
Ontologies for Knowledge Graphs?

Markus Krötzsch

Center for Advancing Electronics Dresden (cfaed), TU Dresden
markus.kroetzsch@tu-dresden.de

Abstract Modern knowledge representation (KR), and description logics (DL) in
particular, promises many advantages for information management, based on an
unambiguous, implementation-independent semantics for which a range of rea-
soning services is available. These strengths align well with the needs of an ever
growing information industry. Today, giants like Google, Facebook, and Wikime-
dia consciously deploy ontological models, and store information in graph-like
data structures that are more similar to DL ABoxes than to traditional relational
databases. Many smaller organisations follow, and “knowledge graphs” appear
in numerous places. Clearly, logic-based KR can make significant contributions
to this development, yet there is often very little adoption in typical knowledge
graph applications. Focusing on Wikidata as a particular use case, this invited
contribution asks which technical issues might limit the impact of symbolic KR
in this area, and summarises some recent developments towards addressing them
in various logics.

1 Introduction

Modern data management has re-discovered the power and flexibility of graph-based
representation formats, and so-called knowledge graphs are now used in many practical
applications. The term had originally been coined by Google’s eponymous approach
of managing structured knowledge for question answering, advertised as “one of the
key breakthroughs behind the future of search” [11]. This activity resonated with a shift
towards more flexible, schema-optional data management solutions [9], and in particular
with the advent of graph databases. We therefore find a variety of knowledge graphs in
industry (e.g., at Google and Facebook); on the Web (e.g., Freebase [4] and Wikidata
[30]); and in research (e.g., YAGO2 [13] and Bio2RDF [3]).

Logic-based knowledge representation (KR) is a matching technology for these
developments, and indeed seems to be a perfect fit for some of the main needs behind
the recent shift towards knowledge graphs, due to various features:

– Modelling with (hyper)graphs:KR research customarily adopts a graph-based view
on data, and bases most of its semantics on similar concepts.

– Discovering connections: reasoning is essentially about making non-local connec-
tions, and it can often be used naturally for graph analysis and querying.

– Declarativity: Independence of particular implementations, and even of the under-
lying hardware infrastructure, is a prominent requirement in modern data manage-
ment. Declarative modelling is essential for achieving this.



– Unambiguous semantics: Interchange of knowledge between various groups of
humans as well as software tools is critical in many applications. A clearly defined,
formal semantics can provide this.

– Ontology engineering services: Many KR paradigms support the implementation
of services that can verify the correctness of a model for certain constraints (the
most basic being consistency), and propose measures to fix possible errors.

These strengths, together with the maturity of many KR fields, and the availability
of well-supported standards like OWL [25], might be expected place KR technologies
at the heart of current activities in IT companies around the world. However, this is not
the practical reality. Instead, companies continue to rely on ad hoc graph representations
and custom code for working with knowledge graphs. Even established standards such
as RDF and SPARQL have only limited traction, while popular graph models such
as Neo4j’s Property Graph rely on reference implementations that might change their
semantics from release to release [28].

In what follows, I will discuss this – in my view – unfortunate situation from my
particular, naturally subjective viewpoint. My focus will thus be that of a designer of KR
formalisms and partly also that of a programmer. Indeed, I do not consider the success of
symbolic KR to be tied to the philosophical question of whether we can create a “true”
model of “reality.” This is hardly the goal of any company or organisation, presumably
not even of Google. In practice, technology is used to solve technological problems, and
the competition for KR therefore are down-to-earth Java programs or Python scripts that
aim to solve the same problems.

Whether justified or not, I will also dismiss any larger scale economic and social
factors. The level of technological support, standardisation, commercialisation, and in-
dustrial co-operations around modern KR research is significant and should be a sound
basis for further adoption. My thesis therefore is that the issue is not a lack of advertise-
ment or motivation, but that there are indeed important technological mismatches that
research must address to advance the field. Even if not fully accurate, this view is at least
a good basis for an optimistic outlook on the impact of academic research in general.

