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Abstract. The chase procedure is an indispensable tool for several database ap-
plications, where its termination guarantees decidability of these tasks. Most pre-
vious studies have focused on the skolem chase variant and its termination. It
is known that the standard chase variant is more powerful in termination anal-
ysis provided a database is given. But all-instance termination analysis presents
a challenge, since the critical database and similar techniques do not work. The
interest of this paper is on the following question: How to devise a framework in
which various known decidable classes of finite skolem chase can all be properly
extended by the technique of standard chase? To address this question, we de-
velop a novel technique to characterize the activeness of all possible cycles of a
certain length in the standard chase procedure, which leads to the formulation of
a parameterized class called k-SAFE(cycle), which guarantees all-instance, all-
path termination, where the parameter takes a cycle function by which a concrete
class of finite standard chase is instantiated. The approach applies to any class
of finite skolem chase that is identified with a condition of acyclicity. More gen-
erally, we show how to extend the hierarchy of bounded rule sets under skolem
chase without increasing the complexity of data and combined reasoning tasks.

Introduction

The advent of emerging applications of knowledge representation and ontological rea-
soning have been the motivation of recent studies on existential rule languages, known
as tuple-generating dependencies (TGDs [1], also called rules) or Datalog± [2], which
have been considered a powerful modeling language for applications in data exchange,
data integration, ontological querying, and so on. A major advantage of this approach
is that the formal semantics based on first-order logic facilitates reasoning in an ap-
plication, where answering conjunctive queries over a database extended with a set of
existential rules is a primary task, but unfortunately an undecidable one in general [3].
Chase procedure is a bottom-up algorithm that extends a given database by applying
specified rules. If such a procedure terminates, given an input database D, a finite rule
set Σ and a conjunctive query, we can answer the query against Σ and D by deciding
whether the result of chase based on Σ and D entails the query.

Four variants of chase procedure have been considered in the literature, which are
called oblivious, semi-oblivious (skolem), standard (aka restricted) and core chase. With
oblivious chase being a weaker version of skolem chase and core chase as a parallel,
wrapping procedure of standard chase (which indeed captures all universal models),
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the main interests have been on skolem [4] and standard chase [5]. In particular, given
a rule set and a database, we know that whenever skolem chase terminates so does the
standard chase, but the reverse does not hold in general. Thus, standard chase is more
powerful in termination analysis.

In spite of existence of many notions of acyclicity in the literature, (cf. [6] for a com-
prehensive survey), there are natural examples from the real world ontologies that do
not belong to any known class, but with terminating standard chase. However, finding
any characterization to assure standard chase termination is a very challenging task, and
in the last decade, to the best of our knowledge only one condition has been found [7],
originally in the context of description logics. As shown in [8], the problem of check-
ing all-instance termination of standard chase is not a recursively enumerable problem
(i.e. in general, the set of all-instance terminating standard chase TGDs is not enumer-
able). The tools developed in this paper are the first of its kind to provide an effective
enumeration algorithm to characterize all-instance terminating standard chase TGDs.

In this work, we provide a highly general theoretical framework to identify strict
superclasses of all existing classes of finite chase that we are aware of.

The main contributions of this paper are as follows:

1. We introduce a novel characterization of derivations under standard chase. We show
that, although there is no unique database for termination analysis under standard
chase, there exist a collection of “critical databases” by which the non-termination
behavior of a derivation sequence can be captured. This is shown in Theorem 1.

2. We define a hierarchy of decidable classes of finite standard chase, called k-SAFE(cycle),
which, when given a definition of cycle, is instantiated to a concrete class of finite
chase. This is achieved by our Theorem 3 based on which various acyclicity con-
ditions under skolem chase can be generalized to introduce classes of finite chase
beyond finite skolem chase.

3. We show that the entire hierarchy of δ-bounded rule sets under skolem chase [9]
can be generalized by introducing δ-bounded sets under standard chase, and as
shown in Theorem 8, this extension does not increase the reasoning complexity
under skolem chase.

