
Consequence-based Reasoning for Description
Logics with Disjunction, Inverse Roles, and

Nominals

David Tena Cucala, Bernardo Cuenca Grau, and Ian Horrocks

Department of Computer Science, University of Oxford, UK
first.last[.2nd last]@cs.ox.ac.uk

Abstract. We present a consequence-based calculus for the SHOI de-
scription logic. Known consequence-based reasoning procedures are ei-
ther restricted to logics without nominals (e.g. SRIQ), or to Horn log-
ics (e.g. Horn-SROIQ). In line with existing approaches, our algorithm
uses context structures to assist in the derivation of clauses, which are
generated by inference rules such as (hyper)resolution. These rules are
applied only locally—that is, between clauses in either the same context
or in neighbouring contexts. In order to deal with interactions between
nominals, inverse roles, and disjunction, we allow for a restricted form of
non-local inference. Our calculus displays worst-case optimal behaviour,
and it is amenable to implementation.

1 Introduction

Description logics (DLs) [2] are a family of languages for knowledge represen-
tation. They underpin the Semantic Web standard OWL 2 [5], and are used
for conceptual modelling across a wide spectrum of application domains, rang-
ing from medicine [22] to oil and gas exploration [12]. An important benefit of
DL-based languages is the use of reasoning to support modelling, with concept
subsumption and classification being key reasoning services.

Consequence-based (CB) reasoning [9] has emerged as a successful paradigm
for efficiently solving such reasoning tasks. This approach combines some of
the most effective features of (hyper)tableau [7, 21, 25, 23, 15] and resolution-
based [8, 14, 11] reasoning algorithms. On the one hand, similarly to resolution,
CB algorithms process DL ontologies by deriving entailed formulae and hence
avoiding the explicit construction of potentially large models. On the other hand,
CB algorithms are guided by a graph structure similar to a (hyper)tableau,
which prevents them from drawing many unnecessary inferences and, as a result,
leads to a nice goal-oriented behaviour. Finally, CB techniques are particularly
suitable for classification tasks, since they can generally verify a large number
of subsumptions in a single execution, allowing for “one-pass” full classification.

CB reasoning algorithms were originally proposed for the EL family of light-
weight description logics [1, 10], and later extended to the more expressive logics
Horn-SHIQ [9], Horn-SROIQ [16], and ALCH [19]. A unifying framework for

consequence-based reasoning was developed in [20], introducing the notion of
contexts as a mechanism for constraining resolution inferences and making them
goal-directed. The framework was extended to other non-Horn DLs such as SHI
[20] and SRIQ [4].

We continue this line of work by exploring the extension of CB techniques
to non-Horn DLs with nominals. The combination of nominals, inverse roles,
and disjunctions poses new challenges, such as the need for deriving clauses
expressing non-local dependencies between contexts. We show how to extend the
CB calculus for SHI [19] in order to overcome these issues, and we prove that the
resulting calculus is a worst-case optimal decision procedure for subsumption in
SHOI. We also show that the algorithm displays pay-as-you-go behaviour and,
in particular, works in polynomial time when restricted to ELHO ontologies.

Our proposal is related to the deterministic ExpTime tableau calculi for
SHOI presented in [13]. This algorithm uses global caching, which allows the
re-use of nodes in cases where two distinct individuals would have the same label.
In comparison, our algorithm can accommodate more intensive reuse policies,
because nodes represent groups of individuals that can have very different types.
We also handle disjunction by means of hyper-resolution on non-Horn clauses
(as in other CB algorithms), rather than by or-branching.

2 Preliminaries

First-Order Logic We use standard first-order logic terminology. A signature
Σ is pair of finite sets (ΣA, Σf) where ΣA is set of predicates and Σf is a set of
of function symbols of arity ≥ 0. A clause is a formula of the form ∀x.Γ → ∆,
where Γ (resp. ∆), called the body (resp. head) of the clause, is a possibly empty
conjunction (resp. disjunction) of atoms, and ∀x is a universal quantification
over all variables occurring in Γ and ∆, which is often omitted. We use > and ⊥
to represent the empty conjunction and disjunction, respectively. We often use
set notation to refer to relations between atoms, conjunctions, disjunctions, and
clauses.

A substitution σ is a mapping from variables to terms. It can be expressed
as {x1 7→ t1, x2 7→ t2, . . . }, which contains all mappings in σ different from the
identity. The result of applying σ to a clause C or term t is written Cσ and tσ,
respectively. A position p in a term t = f(t1, . . . , tn) is a sequence of natural
numbers i1 ◦ i2 ◦ · · · ◦ ik which identifies a particular subterm of t. Positions are
defined inductively, with t|ε = t and t|p = ti|p′ for any p, p′, i such that p = i ◦ p′.
If t|p = s, we write t[s′]p for the result of replacing the subterm s by s′ in position
p of term t. Positions are defined analogously for atoms.

