
Computing FO-Rewritings in EL in Practice:
from Atomic to Conjunctive Queries

Peter Hansen and Carsten Lutz

University of Bremen, Germany
{hansen, clu}@informatik.uni-bremen.de

Abstract. It has recently been demonstrated in [10] that FO-rewritings
of ontology-mediated queries can be efficiently computed in practice, in
a sound and complete way, when the ontology is formulated in EL and
the actual query is an atomic query (AQ). In this paper, we show how to
lift this approach, which is based on a decomposed version of backwards
chaining, from AQs to (rooted) conjunctive queries (rCQs). While we
achieve a polynomial time reduction when the quantified parts of the
CQ are tree-shaped, a more subtle approach is required in the general
case. We conduct experiments based on real-world ontologies which show
promising results.

1 Introduction

One of the most important technical tools in ontology-mediated querying is query
rewriting : reformulate a given ontology-mediated query (OMQ) in an equivalence-
preserving way in a query language that is supported by a database system used
to store the data. Since SQL is the dominating query language in conventional
database systems, rewriting into SQL and into first-order logic (FO) as its logical
core has attracted particularly much attention [2,3,4, 5, 6, 8, 10,11]. In fact, the
DL-Lite family of description logics (DLs) was invented specifically with the aim
to guarantee that FO-rewritings of OMQs (whose TBox is formulated in DL-Lite)
always exist [1, 6], but is rather restricted in expressive power. For essentially all
other DLs, there are OMQs which cannot be equivalently rewritten into an FO
query. However, ontologies used in real-world applications tend to have a very
simple structure, and consequently, FO-rewritings of practically relevant OMQs
might exist in the majority of cases. This hope was confirmed in an experimental
evaluation carried out in the context of the description logic EL, where less than
1% of the considered queries was found to be not FO-rewritable [10]; moreover,
most of the negative cases seemed to be due to modeling mistakes in the ontology.

In this paper, we focus on the description logic EL and aim to push the
frontier of efficiently computing FO-rewritings of OMQs from atomic queries
(AQs) to conjunctive queries (CQs). As usual, we use (L,Q) to denote the OMQ
language that consists of all OMQs (T , Σ, q) where T is a TBox formulated in
the description logic L and q is a query formulated in the query language Q (and
Σ is an ABox signature). It has been shown in [5] that for OMQs from (EL,AQ),

it is ExpTime-complete to decide FO-rewritability. Combining the techniques
from [5] and the backwards chaining approach to query rewriting brought forward
e.g. in [7, 11], a practical algorithm for computing FO-rewritings of OMQs from
(an extension of) (EL,AQ) was then developed in [10]. It is based on a decomposed
version of backwards chaining that implements a form of structure sharing. This
algorithm was implemented in the Grind system and shown to perform very well
in practice: on 10989 inputs and with a timeout of 30 seconds, the algorithm
terminated on all but 127 inputs and needed only 1.5h execution time in total (an
average of 0.5 seconds per input). It is important to remark that the algorithm is
complete, that is, it computes an FO-rewriting whenever there is one and reports
failure otherwise.

We intend to lift this approach from AQs to CQs. Note that it was shown
in [4] that FO-rewritability in (EL,CQ) is still ExpTime-complete. Since the
details of the decomposed algorithm from [10] are already rather complex, one
would ideally hope to achieve a black box (and practically feasible) polynomial
time reduction of FO-rewritability in (EL,CQ) to (EL,AQ). However, naive such
reductions fail. In particular, FO-rewritability of all AQs that occur in a CQ q
are neither a sufficient nor a necessary condition for q to be FO-rewritable. For
example, when

T = {∃r.A v A, ∃s.> v A} Σ = {A, r, s} q(x) = ∃y (A(x) ∧ s(x, y))

then Q = (T , Σ, q) is FO-rewritable into ∃y s(x, y), but the only AQ A(x) that
occurs in q is not FO-rewritable. In fact, a black box reduction does not seem to be
possible in general. Thus, we consider mildly restricted forms of CQs and exhibit
reductions that are not completely black box, but make certain assumptions on
the algorithm used to compute FO-rewritings in (EL,AQ)—all of them satisfied
by the decomposed backwards chaining algorithm implemented in Grind.