Preliminaries

We assume the following pairwise disjoint sets of symbols: Const a countably infinite
set of constants, N a countably infinite set of (labeled) nulls, and V a countably infinite
set of variables. A schema is a finite set R of relation (or predicate) symbols, where
eachR ∈ R is assigned a positive integer as its arity which is denoted by arity(R). Let
Dom = Const∪N. Terms are symbols in Dom∪V. Ground terms are terms involving no
variables. An atom is an expression of the form R(t), where t ∈ (Const ∪ V)arity(R)

and R is a predicate symbol from R. A general instance (or simply an instance) I is a
set of atoms over the relational schema R; term(I) denotes the set of terms occurring
in I . A database is a finite instance I where terms are constants from Const. Given two
instances I and J over the same schema, a homomorphism h : I → J is a mapping on
terms which is identity on constants and for every atom R(t) of I we have that R(h(t))
(which we may write alternatively by h(R(t))) is an atom of J such that h(I) ⊆ J .
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A tuple-generating dependency (also called a rule) is a first-order sentence σ of the
form: φ(x,y)→ ∃zψ(x, z), where x and y are sets of universally quantified variables
(with the quantifier omitted) and φ and ψ are conjunctions of atoms constructed from
relation symbols from R, constants from Const, and variables from x ∪ y and x ∪ z
respectively. The formula φ (resp. ψ) is called the body of σ, denoted body(σ) (resp.
the head of σ, denoted head(σ)).

Given a rule σ, a skolem function fσz is introduced for each variable z ∈ z where
arity(fσz ) = |x|. Terms constructed from skolem functions and constants are called
skolem terms. In this paper, we will regard skolem terms as a special class of nulls.
Ground terms in this context are constants from N or skolem terms. The functional
transformation of σ, denoted sk(σ), is the formula obtained from σ by replacing each
occurrence of zi ∈ z with fσzi(x). The skolemized version of a rule set Σ is the union
of sk(σ) for all rules σ ∈ Σ and is denoted sk(Σ).

We use varu(σ) and varex(σ) to refer to the sets of universal and existential vari-
ables appearing in σ, and var(σ) refers to the set of all variables appearing in σ. We
further define: a path (based on Σ) is a nonempty (finite or infinite) sequence of rules
from Σ; a cycle C = (σ1, ..., σn) (n ≥ 1) is a finite path whose first and last elements
coincide (i.e., σ1 = σn); a k-cycle (k > 0) is a cycle in which at least one rule has k+1
occurrences and all other rules have k + 1 or less occurrences. Given a path P , with
Rules(P ), we denote the set of distinct rules used in P .

We assume all rules are standardized apart so that no variable is shared by more
than one rule; given an instance I , term(I) denotes the set of all terms occurring in I;
and for a set or a sequence Q, the cardinality |Q| is defined as usual.

Skolem and Standard Chase Variants

Chase is a fixpoint construction that accepts as input a database D and a finite set Σ of
rules and adds atoms to D.

This paper is concerned with the skolem and standard chase variants. Below, let D
be a database and Σ a rule set over the same schema.

We define skolem chase based on a breadth-first fixpoint construction as follows:
we let chase0sk(D,Σ) = D and, for all i > 0, let chaseisk(D,Σ) be the union of
chasei−1sk (D,Σ) and h(head(sk(σ)) for all rules σ ∈ Σ and all homomorphisms h
such that h(body(σ)) ⊆ chasei−1sk (D,Σ). Then, we let chasesk(D,Σ) be the union of
chaseisk(D,Σ) for all i ≥ 0.

Due to order sensitive derivations, standard chase is defined over paths. In this paper,
when we define a homomorphism h : I → J , if I and J are clear from the context, we
may define such a homomorphism as a mapping from variables to terms.