2 What is a Knowledge Graph?

The knowledge graphs in modern applications are characterised by several properties
that together distinguish them frommore traditional knowledgemanagement paradigms:

(1) Normalisation: Information is decomposed into small units of information, inter-
preted as edges of some form of graph.

(2) Connectivity: Knowledge is represented by the relationships between these units.
(3) Context: Data is enriched with contextual information to record aspects such as

temporal validity, provenance, trustworthiness, or other side conditions and details.

While many databases are normalised in some way (1), the focus on connections
(2) is what distinguishes the graph-based view [28]. This is apparent not so much
from the data structures – graphs can be stored in many formats –, but in the use of
query languages. Graph query languages such as SPARQL [27] or Cypher [28] natively



support reachability queries and graph search features that are not supported in other
paradigms.1

Contextual information (3) is introduced for a variety of reasons. It may simply be
convenient for storing additional details that would otherwise be hard to represent in
normalisation [28], or it may by used for capturingmeta-information such as provenance,
trust, and temporal validity. Indeed, knowledge graphs are often used in data integration –
graphs are well suited for capturing heterogeneous data sources and their relationships –,
and it is natural to retain basic information regarding, e.g., the source and trustworthiness
of a particular piece of data.

While we can only speculate about the shape and content of Google’s original
knowledge graph,2we can find the above characteristics inmajor graph database formats:

– Property Graph.The popular graphmodel that is used inmany industry applications
is based on a directed multi-graph with attribute-value annotations that are used to
store contextual information on each edge and node [29]. Popular property graph
query languages, such as Cypher, support graph search [28].

– RDF. The W3C graph data standard encodes directed graphs with different types
of edges. Support for storing contextual information has been added to RDF 1.1 by
enabling references to named graphs [7]. The SPARQL query language for RDF
supports regular path queries and named graphs [12].

Likewise, individual knowledge graphs exhibit these characteristics, for example:

– Yago and Yago2 are prominent knowledge graphs extracted from Wikipedia [13].
The authors extended RDF (at a time before RDF 1.1) with quadruples to capture
important contextual information related to time and space.

– Bio2RDF is a graph-based data integration effort in the life sciences [3]. It uses
an n-ary object model to capture complex and contextual information in plain
RDF graphs, i.e., it introduces new identifiers for tuples extracted from relational
databases.

– Wikidata, the knowledge graph of Wikipedia, is natively using a graph-like data
model that supports expressive annotations for capturing context [30]. Details are
discussed in the next section.

3 Wikidata, the Free Knowledge Graph of Wikipedia

Wikidata is a sister project of Wikipedia that aims to gather and manage factual data
used in Wikipedia or any other Wikimedia project [30]. Launched in October 2012,
the project has quickly grown to become one of the largest and most active in terms of
editing. As of July 2017, Wikidata stores information about almost 29 million entities,3
and has received contributions from over 175,000 registered contributors. Content from

1 SQL, e.g., does support recursive views that resemble the expressivity of linear Datalog, but
the standard forbids the use of duplicate elimination (DISTINCT) in their construction, making
them quite useless for breadth-first search on graphs that may contain cycles.

2 Or even if this widely marketed concept exists as a clearly defined technical entity at all.
3 This should be compared to the 5.5 million articles found in English Wikipedia.



Statement from the page of Tim Berners-Lee (https://www.wikidata.org/wiki/Q80):

Statement from the page of The Imitation Game (https://www.wikidata.org/wiki/Q14918344):

Figure 1. Two statements from Wikidata

Wikidata is widely used in other applications and on the Web, ranging from interactive
query views on specific subjects (e.g., the Academy Awards portal of the major German
newspaper FAZ online4) to general purpose question answering tools (e.g., Apple’s Siri
search engine in iOS 11 beta returns data from Wikidata5).

