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Abstract. Abduction is a useful decision problem that is related to di-
agnostics. Given some observation in form of a set of axioms, that is
not entailed by a knowledge base, we are looking for explanations, sets
of axioms, that can be added to the knowledge base in order to entail
the observation. ABox abduction limits both observations and explana-
tions to ABox assertions. In this work we focus on direct tableau-based
approach to answer ABox abduction. We develop an ABox abduction
algorithm for the ALCHO DL, that is based on Reiter’s minimal hitting
set algorithm. We focus on the class of explanations allowing atomic
and negated atomic concept assertions, role assertions, and negated role
assertions. The algorithm is sound and complete for this class. The al-
gorithm was also implemented, on top of the Pellet reasoner.
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1 Introduction

Abductive reasoning [11] focuses on deriving explanations. Given a knowledge
base K and an observation O that is not entailed (i.e., K 6|= O) we are looking
for an explanation E that, when added to K, would allow to entail O (i.e.,
K∪E |= O). From the DL perspective, we distinguish between TBox abduction,
where both E and O are limited to TBox axioms, and ABox abduction, where
they are limited to ABox assertions [3]. While TBox abduction may be used, e.g.,
in ontology engineering, ABox abduction found uses in diagnostic reasoning [8,
13, 3], or tasks such as multimedia interpretation [12]. In our research we focus
on the latter problem.

Compared to the approaches based on translations to different formalisms
[10, 2], Halland and Britz [5, 4] propose a direct tableau-based approach built
on top of Reiter’s minimal hitting set algorithm [15]. This method avoids the
translation overhead, and may also build on the existing tableau optimization
techniques for DLs which have been intensively studied [17].

In our previous paper [14], we have extended the approach of Halland and
Britz, and we have provided an implementation on top of the Pellet reasoner
[16]. In this paper, we have further extended this work: we lifted the algorithm
to the ALCHO DL; we have enabled support for multiple observations in form
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of any ABox assertions; we have also extended the explanations to include role
assertions and negated role assertions; and we have proven soundness and com-
pleteness w.r.t. this class of observations and explanations.

2 ABox Abduction in DL

We build on top of the ALCHO DL [1]. A DL vocabulary consists of countably
infinite mutually disjoint sets of individuals NI, roles NR, and atomic concepts
NC. Concepts are recursively built using constructors ¬, u, ∃, {a}, as shown in
Table 1. Additional concepts union (CtD := ¬(¬Cu¬D)) and value restriction
(∀R.C := ¬∃R.¬C) are defined as syntactic sugar; and also ¬¬C := C by
definition.

A knowledge base K = (T ,A) consists of a TBox T and an ABox A. A TBox
is a finite set of GCI and RIA axioms of the form C v D and R v S, where
C,D are concepts and R,S ∈ NR. An ABox is a finite set of concept assertions
of the form C(a), and role assertions of the form R(a, b), where a, b ∈ NI, C is
a concept, and R ∈ NR.

Table 1. ALCHO syntax and semantics

Concept Constraint

¬C (complement) ∆I \ CI

C uD (intersection) CI uDI

∃R.C (existential restriction) {x ∈ ∆I | (x, y) ∈ RI ∧ y ∈ CI}
{a} (nominal) {aI}

Axiom Constraint

R v S RI ⊆ SI

C v D CI ⊆ DI

C(a) aI ∈ CI

R(a, b) (aI , bI) ∈ RI

An interpretation is a pair I = (∆I , ·I), where ∆I 6= ∅ is a domain, and the
interpretation function ·I maps each individual a ∈ NI to aI ∈ ∆I , each atomic
concept A ∈ NC to AI ⊆ ∆I , each role R ∈ NR to RI ⊆ ∆I × ∆I in such a
way that the constraints on the left-hand side of Table 1 are satisfied.

An interpretation I satisfies an axiom ϕ (denoted I |= ϕ) if the respective
constraint in Table 1 is satisfied. It is a model of a knowledge base K = (T ,A)
(denoted I |= K) if I |= ϕ for all ϕ ∈ T ∪ A. A knowledge base is consistent, if
there is at least one interpretation I such that I |= K. A knowledge base entails
an axiom ϕ (denoted K |= ϕ) if I |= ϕ for each I |= K.