An interpretation I is a pair (DI , ·I), where DI is a non-empty set (the
domain), and ·I is a function which maps every f ∈ Σf of arity k ∈ N to a
function from (DI)k to DI , and every predicate symbol of arity k ∈ N to a
subset of (DI)k. For each first-order sentence ϕ, an interpretation I induces a
truth-value ϕI in the usual way. An interpretation I satisfies a sentence ϕ iff
ϕI = true, in which case we write I |= ϕ.

Orders A (strict) order � on a non-empty set S is a binary, irreflexive,
transitive, and antisymmetric relation between elements of S. An order� induces
a non-strict order � if it is extended with reflexivity. An order is total if for any
distinct a, b ∈ S, either a � b or b � a. For any ◦ ∈ {�,�}, we write S ◦ a if
there is b ∈ S with b ◦ a. An order on a set S can be extended to an order �′
between subsets of S: given two subsets S1, S2 of S and an order � on S, we
have that S1 �′ S2 if and only if for each element n ∈ S2\S1 there is an element
m ∈ S1\S2 such that m � n. Since the meaning will be clear from the context,
we refer to an induced order �′ also as �.

The SHOI description logic A SHOI ontology in the usual DL syntax
can be transformed in polynomial time and expressed as an equisatisfiable set
of first-order clauses as indicated in Table 1, where the left-hand side contains
each possible normalised DL axiom form, and the right-hand side contains the
corresponding first-order logic clause1. Transitivity axioms are encoded away
through the usual techniques [18, 6]; other details of the normalisation are well-
known [9] and it is straightforward to extend the procedure to include nominals.

Clauses with nominals in first-order logic can be represented using the equal-
ity predicate ≈. In order to deal with this predicate, reasoning procedures either
exploit paramodulation techniques [26], or explicitly axiomatise equality. How-
ever, the inference rules of our algorithm have equality reasoning embedded into
them. This allows us to choose a first-order representation formalism with the
property that the equality predicate will never appear in the clauses manipu-
lated by the algorithm. In order to achieve this, we define a function π mapping
each nominal o in the ontology to a fresh unary predicate π(o) = O, and use
this predicate in the translation of each DL axiom or fact which features o. If
Σo is the set of all nominals in the ontology signature, we denote as ΣO the
set {π(o) | o ∈ Σo}. In order to preserve satisfiability, for each O ∈ ΣO, we
add an axiom of the form DL8, and we assume that the equality predicate is
explicitly axiomatised. However, these axioms will be ignored by our algorithm,
as the inference rules only use axioms of the form DL1-DL7, thereby preventing
equality from appearing in derived clauses; this ontology subset is denoted O∗.

Table 1. Normalised SHOI axioms and their translation to clauses.

DL1 ⊔

1≤i≤n

Bi v
⊔

n+1≤i≤m

Bi
∧

1≤i≤n

Bi(x) →
∨

n+1≤i≤m

Bi(x)

DL2 B1 v ∃R.B2
B1(x) → R(x, f(x))
B1(x) → B2(f(x))

DL3 ∃R.B1 v B2 R(z, x) ∧B1(x) → B2(z)
DL4 B v {o} B(x) → O(x)
DL5 B(o) O(x) → B(x)
DL6 R1 v R2 R1(z, x) → R2(z, x)
DL7 R1 v R−2 R1(z, x) → R−2 (x, z)
DL8 − O(x) → x ≈ o

1 The type of the generated clauses can be seen as a subset of a broader kind, named
DL-clauses, which are generally used to express axioms of DLs in first-order logic.

3 The Consequence-based Framework

Our proposal builds upon the CB algorithms in [20] and [4]. Even though the
original framework in [20] used exclusively DL notation to represent both input
and derived clauses, we use the first-order clause notation introduced in the
extension to SRIQ [4], as DL notation proved to be insufficiently expressive to
represent all types of relevant derived consequences. This choice also becomes
necessary when we combine inverse roles with nominals, and it establishes a
common framework between both algorithms.

The CB algorithms introduced above take an ontology as an input and use
it to construct a context structure—a graph where each node v (a context),
represents a unique, specific set of individuals, and contains clauses that hold
only for those individuals, while each edge is labelled by a function symbol
f ∈ Σf which is used to represent f -successor relations between terms.

The set of individuals represented by each v is determined by a core, which
is a collection of atoms corev in variables y and x with no function symbols.
Each v represents those pairs of individuals (t1, t2) in a model I such that I
satisfies the grounding of the core by σ = {x 7→ t1, y 7→ t2}. However, context
structures are constrained to ensure that any such pair of individuals is of the
form (f I(sI), sI) for some term s and f ∈ Σf in the label of an incoming edge.
Therefore, we should see each context v as a representation of those individuals
t which: (i) are instances of every B(x) ∈ corev and (ii) if t = f(t′) for some f
in an incoming edge from u, then t′ is represented in u and is an R-successor
(or R-antecessor) of t for each R(x, y) (or R(y, x)) in corev. Consequently, for
the clauses in a context, variable x ranges over each of these elements t, and
variable y represents its immediate predecessor. This stands in contrast with the
meaning of variables x and z in Table 1, which range over the interpretation
domain as usual.