The main content of Wikidata are more than 166 million statements (as of July
2017), which describe and interrelate the entities. A Wikidata statement can be viewed
as an edge in a directed graph that is further annotated by attribute-value pairs and
provenance information. For example, Fig. 1 shows two statements as seen by users of
wikidata.org. In both cases, the main part of the statement can be read as a directed
edge: Berners-Lee’s employer has been CERN, and the film The Imitation Game has
cast member Benedict Cumberbatch. In addition, both statements include contextual
information in the form of additional property-value pairs that refer to the statement
(rather than to the subject of the statement). As one can see, this additional information
includes classical “meta-data” such as validity time and references (collapsed in the
figure), but also other details that are more similar to the modelling of n-ary relations.

Statements consist of properties (e.g., employer, start date, character role) that are
given specific values, which may in turn beWikidata items (e.g., Alan Turing, CERN) or
values of specific datatypes (e.g., 1984, which denotes a date whose precision is limited
to the year). Notably, the properties and values used in the main part of the graph are the
same as those used to add contextual information, and this can be exploited in queries
(e.g., one can ask for actors who have played computer scientists). Moreover, Wikidata
allows users to create new properties, and to make statements about them. From a KR
viewpoint, Wikidata properties are therefore a special type of individual rather than a
binary predicate.

Some further details of Wikidata’s graph model are briefly noted: (1) the same
directed relationship may occur with several annotations, e.g., in the case of Elizabeth

4 http://www.faz.net/aktuell/feuilleton/kino/academy-awards-die-oscar-gewinner-auf-einen-
blick-12820119.html

5 https://lists.wikimedia.org/pipermail/wikidata/2017-July/010919.html

https://www.wikidata.org/wiki/Q80
https://www.wikidata.org/wiki/Q14918344
wikidata.org
http://www.faz.net/aktuell/feuilleton/kino/academy-awards-die-oscar-gewinner-auf-einen-blick-12820119.html
http://www.faz.net/aktuell/feuilleton/kino/academy-awards-die-oscar-gewinner-auf-einen-blick-12820119.html


Taylor who was married to Richard Burton several times; (2) the same property can be
assigned more than one value in the context of some statement, e.g., this is used when
several people win an award together (together with being the Wikidata property used
to annotate the award received statement); (3) the order of statements and statement
annotations is not relevant.

The content of Wikidata is freely available in several formats. The native storage
format is based on JSON, but for enabling query answering, the data has been mapped
to RDF [10]. This mapping creates identifiers for statements (reification) to represent
contextual data in triples. The Wikimedia Foundation operates an official SPARQL
service to enable complex queries over the data, and this facility is heavily used. As of
mid 2017, between 60 and more than 100 million SPARQL queries are answered per
month.6 More detailed analysis shows that more than 90% of the queries are issued by
automated tools that perform community services such as data integration and quality
control. Nevertheless, around 500,000 queries per month appear to be issued directly
or indirectly by the browsers of human users. Another striking observation is that a
significant part of these queries are using regular path expressions: their share of user
queries amounts to over 30% in several months, making this the most frequently used
SPARQL feature after basic JOIN and SELECT, well before UNION and OPTIONAL
(ranked at about 5-10%). This confirms the graph-based nature of Wikidata.

4 Ontological Modelling with Knowledge Graphs

Projects like Wikidata could certainly benefit from KR technologies, which can help
in knowledge organisation, quality control, and redundancy elimination. Indeed, while
Wikidata is merely a data management platform without an explicit ontology, the com-
munity is consciously using data for capturing schematic information. Properties such
as instance of or subclass of are used for basic hierarchy construction, inspired by the
usage in RDFS. Wikidata does not distinguish classes as a special type of object, and
arbitrary items therefore might be used as classes. Moreover, Wikidata properties are
classified to express further ontological information. The Wikidata property spouse,
e.g., is an instance of symmetric property.