We define ¬ϕ = ¬C(a) for a concept assertion ϕ = C(a). Thanks to pres-
ence of nominals in ALCHO [7, 5] we are also able to define ¬ϕ = ¬R(a, b) :=
∀R¬{b}(a) for a role assertion ϕ = R(a, b), and ¬ϕ := R(a, b) for ϕ = ¬R(a, b).
In addition, ¬A = {¬ϕ | ϕ ∈ A} for any set of ABox assertions A.

In ABox abduction, we are given a knowledge base K and an observation
O consisting of ABox assertions, that is, some evidence we have observed. The
task is to find an explanation E , again, consisting of ABox assertions, such that
K ∪ E |= O.
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Definition 1 (ABox Abduction Problem [3]). An ABox abduction problem
is a pair P = (K, O) such that K is a knowledge base in DL and O is a set of
ABox assertions. A solution of P (also called explanation) is any finite set E of
ABox assertions such that K ∪ E |= O.

Example 1. Consider the ABox abduction problem P = (K, O), where knowl-
edge base K has two axioms:

Professor t Scientist v Academician (1)

AssocProfessor v Professor (2)

and we observe O = {Academician(jack)}, while K 6|= O. There is a number of ex-
planations Ei s.t. K∪Ei |= O, e.g. E1 = {Professor(jack)}, E2 = {Scientist(jack)},
E3 = {Professor(jack),Scientist(jack)}, E4 = {AssocProfessor(jack)}, and even
E5 = {Academician(jack)}.

While Definition 1 establishes the basic reasoning mechanism of abduction,
some of the explanations it permits are clearly undesired. The explanations
should, at minimum, fulfil some basic sanity requirements.

Definition 2 ([3]). Given an ABox abduction problem P = (K, O) and its so-
lution E we say that:

1. E is consistent if E ∪ K 6|= ⊥, i.e. E is consistent w.r.t. K;

2. E is relevant if E 6|= O, i.e. E does not entail O;

3. E is explanatory if K 6|= O, i.e. K does not entail O.

An explanation should be consistent, as anything follows from inconsistency;
and so, an explanation that makes K inconsistent does not really explain the
observation. It should be relevant – it should not imply the observation directly
without requiring the knowledge base K at all. And it should be explanatory,
that is, we should not be able to explain the observation without it.

Example 2. Consider the ABox abduction problem P = (K, O) and its solu-
tions E1, . . . , E5 from Example 1. The explanations E1, . . . , E4 are consistent, rel-
evant, and explanatory. However, E5 = {Academician(jack)} is not relevant, since
E5 |= O.

Hereafter, when we say explanation we always mean a consistent, relevant,
and explanatory explanation, unless indicated otherwise. Subsequently we can
think about further requirements to eliminate undesired explanations. Usually
it is clear that we want to explain observations only with sufficient assumptions
and not to hypothesize too much. Therefore syntactic minimality is defined.

Definition 3 (Syntactic Minimality). Assume an ABox abduction problem
P = (K, O). Given two solutions E and E ′ of P, we say that E is (syntactically)



4 Júlia Pukancová and Martin Homola

smaller than E ′ if E ⊆ E ′.1 We further say that a solution E of P is syntactically
minimal if there is no other solution E ′ of P that is smaller than E.

Example 3. Consider the ABox abduction problem P = (K, O) from Example 2.
Four explanatory, consistent, and relevant explanations were found. We may
observe that E1 = {Professor(jack)} and E2 = {Scientist(jack)} are both smaller
than E3 = {Professor(jack),Scientist(jack)}, i.e. E1 ⊆ E3 and E2 ⊆ E3. Therefore
E3 is not a syntactically minimal explanation, while the other three are.

3 Our Approach

Based on Reiter’s work [15], on the proposal of Halland and Britz [5, 4], and on
our previous works [13, 14] we define an ABox abduction algorithm for ALCHO.

For a single observation O, a solution of an abduction problem P = (K, O)
according to Definition 1 can be obtained as any E s.t. K∪E∪{¬O} is inconsistent
(due to reducibility of entailment into consistency checking [1]). As showed by
Reiter [15], we can compute the minimal explanations of P by finding all minimal
hitting sets for all models of K ∪ {¬O}.

Definition 4 (Minimal Hitting Set [15, 9]). A hitting set for a collection of
sets F is a set H s.t. H ∩ S 6= {} for every S ∈ F . A hitting set H for F is
minimal if there is no other hitting set for F s.t. H ′ ( H.

