the same steps in the next round for the elimination of the remaining symbols in
Σ (if necessary). If a Σ-symbol has been found ineliminable from the present ontology
(i.e., none of the Ackermann rules is applicable to the current reduced form), the method
skips the current round and attempts to eliminate another symbol in Σ.

The final phase: To facilitate the transformation of TBox pivot-clauses (not in re-
duced form) into reduced form, definer symbols might have been introduced during the

elimination rounds. The final phase of the forgetting process attempts to eliminate these
definer symbols by using Ackermann-based rules for concept forgetting; for details
see [17, 33, 34]. This allows definer symbols in many cases to be eliminated, because
occurrences of one polarity of any definer symbol will be top-level occurrences. There
is no guarantee however that all definer symbols can be eliminated, even if we use the
generalization of Ackermann’s Lemma involving the use of fixpoint operators. In prac-
tice, most real-world ontologies are normalized and therefore in reduced form, which
means that for such ontologies definer introduction and elimination are obsolete.

What the method returns as output at the end of the forgetting process is a finite
set O′ of clauses. If O′ does not contain any symbols in Σ, then the method was suc-
cessful in computing a solution of forgetting Σ from O. The following theorem states
termination and soundness of the method.

Theorem 4. For any ALCOQH(O)-ontology O and any set Σ ⊆ sigR(O) of role
symbols to be forgotten, the method always terminates and returns a finite set O′ of
clauses. (i) If O′ does not contain any symbols in Σ or any newly-introduced definer
symbols, then O′ is a solution of forgetting Σ from O (i.e., O′ is equivalent to the
original ontologyO up to the symbols inΣ). (ii) IfO′ does not contain any symbols inΣ
but it contains newly-introduced definer symbols, then O′ is a solution of forgetting Σ
from O in an extended language (and O and O′ are equivalent up to the symbols in Σ,
as well as the newly-introduced definer symbols present in O′).

The method may return a finite setO′ of clauses that still contains someΣ-symbols.
In this case, the method was not successful. This is because there is a gap in the scope
of the rules in the Ackermann III rule, as mentioned before Theorem 3.

Theorem 5. Given an ALCOQH(O)-ontology O in clausal form and a subset Σ of
sigR(O), our method is guaranteed to compute a solution of forgetting Σ from O, pos-
sibly with concept definer symbols, iff any one of the following conditions holds for
each r ∈ Σ: (i) O does not contain any RBox axioms of the form ¬S t r for S 6= r;
(ii) O does not contain any TBox axioms with number restrictions of the form ≥mr.D
for m ≥ 1; or (iii)O does not contain any TBox axioms with number restrictions of the
form ≤nr.D for n ≥ 1.

An explanation of Case (ii) is the following: let O be an ALCOQH(O)-ontology
in clausal form, and let Σ be a subset of sigR(O). For r ∈ Σ the pivot, if O does not
contain any TBox axioms with number restrictions of the form≥mr.D form ≥ 1, then
there will be no positive TBox premises occurring in O (when O is transformed into
reduced form). O is thus in the form suitable for application of the Ackermann II rule.
Explanations of Cases (i) and (iii) are similar, i.e., O of Cases (i) and (iii) in reduced
form are suitable for application of the Ackermann I and III rules, respectively.

6 Evaluation and Empirical Results

To gain insight into the practical applicability of the method, we implemented a proto-
type in Java using the OWL-API, and evaluated it on two corpora of slightly adjusted
real-world ontologies from the NCBO BioPortal repository.2 The experiments were run

2 http://bioportal.bioontology.org/

on a desktop computer with an Intelr CoreTM i7-4790 processor, four cores running at
up to 3.60 GHz and 8 GB of DDR3-1600 MHz RAM.