We first consider the class of tree-quantified CQs (tqCQs) in which the
quantified parts of the CQ are tree-shaped. In this case, we indeed achieve a
black box polynomial time reduction for FO-rewritability. To also transfer actual
FO-rewritings from the OMQ constructed in the reduction to the original OMQ,
we make the assumption that the rewriting of the former takes the form of a UCQ
in which every CQ is tree-shaped and that, in a certain sense made precise in the
paper, atoms are never introduced into the rewriting ‘without a reason’. Both
conditions are very natural in the context of backwards chaining and satisfied by
the decomposed algorithm.

We then move to rooted CQs (rCQs) in which every quantified variable must
be reachable from some answer variable (in the query graph). We consider this a
mild restriction and expect that almost all queries in practical applications will
be rCQs. In the rCQ case, we do not achieve a black box reduction. Instead, we
assume that FO-rewritings of the constructed OMQs from (EL,AQ) are obtained
from a certain straightforward backwards chaining algorithm or a refinement
thereof as implemented in the Grind system. We then show how to combine
the construction of (several) OMQs from (EL,AQ), similar to what we have
done in the black box reduction in the tqCQ case, with a modification of the

assumed algorithm to decide FO-rewritability in (EL, rCQ) and to construct actual
rewritings. The approach involves exponential blowups, but only in parameters
that we expect to be very small in practical cases and that, in particular, only
depend on the actual query contained in the OMQ but not on the TBox.

We have implemented our approach in the Grind system and carried out
experiments on five real-world ontologies with 10 hand-crafted CQs for each. The
average runtimes are between 0.5 and 19 seconds (depending on the ontology),
which we consider reasonably short given that we are dealing with a complex
static analysis problem. For the proofs, see the Appendix of [9], available at
http://www.cs.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries

We use standard notation for EL-TBoxes (sets of concept inclusions), for ABoxes,
for conjunctive queries (CQs), and for unions thereof (UCQs), see for example [4].
We do not assume any normal form for EL-TBoxes T . With Ind(A), we denote
the set of individual names in the ABox A. As usual in the context of ontology-
mediated querying, ABoxes cannot contain compound concepts, but only concept
names. Recall that an atomic query (AQ) takes the form A(x), A a concept name,
and that a signature is a set of concept and role names.

Unless noted otherwise, we allow equality in CQs, but we assume w.l.o.g. that
equality atoms contain only answer variables, and that when x = y is an equality
atom in q, then y does not occur in any other atoms in q. Other occurences of
equality can be eliminated by identifying variables. With var(q), we denote the
set of all variables used in the CQ q and use avar(q) for the set of all answer
variables. We do not distinguish between a CQ and the set of atoms in it and
associate with each CQ q a directed graph Gq := (var(q), {(x, y) | r(x, y) ∈ q}),
defined in the expected way (equality atoms are not reflected). A CQ q is tree-
shaped if Gq is a directed tree and r(x, y), s(x, y) ∈ q implies r = s. A tree CQ
(tCQ) is a tree-shaped CQ with the root the only answer variable, and a tree
UCQ (tUCQ) is a disjunction of tree CQs. Clearly, every EL concept can be
viewed as a tCQ and vice versa, and we will not always distinguish between the
two representations. For example, we might write ∃r.q to denote an EL concept
when q is a tree-shaped CQ. If convenient, we also view a CQ q as an ABox Aq
which is obtained from q by dropping equality atoms and then replacing each
variable with an individual (not distinguishing answer variables from quantified
variables). A rooted CQ (rCQ) is a CQ q such that in the undirected graph
induced by Gq, every quantified variable is reachable from some answer variable.
A tree-quantified CQ (tqCQ) is an rCQ q such that after removing all atoms
r(x, y) with x, y ∈ avar(q), we obtain a disjoint union of tCQs. We call these
tCQs the tCQs in q.

An ontology-mediated query (OMQ) is a triple Q = (T , Σ, q) where T is
a TBox, Σ an ABox signature, and q a CQ. The semantics is defined in the
standard way via certain answers. In particular, we write A |= Q(a) if a is a
certain answer to the OMQ Q on the ABox A; we again refer to [4] for full details.

http://www.cs.uni-bremen.de/tdki/research/papers.html

We use (EL,AQ) to denote the set of OMQs where T is formulated in EL and q
is an AQ, and similarly for (EL,CQ), (EL, rCQ), and so on. We do generally not
allow equality in CQs that are part of an OMQ.