Definition 5 (HS-Tree [15]). A HS-tree for F is T = (V,E,L,H), where
(V,E) is a minimal tree in which the labelling function L labels the nodes of V
by elements of F , the edges of E by elements of sets in F , and H(n) is the set
of edge-labels from the root node to n ∈ V , s.t.: (a) for the root r ∈ V : L(r) = S
for some S ∈ F , if F 6= {}, otherwise L(r) = {}; (b) for each n ∈ V : L(n) = S
for some S ∈ F s.t. S ∩H(n) = {}, if such S ∈ F exists, otherwise L(n) = {};
(c) each n ∈ V has a successor nσ for each σ ∈ L(n) with L(n, nσ) = σ.

A HS-tree T for F contains all minimal hitting sets but it may contain some
other hitting sets. For sake of optimization Reiter [15] proposed to construct HS-
tree by breadth-first search and to prune it as follows: a node n ∈ V is pruned
if there is n′ ∈ V s.t.: (a) either H(n′) ⊆ H(n) and L(n′) = {} (i.e., H(n) is
not minimal because its subset H(n′) is also a hitting set); (b) or H(n′) = H(n)
and L(n′) = S ∈ F (i.e., both paths are equivalent therefore we can prune one
of them). A pruned HS-tree is obtained from a HS-tree by removing all pruned
nodes including their descendants.

Theorem 1 (Reiter [15]). Let T = (V,E, L,H) be a pruned HS-tree for a
collection of sets F . Then {H(n) | n ∈ V , L(n) = {}, and n is not pruned} is
the collection of all minimal hitting sets for F .
1 Note that before we compare two solutions E and E ′ of P syntactically, we typi-

cally normalize the assertions w.r.t. (outermost) concept conjunction: as C u D(a)
is equivalent to the pair of assertions C(a) and D(a), we replace the former form by
the latter while possible.
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3.1 Single Concept Observation

The algorithm is given in Algorithm 1. It starts by calling the tableau algorithm
(TA) on K′ = K ∪ {¬O}. If there is no model, the observation already follows
from K – there is nothing to explain. If there is a model I, we extract all
atomic and negated atomic concept assertions from it into M = {C(a) | I |=
C(a), C ∈{A,¬A}, A∈NC, a∈NI}, and store this representation of M for later
reuse (lines 1–6). Note, hereafter whenever we refer to a model M we mean this
representation of it.

A new HS-tree T = (V,E, L,H) is then initialized with root r ∈ V , labelled
by ¬M . And, a successor node is added to V for each σ ∈ ¬M , together with a
respective edge labelled by σ (lines 7–9).

The root node r is now fully processed. We initialize the output set of ex-
planations as SE = {} and traverse the remaining nodes in V by breadth-first
search (lines 10–30).

For each such node n, we first evaluate H(n) and check if pruning can be
applied: if there is a clash within H(n), or if some S ⊆ H(n) is already in SE ,
or there is some n′ ∈ V such that H(n′) = H(n), we are not interested in H(n)
and so we label n by {} (lines 13–14).

If none of this is the case, we try to find a model of K′ ∪ H(n). We first
try to reuse a suitable model M which was previously computed (line 16). If
there is none, we call TA on K′ ∪H(n). If we obtain a model I we compute its
representation M and store it for later reuse (lines 18–20). We then label n by
¬M and initialize its successors and respective edge-labels similarly as for the
root node (lines 27–29).

If no model was returned by TA, then H(n) is a candidate explanation: we
add it to SE , if it is consistent and relevant. In this case n is also labelled by {}
(lines 21–24).

Once we traversed all nodes in T a minimal HS-tree is constructed and SE
contains all minimal explanations (line 30).

3.2 Role Assertions

We will now describe how Algorithm 1 is extended to allow also role assertions,
including negated, as the observation and also in the explanations. The case
of the observation is trivial thanks to the choice of DL with nominals: we can
simply permit the observation O on the input to be also in the form R(a, b) or
¬R(a, b) for R ∈ NR, a, b ∈ NI. This only affects line 1 where ¬O is computed
as given in Section 2.

In order to include role assertions also in the explanations we need to modify
the construction of the model M which was previously described in Section 3.1.
Given the model I returned by the TA, we redefine its representation M as:

M = {C(a) | I |= C(a), C ∈{A,¬A}, A∈NC, a∈NI}
∪ {R(a, b) | I |= R(a, b), R∈NR, a, b∈NI}
∪ {¬R(a, b) | I |= ¬R(a, b), R∈NR, a, b∈NI} .