Even if intended to be ontological, such user-generated assertions remain data with-
out any special treatment in the system. It would clearly be desirable to axiomatise
their semantics using a suitable ontology language, e.g., to declare that instances of
symmetric property are indeed symmetric. It is important here to avoid any confusion of
this approach with that of the RDF semantics, which interprets some (possibly inferred)
data directly as ontological axioms; this may lead to undesired semantic issues [26].
Axiomatisation instead treats all data as data, clearly separated from schematic knowl-
edge. It still allows us to capture the semantics of important ontology languages, e.g., it
is possible to view EL ontologies as data on top of which inferences are computed by
rules [14].

Unfortunately, the relational (or hypergraph) datamodel used bymostKR formalisms
does not provide a direct way of representing Wikidata statements or Property Graph

6 These statistics stem from an ongoing research collaboration with the Wikimedia Foundation
https://meta.wikimedia.org/wiki/Research:Understanding_Wikidata_Queries.

https://meta.wikimedia.org/wiki/Research:Understanding_Wikidata_Queries


edges, since neither can be captured with n-ary relations of any fixed arity n. We may,
however, represent statements using auxiliary individuals, similar to the W3C’s RDB to
RDF Mapping Language representation of relational tuples in RDF graphs [8]. We may
therefore imagine the statement that Taylor was married to Burton starting from 1964
and ending 1974 to be represented in several facts:

spouse1(s, taylor) spouse2(s, burton) start(s, 1964), end(s, 1974) (1)

where s is a constant representing the statement. It turns out that most prominent
ontology languages are unable to express even the simplest types of relationships on
knowledge graphs. For example, the claim that spouse is symmetric implicitly involves
the assertion that, in the above example, Burton is also married to Taylor with the same
start and end date. This asserts the existence of another, inferred statement (represented
by a dedicated individual), which could be written as follows:

∀x, y1, y2, y3, y4.spouse1(x, y1) ∧ spouse2(x, y2) ∧ start(x, y3) ∧ end(x, y4)
→ ∃v.spouse2(v, y1) ∧ spouse1(v, y2) ∧ start(v, y3) ∧ end(v, y4)

(2)

Description logics cannot express this statement, since they allow only exactly one
universally quantified variable to occur in both premise and conclusion in axioms
that have existential quantifiers. Rule languages have no such restriction on universal
quantifiers, but the most basic (and most popular) logical rule language Datalog does
not support existentials at all. Rule languages with existential quantification that have
been proposed for data integration scenarios include global-as-view and local-as-view
mappings [20]. Neither can express (2), since they support only single atoms on the
source and on the target side, respectively.

Indeed, all we can say is that (2) has the form of an existential rule (also known as
tuple-generating dependency), for which reasoning is undecidable in general [1]. Note,
moreover, that this is just an individual example, which may not be representative for all
modelling needs that arise even in the specific case of Wikidata. For example, we might
wish to classify currently married couples as those whose spouse relationship has no
end date, which would require some form of negation that is not supported by existential
rules either. Nevertheless, one can hardly claim that the scenario considered here is in
any way unusual, or inherently challenging from a computational viewpoint. It would
therefore be quite disappointing if KR research could not offer more concrete solutions
to address this case.

5 Decidable Fragments of Existential Rules

Significant recent work has been invested into identifying fragments of existential rules
for which reasoning is decidable or even tractable. Good overviews of several main
approaches are provided in the literature [2,5,6]. We may therefore hope that rules as in
(2) could be covered in one of these fragments.

However, it turns out that this is often not immediate, since known criteria rely on
syntactic characteristics that are often not present when modelling rules for knowledge
graphs [18]. Two common criteria are as follows:



– Guardedness requires certain variables of rules to occur together in a single body
atom. It ensures the existence of tree-like models that can be represented finitely.

– Linearity requires rule bodies to consist of only one atom. It ensures that reasoning
tasks can be rewritten into first-order queries.