An OMQ Q = (T , Σ, q) is FO-rewritable if there is a first-order (FO) formula
ϕ such that A |= Q(a) iff A |= ϕ(a) for all Σ-ABoxes A. In this case, ϕ is
an FO-rewriting of Q. When ϕ happens to be a UCQ, we speak of a UCQ-
rewriting and likewise for other classes of queries. It is known that FO-rewritability
coincides with UCQ-rewritability for OMQs from (EL,CQ) [3, 5]; note that
equality is important here as, for example, the OMQ ({B v ∃r.A}, {B, r}, q)
with q(x, y) = ∃z(r(x, z)∧r(y, z)∧A(z)) rewrites into the UCQ q∨(B(x)∧x = y).

We shall sometimes refer to the problem of (query) containment between
two OMQs Q1 = (T1, Σ, q1) and Q2 = (T2, Σ, q2); we say Q1 is contained in Q2

if A |= Q1(a) implies A |= Q2(a) for all Σ-ABoxes A and a ⊆ Ind(A). If both
OMQs are from (EL, rCQ) and T1 = T2 = T , then we denote this with q1 ⊆T q2.

We now introduce two more involved notions that are central to the technical
constructions in Section 4, fork rewritings and splittings. Both notions have been
used before in the context of ontology-mediated querying, see for example [12,13].

Definition 1 (Fork rewriting). Let q0 be a CQ. Obtaining a CQ q from q0
by fork elimination means to choose two atoms r(x0, y) and r(x1, y) with y an
existentially quantified variable, then to replace every occurrence of x1−i with xi
where i ∈ {0, 1} is chosen such that xi ∈ avar(q0) if any of x0, x1 is an answer
variable, and to finally add the atom xi = x1−i if x1−i ∈ avar(q0). When q can
be obtained from q0 by repeated (but not necessarily exhaustive) fork elimination,
then q is a fork rewriting of q0.

For a CQ q and V ⊆ var(q), we use q|V to denote the restriction of q to the
variables in V .

Definition 2 (Splitting). Let T be an EL-TBox, q a CQ, and A an ABox.
A splitting of q w.r.t. A and T is a tuple Π = 〈R,S1, . . . , S`, r1, . . . , r`, µ, ν〉,
where R,S1, . . . , Sn is a partitioning of var(q), r1, . . . , r` are role names, µ :
{1, . . . , `} → R assigns to each set Si a variable from R, ν : R → Ind(A), and
the following conditions are satisfied:

1. avar(q) ⊆ R and x = y ∈ q implies ν(x) = ν(y);

2. if r(x, y) ∈ q with x, y ∈ R, then r(ν(x), ν(y)) ∈ A;

3. q|Si
is tree-shaped and can thus be seen as an EL concept Cq|Si

, for 1 ≤ i ≤ `;
4. if r(x, x′) ∈ q then either (i) x, x′ belong to the same set R,S1, . . . , S`, or

(ii) x ∈ R and, for some i, r = ri and x′ root of q|Si
.

The following lemma illustrates the combined use and raison d’être of both fork
rewritings and splittings. A proof is standard and omitted, see for example [13].
It does rely on the existence of forest models for ABoxes and EL-TBoxes, that
is, for every ABox A and TBox T , there is a model I whose shape is that of A
with a directed (potentially infinite) tree attached to each individual.

Lemma 1. Let Q = (T , Σ, q0) be an OMQ from (EL,CQ), A a Σ-ABox, and
a ⊆ Ind(A). Then A |= Q(a) iff there exists a fork rewriting q of q0 and a
splitting 〈R,S1, . . . , S`, r1, . . . , r`, µ, ν〉 of q w.r.t. A and T such that the following
conditions are satisfied: (1) ν(x) = a, x the answer variables of q0; (2) if A(x) ∈ q
and x ∈ R, then A, T |= A(ν(x)); (3) A, T |= ∃ri.Cq|Si

(ν(µ(i))) for 1 ≤ i ≤ `.

3 Tree-quantified CQs

We provide a polynomial time reduction from FO-rewritability in (EL, tqCQ) to
FO-rewritability in (EL,AQ) and, making only very mild assumptions on the
algorithm used for solving the latter problem, show that rewritings of the OMQ
produced in the reduction can be transformed in a straightforward way into
rewritings of the original OMQ. The mild assumptions are that the algorithm
produces a tUCQ-rewriting and that, informally, when constructing the tCQs of
the tUCQ-rewriting it never introduces atoms ‘without a reason’—this will be
made precise later.