Ontology T.A. R.A. C.S. R.S. I.S. ≥ ≤ DL Expressivity
PANDA 102 44 99 49 0 4 20 ALCIQH(D)

OPB 973 68 779 59 0 179 140 ALCIQH(D)

ROO 1285 296 1183 209 0 278 0 SHIQ(D)

EPO 1995 131 1388 44 0 322 78 SHIQ(D)

SDO 2738 114 1382 77 59 1305 14 SHOIQ(D)

T.A. = TBox and ABox Axioms, R.A. = RBox Axioms, C.S. = Concept Symbols,
R.S. = Role Symbols, I.S. = Individual Symbols, ≥ = ≥-restrictions, ≤ = ≤-restrictions

Fig. 2. Ontologies selected from the NCBO BioPortal repository

The corpora used for our experiments were constructed as follows. First, we selected
from the NCBO BioPortal repository ontologies containing both number restrictions
and role inclusions. Then, we filtered out those containing less than 40 role symbols
(because they were less challenging). Consequently, five ontologies stood out from the
repository (see Figure 2 for their profiles). We further adjusted these ontologies to the
language ofALCOQH (i.e., none of them included the universal role O). This was done
by removing those axioms not expressible in ALCOQH and using simple simulations.
For example, an exact number restriction =1r.D was simulated by (≥1r.D)u(≤1r.D),
and a functional role func(r) was simulated by≤1r.>. In this way we obtained a corpus
(Corpus I) of five ALCOQH-ontologies. By removing all role inclusions in each of
the ontologies in Corpus I, we obtained another corpus (Corpus II) that contained five
ALCOQ-ontologies. Using Corpora I and II as test data sets for our experiments, we
considered how the presence of role inclusions affected the results of role forgetting, in
particular, the success rates.

To fit in with different real-world use, we evaluated the performance of forgetting
different numbers of role symbols from each ontology. In particular, we forgot 30%
(i.e., a small number) and 70% (i.e., a large number) of role symbols in the signature of
each ontology. The symbols to be forgotten were randomly chosen. We ran the experi-
ments 50 times on each ontology and averaged the results to verify the accuracy of our
findings. A timeout of 100 seconds was imposed on each run of the experiment.

The results are shown in Figure 3, which is rather revealing in several ways. The
most encouraging result was that our prototype was successful (i.e., forgot all symbols
in Σ) in all test cases (within a short period of time) except in the case of SDO, despite
role inclusions being present in them. This was unexpected, but there are obvious ex-
planations (for the 100% success rate cases): inspection revealed that these ontologies
did not contain axioms with number restrictions of the form ≤nS.D for n ≥ 1, and the
likelihood of Σ-symbols occurring positively in the RBox axioms was very low. What
was as expected was that definer symbols were not introduced in the test ontologies (as
most real-world ontologies were by design flat and therefore already in reduced form).
This gave us best benefits of using our Ackermann-based approach. Because of the na-
ture of the Ackermann III and V rules, forgetting a role symbol could lead to growth of

Σ (30%) Corpus I Corpus II
Ontology D.I. Time S.R. G.C. D.I. Time S.R. G.C.

PANDA 0 0.576 100% 0.0% 0 0.571 100% 0.0%
OPB 0 1.734 100% 4.2% 0 1.695 100% 4.3%
ROO 0 4.674 100% 0.0% 0 4.339 100% 0.0%
EPO 0 7.183 100% 7.1% 0 7.171 100% 7.3%
SDO 0 18.325 71.1% 7.3% 0 17.817 69.4% 7.7%

Σ (70%) Corpus I Corpus II
PANDA 0 1.267 100% 0.0% 0 1.252 100% 0.0%
OPB 0 3.937 100% 6.1% 0 3.869 100% 6.5%
ROO 0 9.663 100% 0.0% 0 9.602 100% 0.0%
EPO 0 15.874 100% 8.2% 0 15.389 100% 8.5%
SDO 0 39.196 32.1% 8.5% 0 38.084 30.9% 8.9%

D.I. = Definer Introduced, S.R. = Success Rate, G.C. = Growth of Clauses

Fig. 3. Performance results of forgetting 30% and 70% of role symbols

clauses in the forgetting solution, which was however modest (see the G.C. column in
Figure 3) compared to the theoretical worst case (i.e., 2n − 1 for n the cardinality of
P+
T). In the case of SDO the ‘hasPart’ role occurred positively in more than 50 different

TBox clauses in reduced form. This means that if ‘hasPart’ was chosen as one of the
Σ-symbols to be forgotten, then there were more than 50 positive TBox premises in
the ontology SDO in reduced form (i.e., n ≥ 50), which led to a blow-up of clauses in
the forgetting solution (i.e., ≥250 − 1 clauses). Indeed, the failures on SDO were due
to space explosion caused by the high frequency of the ‘hasPart’ role. We found that
without this role in Σ, the success rate was 100%.