Definition 1. Let P = (σ1, σ2, ...) be a path, where σi ∈ Σ for all i ≥ 1, and H =
(h1, h2, ...) homomorphisms such that |P | = |H|. A standard chase path based on
Σ, denoted chase pstd(D,P,H), expresses a sequence of chase steps that satisfy the
following conditions: for all i ≥ 1,

(i) hi(body(σi))⊆ Di−1, with hi : varu(σi)→ term(Di−1)
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(ii) h+i (head(σi)) 6⊆ Di−1 for all extensions h+i of hi,1 such that h+i : var(σi) →
term(Di−1)

where D0 = D and Di = Di−1∪hi(head(sk(σi))). We also use chase pstd(D,P,H)
to denote the union of Di, ∀i ≥ 0.

By abuse of notation, we may say “chase pstd(D,P,H) is a standard chase path”
to mean that the sequence of chase steps on the path P using H , for the given database
D, constitutes a standard chase path.

We say that a rule set Σ has finite standard chase, or is terminating under standard
chase, if there are only finite standard chase paths based on Σ, for all databases.

The classes of rule sets whose chase terminates on all paths (all possible derivation
sequences of chase steps) independent of given databases (thus all instances) is denoted
by CT4∀∀, where4 ∈ {sk, std} (sk for skolem chase and std for standard chase).

In skolem chase, the applied rule σ and the related homomorphism h form a trigger
(σ, h), w.r.t. the conclusion set generated so far. If such a skolem chase step is also a
standard chase step, (σ, h) is called an active trigger [10].

A conjunctive query (CQ) Q is a formula of the form Q(x) := ∃yΦ(x,y), where x
and y are tuples of variables; Φ(x,y) is a conjunction of atoms with variables in x∪y.
A boolean conjunctive query (BCQ) is a CQ of the form Q().

It is well-known that, for all boolean conjunctive queries (BCQs) q, D ∪ Σ |= q
(under the semantics of first-order logic) if and only if chasesk(D,Σ) |= q and if and
only if

⋃
∀P,H chase pstd(D,P,H) |= q [11].

To illustrate the practical relevance of the standard chase, let us consider modeling
a secure communication protocol where two different signal types can be transmitted:
type A (or inter-zone) and type B (intra-zone). Let us consider a scenario where a trans-
mitter from one zone requests to establish a secure communication with a receiver from
another zone in this network. There are an unknown number of trusted servers. Before
a successful communication between two users can occur, following a handshake pro-
tocol, the transmitter must send a type A signal to a trusted server in the same zone and
receive an acknowledgment back. Then, that trusted server sends a type B signal to a
trusted server in the receiver zone.

Below, we use existential rules to model the described communication (the model-
ing here does not include the actual process of transmitting signals).

Example 1. Consider the rule set Σ1 below, where S(x, y) denotes a request to send a
type A signal from x to y and D(x, y) q request to send a type B signal from x to y.
Note that u and v are trusted servers in the zone where x and y are located, respectively.

D(x, y)→ ∃uS(x, u), S(u, x)
D(x, y), S(x, z), S(z, x)→ ∃v D(z, v)

Let sk(Σ1) be
σ1 : D(x, y)→ S(x, s1(x)), S(s1(x), x)
σ2 : D(x, y), S(x, z), S(z, x)→ D(z, s2(z))

1 An extension h+
i of hi, denoted h+

i ⊇ hi, assigns in addition to mapping hi ground terms to
existential variables.
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where s1 and s2 are function symbols. With the database D0 = {D(t, r)}, after apply-
ing σ1 and σ2, we have: D0 ∪ {S(t, s1(t)), S(s1(t), t), D(s1(t), s2(s1(t)))}.
Clearly, the path (σ1, σ2) leads to a standard chase path, but (σ1, σ2, σ1) does not, since
the trigger for applying the last rule in the path is not active - the head can be satisfied
by already derived atoms S(s1(t), t) and S(t, s1(t)).