Let Q = (T , Σ, q0) be from (EL, tqCQ). We can assume w.l.o.g. that q0
contains only answer variables: every tCQ in q with root x can be represented
as an EL concept C and we can replace the tree with the atom AC(x) (unless it
has only a single node) and extend T with C v AC where AC is a fresh concept
name that is not included in Σ. Clearly, the resulting OMQ is equivalent to the
original one.

We show how to construct an OMQ Q′ = (T ′, Σ′, q′0) from (EL,AQ) with the
announced properties; in particular, Q is FO-rewritable if and only if Q′ is. Let
CN(T) and RN(T) denote the set of concept names and role names that occur
in T , and let subL denote the of concepts that occur on the left-hand side of a
concept inclusion in T , closed under subconcepts. Reserve a fresh concept name
Ax for every A ∈ CN(T) and x ∈ avar(q0), and a fresh role name rx for every
r ∈ RN(T) and x ∈ avar(q0). Set

Σ′ = Σ ∪ {Ax | A ∈ CN(T) ∩Σ and x ∈ avar(q0)} ∪
{rx | r ∈ RN(T) ∩Σ and x ∈ avar(q0)}.

Additionally reserve a concept name Ax∃r.E for every concept ∃r.E ∈ subL(T)
and every x ∈ avar(q0). Define

T ′ := T ∪ {CxL v Dx
R | x ∈ var(q0) and C v D ∈ T }

∪ {∃rx.C v Ax∃r.C | x ∈ var(q0) and ∃r.C ∈ subL(T)}

∪ {CyL v A
x
∃r.C | r(x, y) ∈ q0 and ∃r.C ∈ subL(T)}

∪ { u
A(x)∈q0

Ax v N}

where for a concept C = A1 u · · · uAn u∃r1.E1 u · · · u ∃rm.Em, the concepts CxL
and CxR are given by

CxL = Ax1 u · · · uAxn uAx∃r1.E1
u · · · uAx∃rm.Em

CxR = Ax1 u · · · uAxn u ∃rx1 .E1 u · · · u ∃rxm.Em

Moreover, set q′0 := N(x).

Before proving that the constructed OMQ Q′ behaves in the desired way,
we give some preliminaries. It is known that, if an OMQ from (EL,AQ) has an
FO-rewriting, then it has a tUCQ-rewriting, see for example [5, 10]. A tCQ q is
conformant if it satisfies the following properties:

1. if A(x) is a concept atom, then either A is of the form By and x is the answer
variable or A is not of this form and x is a quantified variable;

2. if r(x, y) is a role atom, then either r is of the form sz and x is the answer
variable or r is not of this form and x is a quantified variable.

A conformant tUCQ is then defined in the expected way. The notion of confor-
mance captures what we informally described as never introducing atoms into
the rewriting ‘without a reason’. By the following lemma, FO-rewritability of the
OMQs constructed in our reduction implies conformant tUCQ-rewritability, that
is, there is indeed no reason to introduce any of the atoms that are forbidden in
conformant rewritings.

Lemma 2. Let Q be from (EL, tqCQ) and Q′ the OMQ constructed from Q as
above. If Q′ is FO-rewritable, then it is rewritable into a conformant tUCQ.

When started on an OMQ produced by our reduction, the algorithms pre-
sented in [10] and implemented in the Grind system produce a conformant
tUCQ-rewriting. Indeed, this can be expected of any reasonable algorithm based
on backwards chaining. Let q′ be a conformant tUCQ-rewriting of Q′. The corre-
sponding UCQ for Q is the UCQ q obtained by taking each CQ from q′, replacing
every atom Ax(x0) with A(x) and every atom rx(x0, y) with r(x, y), and adding
all atoms r(x, y) from q0 such that both x and y are answer variables. The answer
variables in q are those of q0. Observe that q is a union of tqCQs.

Proposition 1. Q is FO-rewritable iff Q′ is FO-rewritable. Moreover, if q′ is a
conformant tUCQ-rewriting of Q′ and q the corresponding UCQ for Q, then q is
a rewriting of Q.

The proof strategy is to establish the ‘moreover’ part and to additionally
show how certain UCQ-rewritings of Q can be converted into UCQ-rewritings of
Q′. More precisely, a CQ q is a derivative of q0 if it results from q0 by exchanging
atoms A(x) for EL concepts C, seen as tree-shaped CQs rooted in x. We are
going to prove the following lemma in Section 4.

Lemma 3. If an OMQ (T , Σ, q0) from (EL, tqCQ) is FO-rewritable, then it has
a UCQ-rewriting in which each CQ is a derivative of q0.