(3)
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Algorithm 1 SOA(K,O): Single Observation Abduction

Input: knowledge base K, observation O
Output: set of all explanations SE
1: K′ ← K ∪ {¬O}
2: M ← call TA with input K′ . TA returns a model of K′

3: if M = {} then
4: return "nothing to explain"

5: end if
6: MS ← {M}
7: create new HS-tree T = (V,E, L,H) with root r
8: L(r)← ¬M
9: for each σ ∈ ¬M create a successor nσ of r and label the resp. edge by σ

10: SE ← {}
11: n← next node w.r.t. r in T by breadth-first search
12: while n 6= null do
13: if (clash in H(n)) . H(n) – set of edge-labels on path r–n

or (S ∈ SE and S ⊆ H(n))
or (n′ ∈ T and H(n) = H(n′) and L(n′) 6= null) then

14: M ← {} . prune the path
15: else if N ∈ MS and H(n) ⊆ N then
16: M ← N . reuse model
17: else
18: M ← call TA for K′ ∪H(n)
19: if M 6= {} then
20: MS ← MS ∪ {M} . store the model for later reuse
21: else . the case H(n) explains O
22: if H(n) is relevant and consistent explanation then
23: SE ← SE ∪ {H(n)}
24: end if
25: end if
26: end if
27: L(n)← ¬M
28: for each σ ∈ ¬M create a successor nσ of n and label the resp. edge by σ
29: n← next node in T w.r.t. n by breadth-first search
30: end while
31: return SE

The first part involving concept assertions is unchanged, plus we also add all
role assertions and negated role assertions that hold in I. Note, from now on,
whenever we talk about model M we mean the representation in this form. The
actual extraction of the models from TA is described below in Section 5.

Example 4. Consider the knowledge base K:

SlovakScientist v ∃livesIn.{slovakia} (4)

coauthors v workWith (5)

Given the observation O1 = {livesIn(jack, slovakia)} and the ABox abduction
problem P1 = (K, O1) we are able to find one consistent, relevant, explana-
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tory, and subset minimal explanation E1 = {SlovakScientist(jack)} of P1, i.e.,
K ∪ E1 |= O1. Similarly, given the observation O2 = {workWith(jack,mary)},
E2 = {coauthors(jack,mary)} is an explanation of P2 = (K, O2), i.e., K∪E2 |= O2.

3.3 Multiple Observations

Consider the abduction problem P = (K, O) with a set of observations O =
{O1, . . . , On}. The problem P can be simply split into n subproblems P1 =
(K, O1), . . . , Pn = (K, On). Observe that if K ∪ Ei |= Oi for 1 ≤ i ≤ n, then
E = E1 ∪ . . . ∪ En is an explanation of P, i.e., K ∪ E |= O.

Hence, in order to compute all explanations for P = (K, O) we need to com-
pute all combinations from explanations of every observation Oi. The algorithm
is described more precisely in Algorithm 2.

Example 5. Consider the knowledge base K from the Example 4 and the obser-
vation O = {livesIn(jack, slovakia),workWith(jack,mary)}. We are looking for E
s.t. K∪E |= O. We split P = (K, O) into two subproblems, where P1 = (K, O1),
O1 = {livesIn(jack, slovakia)} and P2 = (K, O2), O2 = {workWith(jack,mary)}.
Actually, P1 and P2 are already solved in Example 4; the set of all explanations
for O1 is SE1 = {E1} and for O2 is SE2 = {E2}. In this very simple example,
Smin
E = {E1 ∪ E2} and so the only solution of P is E = {SlovakScientist(jack),

coauthors(jack,mary)}.

Note that there are some special cases the algorithm needs to observe. Firstly,
if there is no explanation Ei that explains Pi for at least one i, then there is also
no explanation that explains P (lines 4–5).

Secondly, if K |= Oi then Pi does not contribute to E , as given more precisely
in Observation 1.

Observation 1. Given a set of observations O = {O1, . . . , On} and given O′ =
O \ {Oi ∈ O | K |= Oi}, we have K ∪ E |= O if and only if K ∪ E |= O′. Hence
P = (K, O) has the same set of explanations as P = (K, O′).