A set Sv is defined for each v, and it contains clauses holding specifically
for those individuals represented by v; these clauses should only use variables y
and x. A key feature of the consequence-based framework is that only functional
terms of the form f(x) (with f ∈ Σf), are allowed in each Sv. This restriction
simplifies the execution of the algorithm, and prevents term nesting, which can
lead to termination problems. Moreover, this implies that clauses derived by
the algorithm describe constraints which are strictly local, that is, which involve
exclusively an element t in the interpretation domain, its possible successors
f1(t), · · · , fn(t), and its ancestor t′, if it exists. However, this does not mean they
are localised, since each clause holds not only for one element in the domain, but
rather for any element represented by the context.

Once a context structure has been initialised, a set of inference rules is used
to expand it by creating new contexts, edges, and deriving new clauses within
contexts. These rules also act locally: they only take as input sets of clauses in a
particular context v and (possibly) its neighbour, and add their output to these
contexts, or to a newly created neighbour of v.

However, when nominals are allowed in the ontology, some form of non-
local interaction is required, since individuals belonging to unrelated contexts

(including contexts that are not even connected in the context structure) can
collapse into each other, which may give rise to new consequences that need
to be accounted for. As we explain in the next section, our algorithm deals
with this issue by allowing clauses to express some non-local restrictions, and by
introducing non-local inference rules.

4 Combining Nominals, Inverse Roles, and Disjunction

In this section, we demonstrate how the CB approach introduced in [19], with
support for disjunction and inverse roles, can be adapted to deal with nominals.
We illustrate this by applying our calculus to determine that A v F is entailed
by the ontology O given in Table 2, which uses nominals in a non-trivial way.

Suppose we attempt to build a Herbrand model using (a variant of) the hyper-
tableau method. We start the procedure with an element c and the atom A(c).
By axioms (1)-(6), we produce descendants f3(f1(c)) and f2(c), in the atoms
B1(f3(f1(c))) and B2(f2(c)). By axioms (12) and (18), we also have B3(o3).
Now, axioms (13)-(18), imply that each of the elements f3(f1(c)), f2(c), and o3
must be equal to either o1 or o2 (or both). Therefore, at least two of these three
elements must be equal, even though we do not know which nominal they are
equal to. As a result, in any branch, one of the axioms (7)-(9) can be used to de-
rive either C(f2(c)) or C(f3(f1(c))). This can resolved with axioms (10) and/or
(11) to obtain F (c), as desired.

The restriction that two of the three elements in {f3(f1(c)), f2(c), o3} must
be equal is no longer local; in fact, f3(f1(c)) and f2(c) are not even connected
to o3 in the tableau. This suggests that a consequence-based procedure should
contain clauses which represent relations other than those between neighbouring
individuals. However, if we allow for more variables in a context, to refer to
elements in arbitrary distant contexts, the consequence-based method quickly
collapses into a procedure analogous to resolution.

Instead, our algorithm allows only references to nominals in context clauses,
in addition to the local individuals represented by y, x, f(x). This introduces the
possibility of having ground atoms in context clauses. We also introduce non-
local inference rules, which take a context as an input, and either a (possibly
disconnected) nominal context, which represents a single nominal, or a special
context known as the root context, where ground resolution can be applied.

In Figure 1, we illustrate how the algorithm works by applying it to the
ontology O of Table 2. The algorithm is initialised with a root context v0 with
core A(x), corresponding to the body of our query. We also create contexts vo1 ,
vo2 , and vo3 for the corresponding nominals, with cores O1(x), O2(x), and O3(x),
respectively. Back in the root context, we use hyperresolution with axioms (1)-
(4) to derive clauses (23)-(26). Observe that we cannot resolve clause (23) with
axioms (5) or (6), since that would lead to nested function terms. Instead, we
first have to create a successor context v1 with a Succ rule, apply the Core rule
to generate the equivalent clause (28), and then we can apply those axioms to
generate clause (30). Further applications of hyperresolution and generation of

Table 2. Ontology O

A v ∃R.D
A(x) → D(f1(x)) (1)
A(x) → R(x, f1(x)) (2)

A v ∃R.B2
A(x) → B2(f2(x)) (3)
A(x) → R(x, f2(x)) (4)

D v ∃R.B1
D(x) → B1(f3(x)) (5)
D(x) → R(x, f3(x)) (6)