Let q be a UCQ in which every CQ is a derivative of q0. Then the corresponding
UCQ for Q′ is the UCQ q′ obtained by taking each CQ from q, replacing every
atom A(x), x answer variable, with Ax(x0), every atom r(x, y), x answer variable
and y quantified variable, with rx(x0, y), and deleting all atoms r(x1, x2), x1, x2
answer variables. The answer variable in q′ is x0. Note that q′ is a tUCQ. To
establish the “only if” direction of Proposition 1, we show that when q is a
UCQ-rewriting of Q in which every CQ is a derivative of the query q0, then the
corresponding UCQ for Q′ is a rewriting of Q′.

4 Rooted CQs

We replace tqCQs with the more general rCQs. In this case, we are not going
to achieve a black box reduction, but rely on a concrete algorithm for solving
FO-rewritability in (EL,AQ), namely a straightforward (and not necessarily
terminating) backwards chaining algorithm or a (potentially terminating) refine-
ment thereof. We show how to combine the construction of (several) OMQs from
(EL,AQ) with a modification of the assumed algorithm to decide FO-rewritability
in (EL, rCQ) and to construct actual rewritings.

We start with introducing the straightforward backwards chaining algorithm
mentioned above which we refer to as bcAQ. Central to bcAQ is a backwards
chaining step based on concept inclusions in a TBox. Let C and D be EL concepts,
E v F a concept inclusion, and x ∈ var(C) (where C is viewed as a tree-shaped
CQ). Then D is obtained from C by applying E v F at x if D can be obtained
from C by

– removing A(x) for all concept names A with |= F v A;
– removing r(x, y) and the tree-shaped CQ G rooted at y when |= F v ∃r.G;
– adding A(x) for all concept names A that occur in E as a top-level conjunct

(that is, that are not nested inside existential restrictions);
– adding ∃r.G as a CQ with root x, for each ∃r.G that is a top-level conjunct

of E.

Let C and D be EL concepts. We write D ≺ C if D can be obtained from C by
removing an existential restriction (not necessarily on top level, and potentially
resulting in D = > when C is of the form ∃r.E). We use ≺∗ to denote the reflexive
and transitive closure of ≺ and say that D is ≺-minimal with T |= D v A0 if
T |= D v A0 and there is no D′ ≺ D with T |= D′ v A0.

Now we are in the position to describe algorithm bcAQ. It maintains a set
M of EL concepts that represent tCQs. Let Q = (T , Σ,A0) be from (EL,AQ).
Starting from the set M = {A0}, it exhaustively performs the following steps:

1. find C ∈M , x ∈ var(C), a concept inclusion E v F ∈ T , and D, such that
D is obtained from C by applying E v F at x;

2. find a D′ ≺∗ D that is ≺-minimal with T |= D′ v A0, and add D′ to M .

Application of these steps might not terminate. We use bcAQ(Q) to denote the
potentially infinitary UCQ

∨
M |Σ where M is the set obtained in the limit and

q|Σ denotes the restriction of the UCQ q to those disjuncts that only use symbols
from Σ. The following is standard to prove, see [10,11] and Lemma 5 below for
similar results.

Lemma 4. Let Q be an OMQ from (EL,AQ). If bcAQ(Q) is finite, then it is a
UCQ-rewriting of Q. Otherwise, Q is not FO-rewritable.

The algorithm for deciding FO-rewritability in (EL,AQ) presented in [10] and
underlying the Grind system can be seen as a refinement of bcAQ. Indeed, that
algorithm always terminates and returns

∨
M |Σ if that UCQ is finite and reports

non-FO-rewritability otherwise. Moreover, the UCQ rewriting is represented in a
decomposed way and output as a non-recursive Datalog program for efficiency and
succinctness. For our purposes, the only important aspect is that, when started
on an FO-rewritable OMQ, it computes exactly the UCQ-rewriting

∨
M |Σ .

We next introduce a generalized version bc+AQ of bcAQ that takes as input an

OMQ Q = (T , Σ,A0) from (EL,AQ) and an additional EL-TBox T min, such that
termination and output of bc+AQ agrees with that of bcAQ when the input satisfies

T min = T . Starting from M = {A0}, algorithm bc+AQ exhaustively performs the
following steps:

1. find C ∈M , x ∈ var(C), a concept inclusion E v F ∈ T , and D, such that
D is obtained from C by applying E v F at x;

2. find D′ ≺∗ D that is ≺-minimal with T min |= D′ v A0, and add D′ to M .