Both of these properties are clearly lost when decomposing statements during reification,
though their semantic consequences remain [18]. The only class of criteria that is largely
robust against statement decomposition is acyclicity, which ensures finite models, and
indeed it might be hoped that this will be a suitable condition for knowledge graph
ontologies.

For the other cases, it is possible to re-discover the fact that rules belong to a known
decidable fragment by applying suitable de-normalisation algorithms that attempt to
correlate the components of decomposed statements so as to treat them like higher-arity
predicates (albeit with a possibly unspecified arity). Details on this procedure have been
studied in previous work [18].

6 Attributed Logics

The discovery of workable existential rule fragments can be a useful first step towards
ontologies for knowledge graphs, but it also bears some limitations:

– Ontological axioms that refer to normalised statement representations may be sig-
nificantly more complex and less maintainable than their simple use cases would
suggest.

– It is very difficult to express rules that are applicable to the variety of possible forms
of statements. For example, a spouse statement may or may not have a start, an end,
or various other annotations, and each combination of these features would require
a dedicated rule.

– Normalisation gives up on the distinction between contextual information and the
main connections of the graph. This is not desirable, since one would usually
consider individual statements (with their annotations) to be complete, whereas the
overall set of statements may never be complete (open world semantics).

This motivates the introduction of annotation sets, i.e., sets of attribute-value pairs, as a
primary data structure in the syntax and semantics of logics, as done in recent work by
Marx et al. [21]. To this end, we can simply extend relational structures by moving from
relational tuples to relational tuples annotated each with a finite set of attribute-value
pairs. The resulting structures have been dubbed multi-attributed relational structures
(MARS).7 As in Wikidata, attributes are modelled as domain elements rather than as
predicates in this approach.

It is not difficult to extend first-order logic syntactically to refer to the annotation sets
of a particular atom. For example, the information encoded in (1) might be represented
as follows:

spouse(taylor, burton)@{start : 1964, end : 1974} (3)

7 The name is inspired by attributed graphs, which MARS generalise to hypergraphs with
multiple values per attribute.



and the rule that spouse is symmetric then takes the form

∀Z .∀x, y.spouse(x, y)@Z → spouse(y, x)@Z (4)

The resulting extension of first-order logic is called multi-attributed predicate logic
(MAPL). In this unrestricted form, it is highly expressive – in fact it can capture arbitrary
weak second-order logic (WSO), i.e., second-order logic with quantification over finite
predicates only [19]. WSO is strictly harder than first-order logic, since deciding basic
reasoning problems is not even semi-decidable.

Hence MAPL is only a conceptual framework, but not a practical KR language yet,
and we may look for useful fragments of MAPL with a decidable reasoning problem.
As a first approach, Marx et al. introduce MAPL rules (MARPL), which restricts to a
Horn-logic fragment of MAPL with the following key restrictions:

– all formulae take the form of Horn implications,
– all variables (first-order and second-order) are universally quantified, and
– all second-order variables are bound by some body atom.

While this language can still express (4), it would otherwise be rather limited, since it has
hardly any way of defining conditions on annotation sets (as represented by second-order
variables). For example, one cannot define the married couples as those with a spouse
relationship that has no end date (but is otherwise arbitrarily annotated). To address this,
MARPL introduces expressions that constrain the bindings of second-order variables,
namely:

– Open specifiers that define aminimal set of attribute-value pairs that must be present
in an annotation set (lower bound), possibly with wildcard value +. For example,
bstart : +, position : fellowc (Z ) requires that Z contains at least one attribute value
for start, and the value fellow for attribute position.

– Closed specifiers that define exactly which attribute-value pairs are present in an
annotation set (upper and lower bound), again with optional wildcards. For example,
[characterRole : ∗](Z ) requires that Z contains zero or more attribute values for
characterRole, but no other attributes.

– These specifiers can further be combined with Boolean set operations to define
additional expressions, e.g., (bstart : +c \ bend : +c)(Z ) for sets that have a start
but no end.