Now let us consider another rule set Σ2 = {r1, r2}, where,

r1 : D(x, y)→ ∃uB(u), S(x, u), S(u, x)
r2 : D(x, y), S(x, z), S(z, x), B(z)→ ∃vB(v), D(z, v)

With the same input database D0 , we can find out that any non-empty prefix of P =
(r1, r2, r1, r2, r1) leads to a standard chase path except P itself. Note that P is a 2-cycle.

Finite Standard Chase by Activeness

Since skolem chase is based on triggers and standard chase applies active triggers, stan-
dard chase provides a more powerful tool for termination analysis for a given database.
However, this does not extend to the case of all-instance termination, as the critical
database technique [12] for skolem chase does not apply to standard chase. Recall that
a critical database is one that contains a ground atom for each relation symbol filled
with exactly one fresh constant.

Example 2. With Σ = {E(x1, x2) → ∃zE(x2, z)} and the critical database Dc =
{E(∗, ∗)}, where ∗ is a fresh constant, the skolem chase does not terminate w.r.t. Dc,
which is a faithful simulation of the termination behavior of Σ under skolem chase.
But the standard chase of Σ and Dc terminates in zero step, as no active triggers exist.
However, the standard chase of Σ and database {E(a, b)} does not terminate.

The above example is not at all a surprise, as the complexity of membership check-
ing in the class of rule sets that have finite standard chase, CT std∀∀ , is coRE-complete
[8], which implies that in general, there exists no effectively computable (finite) set of
databases which can simulate termination w.r.t. all input databases 2. What we can do
is to identify an RE subset of CT std∀∀ , whose size can grow asymptotically and, at the
same time, whose finite subsets can be checked for standard chase termination.

One natural consideration draws attention to the notion of cycles since, firstly, cycles
are recursively enumerable with increasing lengths, and secondly, it is these cycles that
may cause non-termination. Thus, checking cycles for safety yields an RE set, which
can be extended by checking more nested cycles. However, a challenging question is
which databases to be checked against. In the following, we tackle this question.

Capturing Activeness by Witness Databases

Given a path, our goal is to simulate derivations under standard chase with an arbitrary
database, by derivations with a collection of databases. If this simulation captures all

2 Even if there exists such finite databases, there is no computable bound on their size.
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derivations in the path with any database, by running this simulation we can determine
whether the given rule set is terminating for some finite set of pre-specified paths, for
all databases.

We only need to consider the type of paths that potentially lead to cyclic applications
of chase in the sense that the last rule of the path depends on the first, possibly through
some intermediate ones in between.

Example 3. Consider the rule set Σ = {σ} where

σ : T (x, y), P (x, y)→ ∃zT (y, z)

WithD0 = {T (a, b), P (a, b)}, we have: chase∆(D0, Σ) = D0∪{T (b, f(b))}, where f
is a skolem function and ∆ = {std, sk}. It can be seen that after the first application of
σ, there does not exist any more trigger and the skolem chase of Σ and D0 terminates.

Note that σ in Example 3 depends on itself based on the classic notion of unification.
So, with the aim of ruling out similar examples, we need to consider a dependency
notion under which the cycle P = (σ, σ) in the above example is not identified as
a dangerous cycle. For this purpose, we consider the notion of rule dependencies as
introduced in [13], which is based on piece unification [14].

Definition 2. (Piece unifier) Given a pair of rules (σ1, σ2), a piece unifier of body(σ2)
and head(σ1) is a unifying substitution θ of var(B) ∪ var(H) where B ⊆ body(σ2)
and H ⊆ head(σ1) which satisfies the following conditions:

(a) θ(B) = θ(H), and
(b) variables in varex(H) are not unified with variables that occur in both B and

body(σ2) \B.

Condition (a) gives a sufficient condition for rule dependency, but it may be an
overestimate, which is constrained by condition (b). It can be easily observed that in
Example 3, condition (a) holds (for B = {T (x, y)} and H = {T (y, z)} where θ =
{x/y, y/z}) but condition (b) does not (since varex(H) = {z} and z is unified with y
which occurs inB and body(σ)\B = {P (x, y)}). Therefore, based on Def. 2, no piece
unifier of body(σ) and head(σ) exists.