The algorithm uses the set Σ to collect explanations only for Oi ∈ O′ (lines 6–7).
Thirdly, even if the explanation Ei of Pi is minimal (consistent and relevant)

for all 1 ≤ i ≤ n, it is not guaranteed that E = E1 ∪ . . . ∪ En is minimal, con-
sistent and relevant. Therefore we need to filter out the undesired explanations
additionally (line 14).

4 Soundness and Completeness

Lemma 1. Let K be an ALCHO knowledge base and let O be an observation
in form of an ALCHO ABox assertion. Let SE be the output of the SOA algo-
rithm initialized with K and O on the input. Then each E ∈ SE is a consistent,
relevant, explanatory, and subset minimal explanation of the abduction problem
P = (K, O).
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Algorithm 2 AAA(K,O): ABox Abductive Algorithm

Input: knowledge base K, set of observations O
Output: set of all minimal explanations Smin

E
1: Σ ← {} . collection of the sets of explanations for all observations
2: for all Oi ∈ O do
3: SEi ← SOA(K, Oi) . set of explanations for the subproblem Oi
4: if SEi = {} then
5: return {} . if Oi has no explanation then neither O has
6: else if SEi 6= "nothing to explain" then . K |= Oi – exclude Oi
7: Σ ← Σ ∪ {SEi}
8: end if
9: end for

10: if Σ = {} then
11: return "nothing to explain"

12: else
13: SE ← {E1 ∪ . . . ∪ Em | Ei ∈ SEi ,SEi ∈ Σ,m = |Σ|} . all combinations of the

expl.
14: Smin

E ← {E | E ∈ SE and ∀E ′ ∈ SE : E ′ 6⊆ E and E is consistent and relevant}
15: end if
16: return Smin

E

Proof. If SOA returned "nothing to explain", it terminated in line 4, and
this was because K ∪ {¬O} was inconsistent, which is the same as K |= O, and
in such a case there are no explanations.

In the other case SOA returned a set SE . Let E ∈ SE . In such a case E = H(n)
for some node n and it was added to SE on line 23. However in this case we have
also called TA on K∪{¬O}∪E on line 18 and it returned no model (as we tested
on line 19). Hence K ∪ E |= O, i.e., E is an explanation of P.

In addition, E is consistent and relevant, because we have tested this (on
line 22) immediately before adding it to SE . It is also explanatory because in
the other case the algorithm returned "nothing to explain" and terminated
already on line 4 as described above.

The minimality of E follows from the fact that we only add such E = H(n)
into SE on line 23 which correspond to paths from root to a leaf which are not
pruned in the HS-tree, and as showed by Reiter [15], in a pruned HS-tree all
such paths correspond to minimal hitting sets. This can be verified by observing
the HS-tree is constructed breadth-first, that is, when E = H(n) is considered as
an explanation, all smaller explanations are already stored in SE . Consequently
if some S ⊆ H(n) was previously found, the if-condition on line 13 is evaluated
as true and hence the assignment of E into SE on line 23 is not executed.

Theorem 2 (Soundness). Let K be an ALCHO knowledge base and let O be
a set of observations in form of ALCHO ABox assertions. Let SE be the output
of the AAA algorithm initialized with K and O on the input. Then each E ∈ SE
is a consistent, relevant, explanatory, and subset minimal explanation of the
abduction problem P = (K, O).
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Proof. If AAA returned "nothing to explain", it was because on line 10 col-
lection of the sets of all explanations Σ was empty. This can only be the case
when SOA returned "nothing to explain" for each Oi (line 6), that is, ac-
cording to Observation 1, O′ = {}. This means that K |= Oi for each Oi, and so
K |= O.

In the other case AAA returned a set SE . Let E ∈ SE . From lines 13–14 it is
apparent that E = E1 ∪ . . . ∪ Em where Ei ∈ SEi and each SEi ∈ Σ is the set of
minimal explanations for Oi returned by SOA on line 3.

From Lemma 1 we have K∪Ei |= Oi for all Ei ∈ SEi . Observe, that Σ collects
SEi

for all those Oi, for which K 6|= Oi (lines 6–7), hence from Observation 1 we
have K ∪ E |= O, that is E is an explanation of P = (K, O). Moreover, subset
minimality, consistency, and relevancy of each E ∈ SE is consecutively verified
on line 14. E is also explanatory, as otherwise K |= O, i.e., K |= Oi for all i, and
thus Σ = {}. In such a case the algorithm already terminates on line 11.