Note that these conditions enable a closed-world assumption on the contents of annota-
tion sets, since we can check for the absence of particular attribute-value sets.

Finally, Marx et al. also propose a mechanism for creating customised annotation
sets from given input in a deterministic and declarative fashion. Indeed, it may often
be necessary to derive annotated facts where the annotation set is not merely a copy of
some existing set, but computed from the premises. To this end, a notion of function
definition is introduced, which can be viewed as a mini Datalog program that derives a
new annotation set from given inputs.

All of these extensions in MARPL – specifiers and function definitions – can be
expressed in MAPL using logical sentences, which, however, do not have the restricted
rule shape of MARPL. Even with these extensions, MARPL remains decidable:



Theorem 1 ([21]). Conjunctive query answering with respect to MARPL ontologies is
ExpTime-complete, both in terms of combined and data complexity.

Combined complexity therefore matches basic Datalog, but the high data complexity
might be surprising. It is only obtained by applying defined functions to create an
exponential number of different annotation sets, which is arguably not expected to be
a major problem in practical scenarios. On the other hand, the result also suggests that
MARPL is powerful enough to act as a meta-language that interprets parts of the input
data as ontological knowledge, and therefore must have a rather high complexity with
respect to this input.

7 Description Logics for Knowledge Graphs

DLs are one of the most prominent KR formalisms today, and it is natural to ask
whether and how they can be adopted to match this formalism. Both existential rules
and MAPL rules are crucially different from DLs, in that their use of variables allows
expressing more complex graph structures and richer dependencies between premise
and conclusion. It has long been a major focus in DL research to develop extensions that
integrate such rule-like capabilities, with diverse approaches such as description graphs
[22], hybrid MKNF [23], dl-safe rules [24], or nominal schemas [15]. Each of these
approaches deviates from traditional, variable-free DL syntax in some way, and indeed
this seems unavoidable to achieve the desired goal.

For the definition of attributed description logics, a detailed proposal is included in
the proceedings where this text is to appear [17], and an extended account of this work
can be found in a technical report [16]. I will therefore only give a brief outline here.

Semantically, attributed DLs use the same MARS-based model theory as MAPL in
general, so every fact can occur with one or more finite annotation sets. Syntactically,
the approach attaches annotation variables to role and concept names within axioms,
and adds pre-conditions that further restrict the sets that these variables may represent.
For example, the following DL (RBox) axiom states that spouse is a symmetric relation:

spouse@Z v spouse−@Z

where Z is implicitly universally quantified. A more complex example is

Z : bpos : fellowc ∃employer@Z .{cern} v CernFellow@[start : Z .start, end : Z .end]

stating that everybody employed by CERN as a fellow is in the class CernFellow an-
notated with the same start and end date as the employment. The dot-notation in the
conclusion (e.g., start : Z .start) is used to define new annotations directly. In contrast to
MARPL’s defined functions, attributed DLs allow conclusions to have partially specified
annotation sets that are not fully determined by the axioms, which is more natural in the
open world approach of DLs.

Decidable attributed DLs tend to be exponentially more complex than their classic
base DL, for example:

Theorem 2 ([16]). Standard reasoning tasks in attributed ALCH, denoted ALCH@,
are 2ExpTime-complete.



For the highly expressive DL SROIQ, this added complexity is hidden in the (al-
ready high, but partly orthogonal) base complexity, so reasoning in SROIQ@ remains
N2ExpTime-complete [16].

8 Outlook

Are the structural limitations of popular KR languages the only major obstacle to further
adoption of symbolic KR in applications of knowledge graphs? Probably not, but they
are at the very beginning of any path to further adoption. The Wikidata community has
developed complex technical solutions for quality control, query answering, and data
integration, often based on custom code. A unifying, declarative solution with good tool
support would surely be welcome. But any discussion in this direction must start from
basic examples such as the symmetry of spouse. Users will naturally ask how KR can
help to solve the current problems, and for most KR approaches, including DLs, the
plain answer is that they can’t. It must be a priority of research to address this, and this
does indeed seem quite feasible.