Definition 3. Given two rules σ1 and σ2, we say that σ2 depends on σ1, if there is a
piece unifier of body(σ2) with head(σ1), and we say that σ2 depends on σ1 w.r.t. θ, if
θ is such a piece unifier.

Terminology: Given a vector V = (v1, ..., vn) where n ≥ 2, a projection of V
preserving end points, denoted V ′ = (v′1, ..., v

′
m), is a projection of V (as defined

in usual way), with the additional requirement that the end points are preserved, i.e.,
v′1 = v1 and v′m = vn. By abuse of terminology, V ′ above will simply be called a
projection of V .

Definition 4. Let Σ be a rule set, D a database, and P a path (σ1, ..., σn) with n ≥
2. A vector of homomorphisms H = (h1, ..., hn) is called chained for P if there is
a projection H ′ = (h′1, ..., h

′
m) of H and the corresponding path projection P ′ =

(σ′1, ..., σ
′
m) of P such that for all 1 ≤ i < m, σ′i+1 depends on σ′i w.r.t. h′i.
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With the aim of capturing condition (ii) of Def. 1 based on the notions that we
introduced, in what follows, we define the notion of activeness.

Definition 5. (Activeness) LetΣ be a rule set andD a database. A pathP = (σ1, ..., σn)
is said to be active w.r.t. D, if there exists a chained vector of homomorphisms H =
(h1, ..., hn) for P such that chase pstd(D,P,H) is a standard chase path for D,P,H
based on Σ. In this case, H = (h1, ..., hn) is called a witness of the activeness of P
w.r.t. D.

Intuitively, the definition says that a path P is active w.r.t. a database D if there is
an active trigger for each rule application in the path, hence it is a standard chase path,
and the last rule application depends on some earlier ones and eventually on the first
on the path. In other words, if P is not active w.r.t. D we then know that P is either
“terminating” w.r.t. D, or for each vector of homomorphisms H = (h1, ..., hn) such
that chase pstd(D,P,H) is a standard chase path, H is not chained for P ; thus it does
not pose as a “dangerous cycle” even in the case σ1 = σn.

LetH = (h1, ..., hn) be a vector of homomorphisms such that chase pstd(D,P,H)
is a standard chase path. To determine ifH is chained for P ,O(n2) checks are needed,3

where each hi(body(σi)) is checked against every hj(head(σj)), for all j < i, to
determine if σi depends on σj w.r.t. hi ∪ hj .

We are now ready to address the issue of which databases to be checked against for
termination analysis. First, let us define a mapping ei : V ∪ Const → 〈V, i〉 ∪ Const,
for each i ∈ N, where constants in Const are mapped to themselves and each variable
v ∈ V is mapped to 〈v, i〉.

Definition 6. Given a path P = (σ1, σ2, ...), we define

DP = {ei(body(σi)) : 1 ≤ i < |P |+ 1}. (1)

A pair 〈x, i〉 inDP is intended to name a fresh constant, based on the derivation step
in P in which the variable x occurs. In this way, all these fresh constants are distinct.
Note that DP is a set of atoms over these new constants (and the constants already
appearing in rules) and is independent of any input database. Let us call these pairs
indexed constants and use short hand vi for 〈v, i〉.

Intuitively, atoms in DP are intended to simulate those in a derivation sequence
where body atoms in an applied rule are satisfied by atoms from a given database.
Since in general we don’t know which body atoms are satisfied by a given database in
each step of a derivation sequence, we need to test activeness using each subset of DP .
This process is finite whenever P is.

Note that due to the structure of DP , application of each rule to DP may lead to
a new trigger and therefore, without the notion of chained property, every path can be
trivially active.