B1 uB2 v C B1(x) ∧B2(x) → C(x) (7)
B1 uB3 v C B1(x) ∧B3(x) → C(x) (8)
B2 uB3 v C B1(x) ∧B3(x) → C(x) (9)
∃R.C v F R(z, x) ∧ C(x) → F (z) (10)
∃R.F v F R(z, x) ∧ F (x) → F (z) (11)
{o3} v B3 O3(x) → B3(x) (12)
B1 v {o1} t {o2} B1(x) → O1(x) ∨O2(x) (13)
B2 v {o1} t {o2} B2(x) → O1(x) ∨O2(x) (14)
B3 v {o1} t {o2} B3(x) → O1(x) ∨O2(x) (15)

O1(x) → x ≈ o1 (16)
O2(x) → x ≈ o2 (17)
O3(x) → x ≈ o3 (18)

new successors lead to the clause > → O1(x) ∨ O2(x) appearing in contexts
v3 (which represents, among others, the term f3(f1(c))), v2 (id. for f2(c)) and
v4 (id. for o3). We are now in the situation described above, where non-local
inferences are required to derive further consequences.

We achieve this by using a new rule Split which generates atoms grounded
in nominals. For instance, we apply this rule to clauses (33) and (35), selecting
O2(x) to generate clause (42). The Split rule also introduces clause (43) in the
context vo2 corresponding to the selected nominal, in order to explore the conse-
quences of B1(o2). We follow the same procedure in v2, which adds clause (48)
also to vo2 . These two clauses can now be resolved with axiom (9) to generate
(49). This clause can be relevant to contexts v3 and v2, so we propagate it back
to these contexts with a new rule Exp and obtain (50). Now C(x) can be resolved
together with clause (34) with axiom (10) to derive (51). Then, we can apply
again Split, selecting O1(x) and, after a similar procedure, we derive clause (58).
Since the head of this clause involves exclusively the predecessor of x, it can be
propagated back to context v1 with a rule Pred, and then, with axiom (11) and
again the Pred rule, we derive (61) in v0.

In order to derive F (x) unconditionally in this context, we must show that
the ontology either satisfies both B2(o2) and B3(o1), or it derives F (x) by other
means. We can explore the alternatives to satisfying B2(o2) starting from clause
(47). Using a similar procedure to the one presented above with Split and Exp
rules, and propagating the result (66) to the root context with Pred, we obtain
(67). We then use a rule Join to resolve ground atoms in the root context to
derive (68). Now, since clause (54) is grounded, we can copy it in the root
context using a rule Root specifically for this purpose. Using Join leads to (70).

The only remaining task is to follow a symmetric procedure to derive (83), and
using Join once again to obtain > → F (x) in the root context.

v0

v1

v3
v2

v4

vo2
vo1

Succ[23+24]: f1 (27)

Succ[30+31]: f3 (32)
Succ[25+26]: f2 (36)

Initialisation: > → A(x) (19)
Hyper[1+19]: > → D(f1(x)) (23)
Hyper[2+19]: > → R(x, f1(x)) (24)
Hyper[3+19]: > → B2(f2(x)) (25)
Hyper[4+19]: > → R(x, f2(x)) (26)
Pred[27+60]: B2(o2) ∧B3(o1) → F (x) (61)
Pred[36+66]: B3(o1) → B2(o2) ∨ F (x) (67)
Join[61+67]: B3(o1) → F (x) (68)
Root[54]: > → B3(o1) ∨B3(o2) (69)
Join[68+69]: > → F (x) ∨B3(o2) (70)
Pred[27+78]: B2(o1) ∧B3(o2) → F (x) (79)
Pred[36+81]: B3(o2) → B2(o1) ∨ F (x) (82)
Join[79+82]: B3(o2) → F (x) (83)
Join[72+83]: > → F (x) (84)

Core: > → D(x) (28)
Core: > → R(y, x) (29)
Hyper[5+28]: > → B(f3(x)) (30)
Hyper[6+28]: > → R(x, f3(x)) (31)
Pred[32+58]: B2(o2) ∧B3(o1) → F (x) (59)
Hyper[11+29+59]: B2(o2) ∧B3(o1) → F (y) (60)
Pred[32+75]: B2(o1) ∧B3(o2) → F (x) (77)
Hyper[11+29+77]: B2(o1) ∧B3(o2) → F (y) (78)

Core: > → B1(x) (33)
Core: > → R(y, x) (34)
Hyper[13+33]: > → O1(x) ∨O2(x) (35)
Split[33+35]: > → B1(o2) ∨O1(x) (42)
Split[33+42]: > → B1(o1) ∨B1(o2) (44)
Exp[33+35+49]: B2(o2) → B1(o1) ∨ C(x) (50)
Hyper[10+34+50]: B2(o2) → B1(o1) ∨ F (y) (51)
Exp[33+51+56]: B2(o2) ∧B3(o1) → F (y) ∨ C(x) (57)
Hyper[10+34+57]: B2(o2) ∧B3(o1) → F (y) (58)
Split[33+35]: > → B1(o1) ∨O2(x) (72)
Exp[33+72+73]: B2(o1) → B1(o1) ∨ C(x) (74)
Hyper[10+34+74]: B2(o1) → B1(o1) ∨ F (y) (75)
Exp[33+49+72]: B2(o1) ∧B3(o2) → F (y) ∨ C(x) (76)
Hyper[10+34+76]: B2(o1) ∧B3(o2) → F (y) (76)