Of course, this will not suffice. To realise their full potential, KR technologies will
have to go further. Significant advancements are needed at least in the following areas:

– Cross-system integration: KR-based solutions must become more compatible with
existing infrastructures and tools, e.g., to reason over the outputs ofmachine learning
algorithms or remote Web services.

– Smart editing: Current editing tools for Java (for which reasoning is undecidable)
offer much more useful assistance than modern ontology editors, although the latter
should have a much better understanding of the semantics of the edited artefacts.

– Robustness: KR, and especially practical reasoners, must continue to work towards
error tolerance, recovery, and adaptivity.

– Quantitative computation: New approaches are needed for workingwith quantitative
data, supporting relevant computations but avoiding unsolved problems in numerical
reasoning.

– Modularisation: There is little design-time support for separating concerns in onto-
logical modelling, and many KR approaches continue to view ontologies as large,
amorphic sets of axioms. This is an obstacle for thework of large teams or distributed
projects.

– Hardware adaptivity: Reasoning is not taking advantage of the increasing variety of
modern compute platforms, and usually support at most some mild form of multi-
CPU parallelism. There are hardly any concepts for taking advantages of computer
clusters, GPUs, and in-memory computing.

A unifying theme across these areas is that we need to further develop symbolic KR
in the context of other paradigms of computation rather than viewing it as a static
paradigm of mere representation. This may at first conjure up Prolog’s 1970s idea of
“programming in logic,” and with it the concern about a creeping loss of declarativity.
This relationship, however, is superficial, since our present situation is very different.
For many years, our community has recognised data management and integration as an
important use case. At the same time, the data management community has embraced



a variety of more declarative processing paradigms, that provide complex analytics in
ways that abstract from specific implementations. The convergence of these areas is
desirable and realistic.

As we are looking at the wider development, it seems likely that the continued
integration and curation of valuable knowledge will unlock application scenarios that
are currently out of reach, and become a central component of future AI. No single
technology – whether KR, machine learning, databases, or natural language processing
–will provide all the necessary components, butKRhas a potential to act as an integrating
and coordinating layer that declaratively combines many sources of information in a way
that is fully understood and controlled by human users. Our ongoing and future research
activities will decide whether the field can live up to this expectation.

Acknowledgements. I would like to thank the organisers of DL Workshop for providing
me with the opportunity for publishing this invited contribution. Several collaborators
have made significant contributions to the research results summarised herein. In par-
ticular, I would like to thank Maximilian Marx, Ana Ozaki, Veronika Thost, and Denny
Vrandečić. Research on Wikidata queries is enabled by the collaboration of the Wiki-
media Foundation. This work is partly supported by the German Research Foundation
(DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden”
(cfaed), the Collaborative Research Center SFB 912 (HAEC), and in Emmy Noether
grant KR 4381/1-1 (DIAMOND).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables:

Walking the decidability line. Artificial Intelligence 175(9–10), 1620–1654 (2011)
3. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a mashup

to build bioinformatics knowledge systems. J. of Biomedical Informatics 41(5), 706–716
(2008)

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively created
graph database for structuring human knowledge. In: Proc. 2008 ACM SIGMOD Int. Conf.
on Management of Data. pp. 1247–1250. ACM (2008)

5. Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query
answering problem. J. of Artif. Intell. 193, 87–128 (2012)

6. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.:
Acyclicity notions for existential rules and their application to query answering in ontologies.
J. of Artificial Intelligence Research 47, 741–808 (2013)

7. Cyganiak, R., Wood, D., Lanthaler, M. (eds.): RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation (25 February 2014), available at http://www.w3.org/TR/rdf11-concepts/