We use bc+AQ(Q, T min) to denote the potentially infinitary UCQ
∨
M |Σ , M

obtained in the limit. Note that bc+AQ uses the TBox T for backwards chaining

and T min for minimization while bcAQ uses T for both purposes. The refined
version of bcAQ implemented in the Grind system can easily be adapted to behave
like a terminating version of bc+AQ.

Our aim is to convert an OMQQ = (T , Σ, q0) from (EL, rCQ) into a set of pairs
(Q′, T min) with Q′ an OMQ from (EL,AQ) and T min an EL-TBox such that Q is
FO-rewritable iff bc+AQ(Q′, T min) terminates for all pairs (Q′, T min) and, moreover,
if this is the case, then the resulting UCQ-rewritings can straightforwardly be
converted into a rewriting of Q.

Let Q = (T , Σ, q0). We construct one pair (Qqr , T min
qr) for each fork rewriting

qr of q0. We use core(qr) to denote the minimal set V of variables that contains
all answer variables in qr and such that after removing all atoms r(x, y) with
x, y ∈ V , we obtain a disjoint union of tree-shaped CQs. We call these CQs the
trees in qr. Intuitively, we separate the tree-shaped parts of qr from the cyclic
part, the latter identified by core(qr). This is similar to the definition of tqCQs
where, however, cycles cannot involve any quantified variables. In a forest model
of an ABox and a TBox as mentioned before Lemma 1, the variables in core(qr)
must be mapped to the ABox part of the model (rather than to the trees attached
to it). Now (Qqr , T min

qr) is defined by setting Qqr = (Tqr , Σqr , N(x)) and

Tqr = T ∪ {CxR v Dx
R | x ∈ core(qr), C v D ∈ T }

∪ { u
C(x) a tree in qr

CxR v N}

where CxR is defined as in Section 3, and Σqr is the extension of Σ with all concept
names Ax and role names rx used in Tqr such that A, r ∈ Σ.

It remains to define T min
qr , which is Tqr extended with one concept inclusion for

each fork rewriting q of q0 and each splitting Π = 〈R,S1, . . . , S`, r1, . . . , r`, µ, ν〉
of q w.r.t. Aqr , as follows. For each x ∈ avar(qr), the equality atoms in qr give
rise to an equivalence class [x]qr of answer variables, defined in the expected way.
We only consider the splitting Π of q if it preserves answer variables modulo

equality, that is, if x ∈ avar(q), then there is a y ∈ [x]qr such that ν(x) = y. We
then add the inclusion(

u
A(x)∈q
with x∈R

Aν(x)
)
u
(
u

1≤i≤`
∃rν(µ(i))i .Cq|Si

)
v N

It can be shown that, summing up over all fork rewritings and splittings, only

polynomially many concepts ∃rν(µ(i))i .Cq|Si
are introduced (this is similar to the

proof of Lemma 6 in [13]). Note that we do not introduce fresh concept names of
the form Ax∃r.C as in Section 3. This is not necessary here because of the use of
fork rewritings and splittings in Tmin.

It can be seen that when bc+AQ(Qqr , T min
qr) is finite, then it is a conformant

tUCQ in the sense of Section 3. Thus, we can also define a corresponding UCQ q
for Q as in that section, that is, q is obtained by taking each CQ from q′, replacing
every atom Ax(x0) with A(x) and every atom rx(x0, y) with r(x, y), and adding
all atoms r(x, y) from qr such that x, y ∈ core(qr). The answer variables in q are
those of q0. We aim to prove the following.

Proposition 2. Let Q = (T , Σ, q0) be an OMQ from (EL, rCQ). If bc+AQ(Qqr ,

T min
qr) is finite for all fork rewritings qr of q0, then

∨
qr
q̂qr is a UCQ-rewriting of

Q, where q̂qr is the UCQ for Q that corresponds to bc+AQ(Qqr , T min
qr). Otherwise,

Q is not FO-rewritable.

There are two exponential blowups in the presented approach. First, the
number of fork rewritings of q0 might be exponential in the size of q0. We expect
this not to be a problem in practice since the number of fork rewritings of
realistic queries should be fairly small. And second, the number of splittings can
be exponential and thus the same is true for the size of each T min

qr . We expect
that also this blowup will be moderate in practice. Moreover, in an optimized
implementation one would not represent T min

qr as a TBox, but rather check the
existence of fork rewritings and splittings that give rise to concept inclusions in
T min
qr in a more direct way. This involves checking whether concepts of the form

∃rν(µ(i))i .Cq′|Si
are derived, and the fact that there are only polynomially many

different such concepts should thus be very relevant regarding performance.