Example 4. Consider the rule set Σ of Example 3 and a path P = (σ, σ). We have:
DP = {T (x1, y1), P (x1, y1), T (x2, y2), P (x2, y2)}. We see thatP is not active w.r.t.DP ,
as there does not exist any chained vector of homomorphisms H = (h1, h2) for P .

3 Note that the problem of piece unifiability is known to be NP-complete.
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Theorem 1. Let Σ be a rule set, and P = (σ1, ..., σn) a path. P is active w.r.t. some
database if and only if P is active w.r.t. some database D∗ ⊆ DP .

Definition 7. A k-cycle P = (σ1, ..., σn) is safe if for all databases D, P is not active
w.r.t. D. A rule set Σ is said to be k-safe if all k-cycles of Σ are safe.

It then follows from Theorem 1, we have

Corollary 2. Let Σ be a rule set. For any k-cycle P = (σ1, ..., σn), if for all subsets
D∗ of DP , P is not active w.r.t. D∗, then P is safe.

E.g., it can be verified that the rule set Σ1 in Example 1 is k-safe for any k ≥ 1.
We now introduce a hierarchy of classes of finite standard chase based on the notion

of k-safety. The idea is to introduce a parameter of cycle function to generalize various
notions of acyclicity in the literature.

Definition 8. Let Σ be a rule set and C the set of all finite cycles based on Σ. A cycle
function is a mapping cycleΣ : C → {T, F}.

Let cycle be a binary function from rule sets and cycles of which cycleΣ is the
projection function on its first parameter, i.e. cycle(Σ,C) = cycleΣ(C). By abuse of
terminology, the function cycle, which in addition takes a rule set as a parameter, is also
called a cycle function.

Definition 9. (k-SAFE(cycle) rule sets) A rule set Σ is said to be k-SAFE(cycle), or
belong to k-SAFE(cycle) (under cycle function cycle), if for every k-cycle C which is
mapped to T under cycleΣ , C is safe.

In the following, we show how to define a cycle function from any arbitrary acyclic-
ity condition of finite skolem chase such as weak acyclicity (WA) [11], super-weak
acyclicity (SWA) [12], etc.

Definition 10. Let Π be an arbitrary condition of acyclicity of finite skolem chase. A
cycle function ΦΠ is defined as follows: For each rule set Σ and each cycle C based on
Σ if the condition for checking whetherΠ holds for rules in Rules(C) 4, then ΦΠ maps
(Σ,C) to F ; otherwise ΦΠ maps (Σ,C) to T .

Example 5. Considering the rule set Σ1 from Example 1, and assuming Π = WA in
Def. 10, ΦΠ maps all cycles C such that Rules(C) ∩ {σ1, σ2} 6= {σ1, σ2} to F and the
rest of the cycles to T .

The following theorem is easy to show.

Theorem 3. Let Π be a class of finite skolem chase that is defined by a condition of
acyclicity and ΦΠ be the corresponding cycle function as defined above. Then, for all
k ≥ 1, (i) k-SAFE(ΦΠ) ⊃ Π , and (ii) k-SAFE(ΦΠ) ⊆ CT std∀∀ .

Example 6. It is not difficult to check that the rule setΣ1 in Example 1 is 2-SAFE(ΦWA),
where ΦWA is the corresponding cycle function based on the condition of acyclicity for
WA. Note that ΦWA maps 1-cycles of the form (σi, σi), where i = 1, 2, to F and all
other 1-cycles to T 5. Similarly, the rule set Σ2 in the same example is 2-SAFE(ΦWA).

4 Recall that Rules(C) is the set of distinct rules in C.
5 Note that e.g, for 1-cycles of the form (σ2, σ2) or (σ2, σ1, σ1, σ2), there is no vector of homo-

morphisms satisfying the chained property.
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Extension of Bounded Rule Sets

In [9], a family of existential rule languages with finite (skolem) chase based on the no-
tion of δ-boundedness has been introduced and the data and combined complexities of
reasoning with those languages for specific bound functions (k-exponentially bounded
functions). Our aim in this section is to provide an effective method to extend bounded
languages to introduce all-instance terminating standard chase classes. Before we state
our results, let us introduce some notions.