8. Das, S., Sundara, S., Cyganiak, R. (eds.): R2RML: RDB to RDF Mapping Language. W3C
Recommendation (27 September 2012), available at https://www.w3.org/TR/r2rml/

9. Edlich, S.: NOSQL Databases (2017), http://nosql-database.org, accessed July 2017
10. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to

the linked data web. In: Proc. 13th Int. Semantic Web Conf. (ISWC’14). LNCS, vol. 8796,
pp. 50–65. Springer (2014)

11. Google Inc.: Knowledge – Inside Search. https://www.google.com/intl/es419/insidesearch/
features/search/knowledge.html, retrieved July 2017 (2017)

https://www.w3.org/TR/r2rml/
http://nosql-database.org
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html


12. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Recommendation (21
March 2013), available at http://www.w3.org/TR/sparql11-query/

13. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and temporally
enhanced knowledge base from Wikipedia. J. of Artif. Intell. 194, 28–61 (2013)

14. Krötzsch, M.: Efficient rule-based inferencing for OWLEL. In:Walsh, T. (ed.) Proc. 22nd Int.
Joint Conf. on Artificial Intelligence (IJCAI’11). pp. 2668–2673. AAAI Press/IJCAI (2011)

15. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL: Nominal
schemas for integrating rules and ontologies. In: Proc. 20th Int. Conf. on World Wide Web
(WWW’11). pp. 645–654. ACM (2011)

16. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: Ontologies
for knowledge graphs. Tech. rep., TU Dresden (2017), https://iccl.inf.tu-dresden.de/web/
Techreport3032

17. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Reasoning with attributed description logics.
In: Proc. 30th Int. Workshop on Description Logics (DL’17). CEURWorkshop Proceedings,
CEUR-WS.org (2017)

18. Krötzsch, M., Thost, V.: Ontologies for knowledge graphs: Breaking the rules. In: Groth, P.T.,
Simperl, E., Gray, A.J.G., Sabou, M., Krötzsch, M., Lécué, F., Flöck, F., Gil, Y. (eds.) Proc.
15th Int. Semantic Web Conf. (ISWC’16). LNCS, vol. 9981, pp. 376–392 (2016)

19. Leivant, D.: Higher order logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A., Siekmann,
J.H. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 2,
Deduction Methodologies, pp. 229–322. Oxford University Press (1994)

20. Lenzerini, M.: Data integration: A theoretical perspective. In: Popa, L. (ed.) Proc. 21st
Symposium on Principles of Database Systems (PODS’02). pp. 233–246. ACM (2002)

21. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised property
graphs. In: Proc. 26th Int. Joint Conf. on Artificial Intelligence (IJCAI’17). AAAI Press
(2017), to appear; available at https://iccl.inf.tu-dresden.de/web/Inproceedings3141

22. Motik, B., Cuenca Grau, B., Horrocks, I., Sattler, U.: Representing ontologies using de-
scription logics, description graphs, and rules. Artificial Intelligence 173(14), 1275–1309
(2009)

23. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5), 30:1–30:62
(2010)

24. Motik, B., Sattler, U., Studer, R.: Query answering for OWL DL with rules. J. of Web
Semantics 3(1), 41–60 (2005)

25. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (27 October 2009), available at http://www.w3.org/TR/owl2-overview/

26. Patel-Schneider, P.F.: Building the semantic web tower from RDF straw. In: Kaelbling, L.,
Saffiotti, A. (eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 546–
551. Professional Book Center (2005)

27. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-query/

28. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media (2013)
29. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bulletin of the American

Society for Information Science and Technology 36(6), 35–41 (2010)
30. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun. ACM

57(10) (2014)

https://iccl.inf.tu-dresden.de/web/Techreport3032
https://iccl.inf.tu-dresden.de/web/Techreport3032
https://iccl.inf.tu-dresden.de/web/Inproceedings3141
http://www.w3.org/TR/owl2-overview/