To prove Proposition 2, we introduce a backwards chaining algorithm for
computing UCQ-rewritings of OMQs from (EL, rCQ) that we refer to as bcrCQ.
In a sense, bcrCQ is the natural generalization of bcAQ to rCQs. We first need to
generalize some relevant notions underlying bcAQ.

Let q be a CQ, q′ ⊆ q, and r(x, y) ∈ q. Then q′ is a tree subquery in q with link
r(x, y) if q′ is tree-shaped and the restriction of q to the variables reachable from
y in the directed graph Gq, var(q

′) ∩ avar(q) = ∅, and s(u, z) ∈ q with u /∈ var(q′)
and z ∈ var(q′) implies s(u, z) = r(x, y). Note that, taken together, r(x, y) and q′

can be viewed as an EL-concept ∃r.q′. Let q and q′ be CQs, C v D a concept
inclusion, and x ∈ var(q). Then q′ is obtained from q by applying C v D at x if
q′ can be obtained from q by

– removing A(x) for all concept names A with |= D v A;
– for each tree subquery q′ of q with link r(x, y) such that |= D v ∃r.q′,

removing r(x, y) and q′;
– adding A(x) for all concept names A that occur in C as a top-level conjunct;
– adding ∃r.E as a CQ with root x, for each ∃r.E that is a top-level conjunct

of C.

Let q, q′ be CQs. We write q′ ≺ q if q′ can be obtained from q by selecting a tree
subquery q′′ in q with link r(x, y) and removing both r(x, y) and q′′. We use ≺∗
to denote the reflexive and transitive closure of ≺ and say that q′ is ≺-minimal
with q′ ⊆T q0 if q′ ⊆T q0 and there is no p ≺ q′ with T |= p v A0.

Started on OMQ Q = (T , Σ, q0), algorithm bcrCQ starts with a set R that
contains for each fork rewriting qr of q0 a CQ p ≺∗ qr that is ≺-minimal with
p ⊆T q0 and then exhaustively performs the same steps as bcAQ:

1. find q ∈ R, x ∈ var(q), α ∈ T , and q′ such that q′ is obtained from q by
applying α at x;

2. find a q′′ ≺∗ q′ that is ≺-minimal with q′′ ⊆T q0, and add q′′ to R.

We use bcrCQ(Q) to denote the potentially infinitary UCQ
∨
R|Σ , R obtained in

the limit.
The following establishes the central properties of the bcrCQ algorithm.

Lemma 5. Let Q = (T , Σ, q0) be an OMQ from (EL, rCQ). If bcrCQ(Q) is finite,
then it is a UCQ-rewriting of Q. Otherwise, Q is not FO-rewritable.

We use Lemmas 4 and 5 and the construction of the queries Qqr and TBoxes
T min
qr to prove Proposition 2. Essentially, one shows that the run of bcrCQ(Q)

is isomorphic to the union of the runs bc+AQ(Qqr , T min
qr). Note that Lemma 3

is a consequence of Lemma 5 and the fact that, when Q = (T , Σ, q0) is from
(EL, tqCQ), then bcrCQ(Q) contains only derivatives of q0 (since the only fork
rewriting of a tqCQ is the query itself).

5 Experiments

We have extended the Grind system [10] to support OMQs from (EL, tqCQ) and
(EL, rCQ) instead of only from (EL,AQ), and conducted experiments with real-
world TBoxes and hand-crafted conjunctive queries. The system is released under
GPL, and can be downloaded from http://www.cs.uni-bremen.de/∼hansen/grind,
together with the TBoxes and queries. The system outputs rewritings in the form
of non-recursive Datalog queries. It implements the following optimization: given
Q = (T , Σ, q0), first compute all fork rewritings of q0, rewrite away all variables
outside the core (in the same way in which tree parts of the query are removed
in Section 3) to obtain a new OMQ (T ′, Σ, q′0), and then test for each atom
A(x) ∈ q′0 whether (T ′, Σ,A(x)) is FO-rewritable. It can be shown that, if this
is the case, then Q is FO-rewritable, and it is also possible to transfer the actual
rewritings.