A bound function is a function from positive integers to positive integers. A rule
set Σ is called δ-bounded under skolem chase for some bound function δ, if for all
databases D, ht(chasesk(D,Σ)) ≤ δ(||Σ||), where ||Σ|| is the number of symbols oc-
curring in Σ, and ht(A) is the maximum height (maximum nesting depth) of skolem
terms that have at least one occurrence in A, and∞ otherwise. Let us denote by δ-Bsk
the class of δ-bounded rule sets under skolem chase.

Lemma 4. For any given rule set Σ and bound function δ, there exists a cycle function
Fδ,Σ : C → {T, F}, where C is set of all finite cycles from Σ with the following
property: Fδ,Σ maps cycles C from Σ of length greater than ||Σ||O(δ(||Σ||)) to F and the
rest of cycles from Σ to T . Note that this property provides a legitimate cycle function
based on Def. 8.

We call the cycle function Fδ,Σ constructed in the above lemma, δ-cycle function
w.r.t. Σ. We are ready to define the standard chase counterpart of δ-bounded rule sets.

Definition 11. Given a bound function δ, a rule set Σ is called δ-bounded under the
standard chase variant if, for all databases D, Σ is in k-SAFE(cycle), where k =
||Σ||O(δ(||Σ||)) and cycle is a δ-cycle function w.r.t. Σ.

Denote the set of all δ-bounded rule sets under the standard chase variant by δ-Bstd.
The next result states the relationship between δ-Bstd and δ-Bsk.

Theorem 5. For any bound function δ, δ-Bstd ⊃ δ-Bsk.

Membership Complexity

We consider the membership problem in δ-Bstd languages: given a rule set Σ and a
bound function δ, whether Σ is δ-bounded under the standard chase variant.

Proposition 6. Let δ be a bound function computable in DTIME(T (n))6 for some
function T (n). Then, it is in

DTIME(Cδ + ||Σ||||Σ||
O(δ(||Σ||))

× |P(Dc)| × Cc × ΠP
2

7)

to check if a rule set Σ is δ-bounded under the standard chase variant, where Cδ =

T (log||Σ||)O(1), |P(Dc)| = 2b(Σ)×||Σ||O(δ(||Σ||))
in which b(Σ) is the maximum number

of body atoms for rules in Σ, and Cc = ||Σ||2O(δ(||Σ||)) × 2||Σ||
O(δ(||Σ||))

.

6 The set of all decision problems solvable in T (n) using a deterministic Turing machine.
7 The class of problems solvable in coNP using an NP oracle.
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Now consider what we call exponential tower functions:

expκ(n) =

{
n κ = 0

2expκ−1(n) κ > 0

Then, we have the following corollary from Prop. 6:

Corollary 7. Checking if a rule ontology is expκ-bounded under standard chase variant
is in (κ+ 2)-EXPTIME.

The corollary implies that, for any exponential tower function δ, the extra computa-
tion for checking δ-boundedness under standard chase stays within the same complexity
upper bound for δ-boundedness under skolem chase, as reported in [9].

Remark 1. For membership checking, switching from skolem to standard chase variant
does not increase the complexity for expκ-bounded rule sets. However, it should be
clear that for some syntactic classes of finite skolem chase which are known to belong
to exp0-bounded rule sets (e.g. WA, JA, SWA, etc.), the penalty for going beyond finite
skolem chase is the higher cost of membership checking.

Data and Combined Complexity:
Since the size of the tree generated by standard chase has the same upper bound

as that generated by skolem chase, it is not difficult to show that the complexity upper
bound for checking Σ ∪D � q for expκ-bounded rule sets is the same for the standard
and skolem chase variants. It then follows from [9] that we have

Theorem 8. The problem of Boolean conjunctive answering for expκ-bounded rule
ontologies under standard chase variant is (κ + 2)-EXPTIME-complete for combined
complexity and PTIME-complete for data complexity.