Core: > → B2(x) (37)
Core: > → R(y, x) (38)
Hyper[14+37]: > → O1(x) ∨O2(x) (39)
Split[37+39]: > → B2(o2) ∨O1(x) (47)
Split[37+47]: > → B2(o1) ∨B2(o2) (62)
Exp[37+47+64]: B3(o1) → B2(o2) ∨ C(x) (65)
Hyper[10+38+65]: B3(o1) → B2(o2) ∨ F (y) (66)
Exp[37+47+80]: B3(o2) → B2(o1) ∨ C(x) (81)
Hyper[10+38+81]: B3(o2) → B2(o2) ∨ F (y) (82)

Initialisation: > → O3(x) (20)
Hyper[12+20] > → B3(x) (40)
Hyper[17+40] > → O1(x) ∨O2(x) (41)
Split[40+41]: > → B3(o2) ∨O1(x) (52)
Split[40+52]: > → B3(o1) ∨B3(o2) (54)

Initialisation: > → O1(x) (21)
Split[37+39]: B1(x) → B1(x) (46)
Split[40+52]: B3(x) → B3(x) (55)
Hyper[8+46+55]: B1(x) ∧B3(x) → C(x) (56)
Split[37+47]: B2(x) → B2(x) (63)
Hyper[8+55+63]: B2(x) ∧B3(x) → C(x) (64)
Hyper[7+46+63]: B2(x) ∧B3(x) → C(x) (71)
Hyper[8+46+55]: B1(x) ∧B3(x) → C(x) (73)

Initialisation: > → O2(x) (22)
Split[33+42]: B1(x) → B1(x) (43)
Split[37+39]: B2(x) → B2(x) (48)
Hyper[7+43+48]: B1(x) ∧B2(x) → C(x) (49)
Split[40+41]: B3(x) → B3(x) (53)
Hyper[9+47+53]: B2(x) ∧B3(x) → C(x) (80)

Fig. 1. Execution of the SHOI calculus on ontology O

5 The SHOI Calculus

We introduce first some key definitions which extend those in [4].

Definition 1 (Context terms, literals, and clauses). A context term is a
term of the form x, y, f(x) for some f ∈ Σf , or o for some o ∈ Σo. A context

atom is an atom of the form C(x), C(y), C(f(x)), R(x, y), R(y, x), R(x, f(x)),
R(f(x), x), or C(o), with R a binary predicate in ΣA, and C a unary predicate
in ΣA ∪ ΣO. A context clause is a clause where all literals are context atoms,
and which contains no function symbols in the body. A query clause contains
only unary predicates B ∈ ΣA.

The sets we define next, called trigger sets, are collections of atoms which
guide the application of inference rules. To give an example of how they work,
consider the Succ rule, which carries information from a context v to a successor.
The rule can only be applied if there is a context with a clause such that a
successor trigger is in the clause.

Definition 2 (Trigger sets). The set of successor triggers is defined as follows

Su(O) = {B(x) | exists Γ → ∆ ∈ O s.t. B(x) ∈ Γ and B ∈ ΣA}∪
{R(y, x) | exists Γ → ∆ ∈ O s.t. R(z, x) ∈ Γ}∪

{R(x, y) | exists Γ → ∆ ∈ O s.t. R(x, z) ∈ Γ}

In turn, the set of predecessor triggers is:

Pr(O) = {B(y) | B ∈ ΣA} ∪ {A{x 7→ y, y 7→ x} | A ∈ Su(O)} ∪ Gr(O)

where Gr(O) = {C(o) | C ∈ (ΣA ∪ΣO), o ∈ Σo}.

Observe that Pr(O) does not contain any O(y), and Su(O) does not contain any
O(x). We also define an ordering for the atoms in the clauses; adding order to
the technique reduces the amount of required computation.

Definition 3 (Context order). Let m be an arbitrary total order on function
symbols. Let m′ be an order induced by m on terms such that f(x)m′ xm′ y, for
any f ∈ Σf and for each pair f, g of function symbols such that f m g, we have
f(x)m′ g(x). A context order � is a strict order on context atoms such that: (i)
For each atom A, if tm′ s then A[t]p � A[s]p, (ii) for any atom A ∈ Pr(O) with
variable y, we have A � A′ for any other context atom A′.