Lemma 2. Let K be an ALCHO knowledge base and let O be an observation in
form of an ALCHO ABox assertion. Let E ⊆ {A(a),¬A(a), R(a, b),¬R(a, b) |
A ∈ NC, R ∈ NR, a, b ∈ NI} be a consistent, relevant, explanatory, and subset
minimal explanation of the abduction problem P = (K, O). Then the SOA algo-
rithm, initialized with K and O on the input, produces E as one of its outputs.

Proof. Given an abduction problem P = (K, O), let SE be an output of SOA for
P. Let E be a consistent, relevant, explanatory, and subset minimal explanation
of P.

As E is explanatory, K ∪ {¬O} has at least one model. Hence the root r
of HS-tree T constructed by SOA is labelled by ¬M , where M is a model of
K ∪ {¬O} (line 8). Note that, from the construction of M (3) it follows that
ϕ ∈ ¬M or ¬ϕ ∈ ¬M for every atomic ABox assertion ϕ.

It is clear that K ∪M ∪ {¬O} is consistent and so E 6⊆ M , i.e. there is an
ABox assertion σ1 ∈ E s.t. σ1 6∈M . Hence ¬σ1 ∈M , and so σ1 ∈ ¬M , and also
L(r, nσ1) = σ1 for some successor nσ1 of r, from line 9.

The rest of the proof is by induction. Let us assume that SOA extended T
until there is a node nσk

s.t. H(nσk
) ⊆ E and |H(nσk

)| = k. We will show that
(∗) either H(nσk

) = E or there is some σk+1 ∈ E \ H(nσk
) which will become

the label of some new edge leading from nσk
. Observe that none of the pruning

conditions applies on nσk
: E is consistent, and hence H(nσk

) does not contain a
clash; no S ( H(nσk

) was previously added into SE because E is minimal; and if
there is some other node n in T such that H(n) = H(nσk

) we can assume w.l.o.g.
that nσk

is the one which is visited first and hence it is not pruned. Next we
distinguish between two cases. In the first case K∪H(nσk

)∪{¬O} is inconsistent,
and so H(nσk

) = E , L(nσk
) = {} and therefore SOA adds H(nσk

) = E into SE .
In the second case K ∪ H(nσk

) ∪ {¬O} is consistent, i.e. it has a model Mk

and L(nσk
) = ¬Mk. It is clear that H(nσk

) ⊆ Mk and that K ∪Mk ∪ {¬O}
is consistent and so E 6⊆ Mk, i.e. there is σk+1 ∈ E \ H(nσk

) s.t. σk+1 6∈ Mk,
and so σk+1 ∈ ¬Mk. Therefore SOA consequently creates a node nσk+1

with
L(nσk

, nσk+1
) = σk+1.



10 Júlia Pukancová and Martin Homola

Since we have proved (∗) for any k, by induction SOA will eventually create
a node nσm

s.t. H(nσm
) = E and L(nσm

) = {}. That means that SOA has added
H(nσm

) = E into SE .

Theorem 3 (Completeness). Let K be an ALCHO knowledge base and let O
be an observation set of ALCHO ABox assertions. Let E ⊆ {A(a),¬A(a), R(a, b),
¬R(a, b) | A ∈ NC, R ∈ NR, a, b ∈ NI} be a consistent, relevant, explanatory,
and subset minimal explanation of the abduction problem P = (K, O). Then the
AAA algorithm, initialized with K and O on the input, produces E as one of its
outputs.

Proof. Given an abduction problem P = (K, O), let Smin
E be the output of

AAA for P. Let E be a consistent, relevant, explanatory, and subset minimal
explanation of P.

As K ∪ E |= O = {O1, . . . , On}, then also K ∪ E |= Oi and hence E explains
each Pi = (K, Oi).

Let Ei be a smallest subset of E that explains Pi. For some i’s Ei may equal
to {} but not for all, as then K |= O which is not the case. If Ei 6= {} then Ei
is a minimal explanation of Pi, otherwise it would not be a smallest subset of E
that explains Pi. It is trivially explanatory, and it is also consistent and relevant
w.r.t. Pi (because whole E is). In addition E = E1 ∪ · · · ∪En because E1 ∪ · · · ∪En
explains all O1, . . . , On hence otherwise E would not be minimal.

Now, AAA called SOA and obtained the set of explanations SEi
for each Pi.