Remark 2. Based on Theorem 8, it can be observed that the entire hierarchy of δ-
bounded rule sets under skolem chase introduced in [9] can be extended with no in-
crease in combined and data complexity of reasoning. This holds even for individual
syntactic classes of finite skolem chase (such as WA, JA, SWA, etc.).

Related Work and Discussion

Many sufficient conditions have been discovered for termination of skolem and obliv-
ious chase based on different notions of acyclicity based on graphs derived from the
given rule set. Typically, such a graph is constructed based on some notion of depen-
dencies in the rule set, e.g., position dependencies and rule dependencies. These classes
include WA (weak acyclicity) [11], STR (stratification) [15], safety [16], SWA (super-
weak acyclicity) [4], aGRD (acyclicity of graph of rule dependencies) [17], and JA (joint
acyclicity) [18].

To the best of our knowledge, [7] is the only work that have studied termination
of the standard chase towards positive results. Their results are only in the context of
Horn-SRIQ description logics and not applicable to existential rules. In [19] a notion

10



called well of positivity has been devised which is an extension of the critical instance
technique and has been applied in undecidability results. For their purpose, they only
need one extra constant in addition to the well of positivity to show undecidability of
the standard chase for all instances on all paths. However, in general, there is no bound
for the number of constants needed to witness non-termination of the standard chase.

Under reasonable assumptions, one can find syntactic conditions that guarantee ter-
mination of the standard chase for all instances and all paths. As an example, consider
the following rule Σ = {σ}, where:

σ : E(x, y)→ ∃u1 . . . ukE(y, u1), E(u1, u2), . . . , E(uk, y)

for some k ≥ 1. It can be observed that starting from any database D, chasestd(D,Σ)
terminates in maximum |IE |+1 steps, where IE is the databaseD restricted to the tuple
over predicate E. Intuitively, the reason that Σ ∈ CT std∀∀ is the observation that pred-
icate E (for which E[i], for some i, is the placeholder of (potentially) infinite terms),
when seen as a graph in which it is interpreted as the edge relation, forms a cycle in
head(σ), where σ belongs to the following cycle C = (σ, σ) that is mapped to T under
any condition of (skolem) acyclicity.

In [20] it is shown that for (weakly-)guarded and (simple-)linear TGDs, the problem
of deciding (non-)termination of oblivious/skolem chase is decidable. This characteri-
zation leads to finding upper bounds for the length of cycles that should be considered in
order to decide (non-)termination w.r.t. the skolem chase. Theorem 1 provides tools to
extend their results to all-instance, all-path standard chase variant. Note that they only
consider single-head TGDs 8. So, their results cannot be trivially extended to the stan-
dard variant of chase for (arbitrary) multi-head TGDs. Further results in this direction
are outside of the focus of this paper and is the subject of the future work.

Conclusions

In this work we introduced a technique to characterize finite standard chase, which can
be applied to extend any class of finite skolem chase identified by a condition of acyclic-
ity. Then, we showed how to apply our techniques to extend δ-bounded rule sets. Our
complexity analyses showed that this extension does not increase the complexities of
membership checking, nor the complexity of combined and data reasoning tasks for
δ-bounded rule sets under standard chase compared to skolem chase. However, com-
paring with some subclasses of the exp0-bounded language, membership checking for
finite standard chase incurs higher cost.

We will next investigate conditions for subclasses with a reduction of cost for mem-
bership testing. One idea is to find syntactic conditions under which triggers to a rule
are necessarily active, and the other is on symmetric conditions under which triggers
of certain kind cannot be active. We anticipate that position graphs could be useful in
these analyses.

8 The standard transformation of multi-head TGDs to single-head TGDs preserves oblivi-
ous/skolem chase termination, but does not preserve standard chase termination.
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