7 Conclusions

In this paper, we have presented a practical method of semantic role forgetting for on-
tologies expressible in the description logic ALCOQH(O). The method is the only
approach so far for forgetting role symbols in description logics with number restric-
tions. This is very useful from the perspective of ontology engineering as it increases
the arsenal of tools available to create decompositions and restricted views of ontolo-
gies. We have shown that the method is terminating and is sound in the sense that the
forgetting solution is equivalent to the original ontology up to the forgotten symbols,
sometimes with new concept definer symbols. Although our method is not complete,
performance results of an evaluation with a prototypical implementation have shown
very good success rates on two corpora of real-world biomedical ontologies.

Though the main focus of this paper has been the problem of role forgetting, (non-
nominal) concept forgetting can be reduced to role forgetting by substituting ≥1r.>
for every occurrence of the concept symbol one wants to forget, where r is a fresh
role symbol, and then forgetting {r}. For example, forgetting the concept symbol {B}
from the ontology {¬A t ≥1s.B} can be reduced to the problem of forgetting the role
symbol {r} from the ontology {¬A t≥1s.≥1r.>}. Thus our method also provides an
incomplete approach to concept forgetting for ALCOQH(O)-ontologies.

References

1. W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik.
Mathematische Annalen, 110(1):390–413, 1935.

2. J. Bicarregui, T. Dimitrakos, D. M. Gabbay, and T. S. E. Maibaum. Interpolation in practical
formal development. Logic Journal of the IGPL, 9(2):231–244, 2001.

3. E. Botoeva, B. Konev, C. Lutz, V. Ryzhikov, F. Wolter, and M. Zakharyaschev. Inseparability
and Conservative Extensions of Description Logic Ontologies: A Survey. In Proc. RW’16,
volume 9885 of LNCS, pages 27–89. Springer, 2016.

4. W. Conradie, V. Goranko, and D. Vakarelov. Algorithmic correspondence and completeness
in modal logic. I. The core algorithm SQEMA. Logical Methods in Comp. Sci., 2(1), 2006.

5. G. D’Agostino and M. Hollenberg. Logical questions concerning the µ-Calculus: Interpola-
tion, Lyndon and Los-Tarski. J. Symb. Log., 65(1):310–332, 2000.

6. J. P. Delgrande and K. Wang. An Approach to Forgetting in Disjunctive Logic Programs that
Preserves Strong Equivalence. CoRR, abs/1404.7541, 2014.

7. P. Doherty, W. Łukaszewicz, and A. Szałas. Computing circumscription revisited: A reduc-
tion algorithm. Journal of Automated Reasoning, 18(3):297–336, 1997.

8. D. M. Gabbay, R. A. Schmidt, and A. Szałas. Second Order Quantifier Elimination: Foun-
dations, Computational Aspects and Applications. College Publications, 2008.

9. B. C. Grau and B. Motik. Reasoning over Ontologies with Hidden Content: The Import-by-
Query approach. J. Artif. Intell. Res., 45:197–255, 2012.

10. A. Herzig and J. Mengin. Uniform Interpolation by Resolution in Modal Logic. In Proc.
JELIA’08, volume 5293 of LNCS, pages 219–231. Springer, 2008.

11. B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal Properties of Modularisation. In
Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of LNCS, pages 25–66. Springer, 2009.

12. B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and modularity
of description logic ontologies. Artificial Intelligence, 203:66–103, 2013.

13. B. Konev, D. Walther, and F. Wolter. Forgetting and Uniform Interpolation in Large-Scale
Description Logic Terminologies. In Proc. IJCAI’09, pages 830–835. IJCAI/AAAI Press,
2009.

14. P. Koopmann. Practical Uniform Interpolation for Expressive Description Logics. PhD
thesis, The University of Manchester, UK, 2015.

15. P. Koopmann and R. A. Schmidt. Forgetting Concept and Role Symbols in ALCH-
Ontologies. In Proc. LPAR’13, volume 8312 of LNCS, pages 552–567. Springer, 2013.