Such an order always exists: consider an arbitrary lexicographic path order
[3] induced by m′ on the atoms, which guarantees that condition (i) is verified.
Then, relax the order to accommodate condition (ii) by making the atoms in
A′ ∈ Pr(O) smallest, including also the atoms in Gr(O). This does not violate
condition (i), for no atom of the form B(x) appears in Pr(O).

We use a notion of redundancy to simplify the calculus by allowing for elim-
ination of clauses that are subsumed by others in the context structure.

Definition 4 (Redundancy). A set of clauses U contains a clause Γ → ∆ up
to redundancy (abbreviated u.t.r.), if and only if there exist Γ ′ ⊆ Γ and ∆′ ⊆ ∆
such that Γ ′ → ∆′ ∈ U . We write Γ → ∆ ∈̂U .

The annotated graph which guides the algorithm execution is defined next:

Definition 5 (Context structure). A context structure for an ontology O is
a tuple D = 〈V, E , core,S,�, r〉, where V is a finite set of elements denominated
contexts; E is a subset of V×V×Σf , that is, a finite set of directed edges between
contexts, labelled by a function symbol; core is a function that assigns to each
context a conjunction corev of atoms of Su(O); S is a function which maps every
context v to a set of context clauses Sv; � is a function which assigns to each
context v a context order �v, and r(V) is a function which chooses a context of
V, denominated the root context.

The following defines a notion of soundness for context structures, which is
preserved as an invariant during the algorithm execution.

Definition 6 (Sound context structure). A context structure is sound if and
only if for each context v ∈ V and each context clause Γ → ∆ in Sv, we have:

O |= ∀x∀y. (corev(x, y) ∧ Γ → ∆) ,

and for each edge 〈u, v, f〉 ∈ E, we have:

O |= coreu → corev{x 7→ f(x), y 7→ x}.

The rules of the algorithm require an expansion strategy, which is a “policy”
for deciding whether to create new contexts or re-use existing ones.

Definition 7 (Expansion strategy). An expansion strategy strat is a polyno-
mially computable function which takes as input a triple (f,K,D), and returns
another triple (v, core,�). In the input, f is a function symbol, K is a set of
atoms with predicates in ΣA, and D is a context structure. The output consists
of a core core ⊆ K which does not contain predicates in ΣO, a context v which
is either fresh or such that core = corev, and a context order �.

Typically, three main natural expansion strategies are considered, depending
on which nodes and core functions they return (the context order is chosen
arbitrarily): the trivial strategy, which always returns (v>,>), with v> a fixed
context with empty core; the cautious strategy, which returns (vB , B(x)) if f
occurs in O only in an atom B(f(x)), and (v>,>) otherwise, and the eager
strategy, which returns (vK ,K); the latter was used in the example above.

The inference rules for our calculus are in Table 3. We assume, for simplicity,
that repeated atoms are eliminated before adding a clause to a context. An
execution of the algorithm on query ΓQ → ∆Q chooses an expansion strategy
and initialises a context structure D with a context r(V) = q with coreq = ΓQ,
an order �q which satisfies condition C2 of Theorem 2, a context vo for each
o ∈ Σo, with corevo = O(x), and an order �o. Then, it saturates D by applying
the inference rules in table 3 w.r.t. O∗ until no further rules can be applied. Due
to the following claims, which we prove in [24], we then have that ΓQ → ∆Q ∈̂ Sq
if and only if the query is entailed by O.

Theorem 1 (Soundness). Given an ontology O, a context structure D sound
for O, and an arbitrary expansion strategy, the application of a rule from Table
3 to D with respect to O∗ yields a context structure D′ which is sound for O.

Table 3. Rules of the Consequence-Based Calculus for SHOI
C
or
e If A ∈ corev

then add C = > → A to Sv, unless C ∈̂ Sv already.

H
yp

er If
∧n

i=1Ai → ∆ ∈ O, σ is such that x 7→ x
and Γi → ∆i ∨Aiσ ∈ Sv with ∆i �v Aiσ, for 1 ≤ i ≤ n

then add C =
∧n

i=1 Γi → ∆σ ∨
∨n

i=1∆i to Sv, unless C ∈̂ Sv already.

E
lim

If Γ → ∆ ∈ Sv
and Γ → ∆ ∈̂ Sv\(Γ → ∆)

then remove Γ → ∆ from Sv.

P
re
d

If ΓO ∧
∧m

i=1Ai →
∨m+n

i=m+1 Li ∈ Sv with Li ∈ Pr(O) for each

m+ 1 ≤ i ≤ m+ n, and ΓO ⊆ Gr(O),
and there is 〈u, v, f〉 ∈ E such that
Γi → ∆i ∨Aiσ ∈ Su where ∆i �u Aiσ, for 1 ≤ i ≤ m.
with σ = {y 7→ x, x 7→ f(x)}

then add C = ΓO ∧
∧m

i=1 Γi →
∨m

i=1∆i ∨
∨m+n

i=m+1 Liσ to Su,

unless C ∈̂ Su already.