From Lemma 2 we have that SEi
contains all minimal, consistent, relevant, and

explanatory explanations of Pi. Hence on line 13 E was surely added into SEi
.

But since E is minimal, consistent, relevant, and explanatory, it was also added
to Smin

E on line 14.

5 Implementation

Our algorithm is implemented in Java. It is based on our previous implemen-
tation that is extended with more forms of observations and explanations. As
described in our previous work [14], knowledge base consistency is verified by
the Pellet reasoner [16] (version 2.3.1). Pellet is an optimized tableau-based rea-
soner, that will enable to involve optimizations such as incremental reasoning
in our implementation in the future. The run of our algorithm corresponds to
Algorithm 2.

OWL ontology and the set of ABox assertions representing the observations
are loaded as input and consequently processed into Pellet knowledge base K.
Firstly, Pellet decides a consistency of K. After a successful consistency check, we
obtain the ABoxA corresponding to the model of K using the getABox() method
and construct M as described in Section 3.2. For each node a we extract from
A all atomic concepts in its label and all outgoing edges (using the getTypes()

and getOutEdges() methods), and we add the corresponding ABox assertions
to M . Consequently, we compute the completion of M by adding the negation
of all atomic assertions which are not already in M .
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Our implementation uses Pellet for consistency checking and for model con-
struction. All other features, from initializing AAA algorithm through construct-
ing the HS-tree to answering the set of all minimal hitting sets for the input set
of observations, are executed by our own implementation. All optimizations pre-
sented in this paper, such as HS-tree pruning or model reusing, are implemented.

Our implementation is available for download at: http://dai.fmph.uniba.
sk/~pukancova/aaa/ .

6 Conclusions

We have described an ABox abduction algorithm for the ALCHO DL, which is
based on Reiter’s work on minimal hitting sets [15]. The algorithm calls a DL
reasoner as a black box; the current approach is tableau-based as we rely on
Pellet reasoner.

Our algorithm permits a set of any ABox assertions (including negated role
assertions) as the observation, and computes explanations constrained to min-
imal sets of atomic and negated atomic ABox assertions. Our work extends
the works of Halland and Britz [5, 4] in the following respects: (a) permitting
ALCHO instead of ALC; (b) computing models on the fly, during the search
for explanations, instead of during pre-processing; (c) formally establishing both
soundness and completeness for the given class of observations and explanations;
and (d) developing also an implementation built on top of the Pellet [16] rea-
soner. Compared to our previous work [14], we have extended the algorithm
as well as the implementation to handle multiple observations and to permit
role assertions in both observations and explanations, and we have established
soundness and completeness.

Regarding the complexity, ALCHO is ExpTime-complete [6], and Reiter’s
minimal hitting set algorithm is NP-complete [15, 9], so the combined overall
complexity of our algorithm is still ExpTime. In the future, we also plan to
further optimize the implementation of our algorithm, especially by exploiting
incremental reasoning that is partly available in Pellet 2.3.1. Pellet enables to
reuse the previously built tableau structures in cases when assertions are added
to the ABox, however it is not able to handle deletions. We plan to exploit
techniques similar to tableau caching to deal with the latter problem.

In the future, we would like to consider also semantically minimal expla-
nations [14]. In our opinion, this notion of minimality is highly relevant for
practical problems. We also want to focus on explanations involving complex
concept assertions, and anonymous individuals, as there are some specific ab-
duction problems where such explanations are interesting. This could be difficult
because of the possibility of infinitely many solutions. It is necessary to specify
the concrete target forms of these explanations and to propose new form of model
representations including also complex concept assertion. As the complexity of
the algorithm will increase, we need to analyse also other possible optimizations.

Acknoledgements. We would like to thank to the anonymous reviewers for a
number of fruitful comments.



12 Júlia Pukancová and Martin Homola

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical ABox abduction in large
description logic ontologies. Int. J. Semantic Web Inf. Syst. 8(2), 1–33 (2012)

3. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over on-
tologies. In: Proceedings of the OWLED*06 Workshop on OWL: Experiences and
Directions, Athens, Georgia, USA, November 10-11, 2006 (2006)

4. Halland, K., Britz, K.: Abox abduction in ALC using a DL tableau. In: 2012 South
African Institute of Computer Scientists and Information Technologists Confer-
ence, SAICSIT ’12, Pretoria, South Africa, October 1-3, 2012. pp. 51–58 (2012)
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