16. P. Koopmann and R. A. Schmidt. Uniform Interpolation of ALC-Ontologies Using Fix-
points. In Proc. FroCos’13, volume 8152 of LNCS, pages 87–102. Springer, 2013.

17. P. Koopmann and R. A. Schmidt. Count and Forget: Uniform Interpolation of SHQ-
Ontologies. In Proc. IJCAR’14, volume 8562 of LNCS, pages 434–448. Springer, 2014.

18. P. Koopmann and R. A. Schmidt. Saturated-Based Forgetting in the Description Logic SIF .
In Proc. DL’15, volume 1350 of CEUR Workshop Proc., 2015.

19. P. Koopmann and R. A. Schmidt. Uniform Interpolation and Forgetting forALC-Ontologies
with ABoxes. In Proc. AAAI’15, pages 175–181. AAAI Press, 2015.

20. J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-variable inde-
pendence and forgetting. J. Artif. Intell. Res., 18:391–443, 2003.

21. F. Lin and R. Reiter. Forget it! In Proc. AAAI Fall Symposium on Relevance, pages 154–159.
AAAI Press, 1994.

22. M. Ludwig and B. Konev. Practical Uniform Interpolation and Forgetting for ALC TBoxes
with Applications to Logical Difference. In Proc. KR’14. AAAI Press, 2014.

23. C. Lutz, I. Seylan, and F. Wolter. An Automata-Theoretic Approach to Uniform Interpolation
and Approximation in the Description Logic EL. In Proc. KR’12, pages 286–297. AAAI
Press, 2012.

24. C. Lutz and F. Wolter. Foundations for Uniform Interpolation and Forgetting in Expressive
Description Logics. In Proc. IJCAI’11, pages 989–995. IJCAI/AAAI Press, 2011.

25. N. Nikitina and S. Rudolph. (Non-)Succinctness of uniform interpolants of general termi-
nologies in the description logic EL. Artificial Intelligence, 215:120–140, 2014.

26. A. Nonnengart and A. Szałas. A fixpoint approach to second-order quantifier elimination
with applications to correspondence theory. In Logic at Work: Essays Dedicated to the
Memory of Helena Rasiowa, pages 307–328. Springer, 1999.

27. R. A. Schmidt. The Ackermann approach for modal logic, correspondence theory and
second-order reduction. Journal of Applied Logic, 10(1):52–74, 2012.

28. A. Szałas. On the correspondence between modal and classical logic: An automated ap-
proach. Journal of Logic and Computation, 3:605–620, 1993.

29. A. Visser. Bisimulations, Model Descriptions and Propositional Quantifiers. Logic Group
Preprint Series. Department of Philosophy, Utrecht Univ., 1996.

30. K. Wang, Z. Wang, R. Topor, J. Z. Pan, and G. Antoniou. Eliminating concepts and roles
from ontologies in expressive description logics. Computational Intelligence, 30(2):205–
232, 2014.

31. Z. Wang, K. Wang, R. W. Topor, and J. Z. Pan. Forgetting Concepts in DL-Lite. In Proc.
ESWC’08, volume 5021 of LNCS, pages 245–257. Springer, 2008.

32. Z. Wang, K. Wang, R. W. Topor, and J. Z. Pan. Forgetting for knowledge bases in DL-Lite.
Ann. Math. Artif. Intell., 58(1-2):117–151, 2010.

33. Y. Zhao and R. A. Schmidt. Concept Forgetting inALCOI-Ontologies Using an Ackermann
Approach. In Proc. ISWC’15, volume 9366 of LNCS, pages 587–602. Springer, 2015.

34. Y. Zhao and R. A. Schmidt. Forgetting Concept and Role Symbols in ALCOIHµ+(O,u)-
Ontologies. In Proc. IJCAI’16, pages 1345–1352. IJCAI/AAAI Press, 2016.

35. Y. Zhao and R. A. Schmidt. Role Forgetting for ALCOQH(O)-Ontologies Using an
Ackermann-Based Approach. In Proc. IJCAI’17, to appear. IJCAI/AAAI Press, 2017.