S
u
cc

If Γ → ∆ ∨A ∈ Su where ∆ �u A and A contains f(x)
there is no 〈u, v, f〉 ∈ E s. t. A′ → A′ ∈̂ Sv ∀ A′ ∈ K2\corev

then let 〈v, core′,�′〉 = strat(f,K1,D); if v ∈ V, then �v =�v ∩ �′,
otherwise V = V ∪ {v}, and corev = core′, �v =�′, and Sv = ∅;
add the edge 〈u, v, f〉 to E and A′ → A′ to Sv for each A′ ∈ K2\corev

where σ = {x 7→ f(x), y 7→ x}, K1 = {A′ ∈ Su(O) | > → A′σ ∈ Su}
and K2 = {A′ ∈ Su(O) | Γ ′ → ∆′ ∨A′σ ∈ Su and ∆′ �u A

′σ}.

S
p
lit

If Γ → ∆ ∨O(x) ∈ Sv where ∆ �v O(x)
and Γ ′ → ∆′ ∨B(x) ∈ Sv where ∆′ �v B(x)

then add C = Γ ∧ Γ ′ → ∆ ∨∆′ ∨B(o) to Sv, unless C ∈̂ Sv already;
if Γ = Γ ′ = >, and ∆ = ∆′ = ⊥, add C′ = > → B(x) to So
unless C′ ∈̂ So already, where coreo = O(x);
else add C′ = B(x)→ B(x) to So, unless C′ ∈̂ So already.

E
xp

If Γ → ∆ ∨O(x) ∈ Sv where ∆ �v O(x)
and

∧n
i=1Ai ∧ Γ ′ → ∆′ ∈ So, where coreo = O(x),

and there is Γi → ∆i ∨Ai ∈ Sv, for all 1 ≤ i ≤ n where ∆i �v Ai,
then add C = Γ ∧

∧n
i=1 Γi ∧ Γ ′σo → ∆ ∨

∨n
i=1∆i ∨∆′ to Sv,

unless C ∈̂ Sv already, with σo = {x 7→ o}, where π(o) = O.

F
ct If Γ → ∆ ∨ C(o) ∨ C(x) ∈ Sv with coreo = O(x) s. t. π(o) = O

then add clause Γ → ∆ ∨ C(x) to Sv

Jo
in

If Γ → ∆ ∨B(o) ∈ Sq with ∆ �q B(o)
and B(o) ∧ Γ ′ → ∆′ ∈ Sq, where q = r(V).

then add C = Γ ∧ Γ ′ → ∆ ∨∆′ to Sq, unless C ∈̂ Sq already.

R
o
o
t

If Γ → ∆ ∈ Sv is ground or
coreo = O(x) for O ∈ ΣO, and ∆ contains only unary atoms,

then add C = (Γ → ∆)σo to Sq, where q = r(V), unless C ∈̂ Sv already;
where σo = {x 7→ o} with o = π(O).

Theorem 2 (Completeness). Let O be a normalised SHOI ontology, and D
a context structure which is sound for O and such that no rule of Table 3 can
be applied to it. Given a query clause ΓQ → ∆Q with coreq = ΓQ, we have that
ΓQ → ∆Q ∈̂ Sq holds if:

C1 O |= ΓQ → ∆Q .
C2 For each context atom A(x) ∈ ∆Q and each context atom A′(x) such that

A(x) �q A′(x), we have A′(x) ∈ ∆Q.
C3 For each A ∈ ΓQ, we have ΓQ → A ∈̂ Sq.

Proposition 1 (Worst-case optimality). For any expansion strategy intro-
ducing a number of contexts exponentially bounded with the size of the ontology,
the consequence-based calculus presented in this section works in exponential
time.

Indeed, the number of possible atoms that the algorithm can generate is quadratic
on the signature size (in binary atoms, only one term has function symbols), so
the number of possible clauses in a context is exponential on the size of O. Since
there is an exponential maximum number of contexts, at most exponentially
many clauses can be generated. Since each inference uses a quadratic number
of clauses, there are at most exponentially many inferences, which shows that
the algorithm works in exponential time. Given that subsumption is ExpTime-
complete for SHOI [17], the algorithm is worst-case optimal.

Proposition 2 (Pay-as-you-go behaviour). For ELHO ontologies and queries
of the form B1(x)→ B2(x), the calculus runs in polynomial time with the eager
strategy.

Indeed, with the eager strategy, all derived clauses are of the form > → B(x),
and since there are no universal quantifiers, a number of contexts at most
quadratic is derived. The nominal rules simply exchange clauses between con-
texts if > → O(x) is derived, similarly to the ELHO algorithm in [10].