http://www.cs.uni-bremen.de/~hansen/grind

TBox CI CN RN Min CQ Avg CQ Max CQ Avg AQ Aborts

ENVO 1942 1558 7 0.2s 1.5s 7s 1s 0

FBbi 567 517 1 0.05s 0.5s 3s 0.3s 0

MOHSE 3665 2203 71 2s 10s 40s 6s 0

not-galen 4636 2748 159 6s 9s 28s 25s 2

SO 3160 2095 12 1s 19s 2m23s 4s 1

Table 1. TBox information and results of experiments

Experiments were carried out on a Linux (3.2.0) machine with a 3.5 GHz
quad-core processor and 8 GB of RAM. For the experiments, we use (the EL part
of) the ontologies ENVO, FBbi, SO, MOHSE, and not-galen. They are listed in
Table 1, along with information about the number of concept inclusions (CI),
concept names (CN), and role names (RN) they contain. For each TBox, we
hand-crafted 10 conjunctive queries (three tqCQs and seven rCQs), varying in
size from 2 to 5 variables and showing several different topologies.

The runtimes are reported in Table 1. Only three queries did not terminate in
30 minutes or exhausted the memory. For the successful ones, we list fastest (Min
CQ), slowest (Max CQ), and average runtime (Avg CQ). For comparison, the
Avg AQ column lists the time needed to compute FO-rewritings for all queries
(T , Σ,A(x)) with A(x) an atom in q0. This check is of course incomplete for
FO-rewritability of Q, but can be viewed as a lower bound.

In summary, we believe that the outcome of our experiments is promising.
While runtimes are higher than in the AQ case, they are still rather small given
that we are dealing with an intricate static analysis task and that many parts of
our system have not been seriously optimized. The queries with long runtimes or
timeouts contain AQs that are not FO-rewritable, which forces the decomposed
algorithm implemented in Grind to enter a more expensive processing phase.

6 Conclusion

We remark that our approach can also be used to compute FO-rewritings of
OMQs from (EL,CQ) even if the CQs are not rooted, as long as they are not
Boolean (that is, as long as they contain at least one answer variable). This follows
from (a minor variation of) an observation from [4]: FO-rewritability of non-
Boolean OMQs from (EL,CQ) can be reduced to a combination of containment
in (EL,CQ) and FO-rewritability in (EL, rCQ). It would be interesting to extend
our approach to UCQs, to the extension of EL with role hierarchies and domain
and range restrictions, or even to ELI.

Acknowledgements. We acknowledge support by ERC grant 647289 ‘CODA’.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, pp. 1–69 (2009)

2. Barceló, P., Berger, G., Pieris, A.: Containment for rule-based ontology-mediated
queries. CoRR abs/1703.07994 (2017)

3. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. J. ACM Trans. Database
Syst. 39(4), pp. 33:1–33:44 (2014)

4. Bienvenu, M., Hansen, P., Lutz, C., Wolter, F.: First order-rewritability and con-
tainment of conjunctive queries in Horn description logics. In: Proc. of IJCAI, pp.
965–971 (2016)

5. Bienvenu, M., Lutz, C., Wolter, F.: First order-rewritability of atomic queries in
Horn description logics. In: Proc. of IJCAI, pp. 754–760 (2013)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J.
Autom. Reasoning 39(3), pp. 385–429 (2007)

7. Deutsch, A., Popa, L., Tannen, V.: Physical data independence, constraints, and
optimization with universal plans. In: Proc. of VLDB, pp. 459–470 (1999)

8. Feier, C., Lutz, C., Kuusisto, A.: Rewritability in monadic disjunctive datalog,
MMSNP, and expressive description logics. In: Proc. of ICDT, pp. 1:1–1:17 (2017)

9. Hansen, P., Lutz, C.: Computing FO-rewritings in EL in practice: from atomic to
conjunctive queries. In: Proc. of ISWC (2017)

10. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the descrip-
tion logic EL and beyond. In: Proc. of IJCAI. pp. 3034–3040 (2015)

11. König, M., Leclère, M., Mugnier, M., Thomazo, M.: Sound, complete and minimal
UCQ-rewriting for existential rules. Semantic Web 6(5), pp. 451–475 (2015)

12. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Proc. of IJCAR, pp. 179–193 (2008)

13. Lutz, C.: Two upper bounds for conjunctive query answering in SHIQ. In: Proc. of
DL (2008)

14. Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in description
logics. In: Proc. of KR (2012)

	Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