6 Conclusion

We have presented the first worst-case optimal consequence-based calculus for
SHOI, a description logic with disjunction, inverse roles, and nominals, using
explicit ground inferences to exchange information non-locally between contexts.
The calculus becomes analogous to known procedures for ALC and ELHO when-
ever the ontology is restricted to those DLs. Further work will consider the ex-
tension of the technique presented here to counting quantifiers, which will pose
a greater challenge since SHOIQ is known to be NExpTime-complete.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). pp. 364–369 (2005)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

3. Baader, F., Nipkow, T.: Tern Rewriting and All That. Cambridge University Press
(1998)

4. Bate, A., Motik, B., Cuenca Grau, B., Simancik, F., Horrocks, I.: Extending
consequence-based reasoning to SRIQ. In: Proc. of the 15th Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR 2016). pp. 187–196. AAAI
Press (2016), download/2016/BateMGSH16.pdf

5. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,
U.: OWL 2: The next step for OWL. J. of Web Semantics 6(4), 309–322 (November
2008), download/2008/CHMP+08.pdf

6. Demri, S., de Nivelle, H.: Deciding Regular Grammar Logics with Converse
Through First-Order Logic. Journal of Logic, Language and Information (2005)

7. Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelli-
gence, vol. 2083, pp. 701–705. Springer (2001)

8. Hitzler, P., Vrandečić, D.: Resolution-based approximate reasoning for OWL DL.
In: Proc. of the 4th International Semantic Web Conference (ISWC 2005). pp.
383–397 (2005)

9. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009). pp. 2040–2045
(2009)

10. Kazakov, Y., Krötzsch, M., Simanvćık, F.: Practical Reasoning with Nominals in
the EL Family of Description Logics. Proceedings of the Thirteenth International
Conference on Principles of Knowledge Representation and Reasoning (2012)

11. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. In:
Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006). Lecture
Notes in Artificial Intelligence, vol. 4130, pp. 662–677. Springer (2006)

12. Kharlamov, E., Jiménez-Ruiz, E., Pinkel, C., Rezk, M., Skjæveland, M.G., Soylu,
A., Xiao, G., Zheleznyakov, D., Giese, M., Horrocks, I., Waaler, A.: Optique:
Ontology-based data access platform. In: International Semantic Web Confer-
ence (Posters & Demos). CEUR (http://ceur-ws.org/), vol. 1486 (2015), http:
//ceur-ws.org/Vol-1486/paper_24.pdf

13. Linh Anh Nguyen: ExpTime tableaux with global state caching for the description
logic SHIO. Neurocomputing (146), 249–263 (2014)

14. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (Jan-
uary 2006)

15. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. of Artificial Intelligence Research 36, 165–228 (2009), download/2009/MoSH09a.
pdf

16. Ortiz, M., Rudolph, S., Simkus, M.: Worst-Case Optimal Reasoning for the Horn-
DL Fragments of OWL 1 and 2. Proceedings of the Twelfth International Confer-
ence on the Principles of Knowledge Representation and Reasoning (2010)

17. Sattler, U., Vardi, M.Y.: The hybrid µ-calculus. In: Proc. of the Int. Joint Conf.
on Automated Reasoning (IJCAR 2001). pp. 76–91 (2001)

18. Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the first-
order translation of modal formulae. In: Proc. of the 19th Int. Conf. on Au-
tomated Deduction (CADE 2002). Lecture Notes in Artificial Intelligence, vol.

2741, pp. 412–426. Springer (2003), \url{http://www.cs.man.ac.uk/~schmidt/
publications/SchmidtHustadt03b.html}

19. Simanč́ık, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn
ontologies. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2011). pp. 1093–1098 (2011), download/2011/SiKH11a.pdf

20. Simanč́ık, F., Motik, B., Horrocks, I.: Consequence-based and fixed-parameter
tractable reasoning in description logics. Artificial Intelligence 209, 29–77 (2014),
download/2014/SiMH14a.pdf

21. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A prac-
tical OWL-DL reasoner. J. of Web Semantics 5(2), 51–53 (2007), http://www.

mindswap.org/papers/PelletJWS.pdf

22. Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass. (2000), fall Symposium Special Issue

23. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. of Web
Semantics 27(1) (2014), http://www.websemanticsjournal.org/index.php/ps/

article/view/366

24. Tena Cucala, D., Cuenca Grau, B., Horrocks, I.: Consequence-Based Reasoning
for Description Logics with Disjunction and Nominals. Tech. rep., University of
Oxford, http://bit.ly/2pY2UrN (2017)

25. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006). Lecture
Notes in Artificial Intelligence, vol. 4130, pp. 292–297. Springer (2006), download/
2006/TsHo06a.pdf

26. Wos, L., Robinson, G.: Paramodulation and theorem-proving in first-order theories
with equality. In: Michie, D., Meltzer, B. (eds.) Proceedings of the 4th Annual
Machine Intelligence Workshop. Edinburgh University Press (1969)

