CEUR-WS.org/Vol-173/paper8.pdf

A Generic Framework for Description Logics
with Uncertainty

Volker Haarslev, Hsueh-Ieng Pai, and Nematollaah Shiri

Concordia University
Dept. of Computer Science & Software Engineering
Montreal, Quebec, Canada
{haarslev, hsueh_pa, shiri}@cse.concordia.ca

Abstract. We propose an extension to Description Logics (DLs) with
uncertainty which unifies and/or generalizes a number of existing frame-
works for DLs with uncertainty. To this end, we first give a classification
of these frameworks and identify the essential features as well as proper-
ties of the various combination functions allowed in the underlying uncer-
tainty formalisms they model. This also allows us express the semantics
of the DL elements in a flexible manner. We illustrate how various DLs
with uncertainty can be expressed in our generic framework.

1 Introduction

Ever since Tim Berners-Lee introduced the vision of the Semantic Web [2], at-
tempts have been made on making Web resources more machine-interpretable
by giving Web resources a well-defined meaning through semantic markups. One
way to encode such semantic markups is using ontologies. Over the last few years,
a number of ontology languages have been developed, most of which have a foun-
dation based on Description Logics (DLs) [1]. The family of DLs is a subset of
first-order logic (FOL) that is considered to be attractive as it keeps a good
compromise between expressive power and computational tractability.

Uncertainty management has been a challenge for over two decades in database
(DB) and artificial intelligence (AI) research (see [10,12]), and has recently at-
tracted the attention of the DL community. Uncertainty is a form of deficiency
or imperfection commonly found in the real-world information/data. A piece of
information is uncertain if its truth is not established definitely.

Despite of the popularity of DLs, it has been realized that the standard
DL framework is inadequate to model uncertainty. For example, in the medical
domain, one might want to express that: “It is very likely that an obese person
would have heart disease”, where “obese” is a vague concept that may vary across
regions or countries, and “likely” shows the uncertain nature of the knowledge.
Such knowledge cannot be expressed within the current scope of DL.

Recently, a number of proposals have been put forward which extend DLs
with uncertainty. Some of them deal with the vagueness aspect while others
deal with the uncertainty aspect. We do not intend to compare which extension

is better. In fact, different applications may require using different aspects. It
may even be desired in some cases to model different aspects within the same
application.

Following the parametric approach proposed in [11], we propose a generic
DL framework with uncertainty in this paper as a unifying umbrella for several
existing frameworks for DLs with uncertainty. This not only provides a uniform
access over knowledge that has been encoded using DL with various kinds of
uncertainty, but also allows one to study various problems, including semantics,
query processing and optimization, design, and implementation of such frame-
works in a framework-independent manner.

The rest of this paper is organized as follows. Section 2 presents a classifica-
tion of existing frameworks of uncertainty in DL. In section 3, we present our
generic framework for DL with uncertainty in detail, along with examples illus-
trating how it can represent uncertainty modeled in the frameworks considered.
Concluding remarks and some future directions are presented in section 4.

2 Approaches to DL with Uncertainty

On the basis of their mathematical foundation and the type of uncertainty mod-
eled, we can classify existing proposals of DLs with uncertainty into three ap-
proaches: fuzzy, probabilistic, and possibilistic approach.

The fuzzy approach, based on fuzzy set theory [19], deals with the vagueness
in the knowledge, where a proposition is true to only some degree. For example,
the statement “Jason is obese with degree 0.4” indicates Jason is slightly obese.
Here, the value 0.4 is the degree of membership that Jason is in concept obese.

The probabilistic approach, based on the classical probability theory, deals
with the uncertainty due to lack of knowledge, where a proposition is either
true or false, but one does not know for sure which one is the case. Hence, the
certainty value refers to the probability that the proposition is true. For example,
one could state that: “The probability that Jason would have heart disease given
that he is obese lies in the range [0.8,1].”

Finally, the possibilistic approach, based on possibility theory [20], allows
both certainty (necessity measure) and possibility (possibility measure) be han-
dled in the same formalism. For example, by knowing that “Jason’s weight is
above 80 Kg”, the proposition “Jason’s weight is 80 Kg” is necessarily true with
certainty 1, while “Jason’s weight is 90 Kg” is possibly true with certainty 0.5.

3 A Generic Framework for DL with Uncertainty

To incorporate uncertainty into DL, each component of the classical DL frame-
work needs to be extended, as shown in Fig. 1. To be more specific, any frame-
work for DL with uncertainty consists of the following three components.

1. Description Language with Uncertainty: The syntax and semantics of the
description language are extended to enable expression of uncertainty.

2. Knowledge Bases with Uncertainty: A knowledge base is composed of the
intensional knowledge, i.e., TBox (for terminological axioms) and RBox (for
role axioms), both extended with uncertainty, and extensional knowledge,
i.e., ABox (for assertions), with uncertainty.

3. Reasoning with Uncertainty: The DL framework is equipped with reasoning
services that take into account the presence of uncertainties in DL theories
during the reasoning process.

Intensional Knowledge
[TBox with Uncertainty |

/[RBox with Uncertainty |

Reasoning
with Uncertainty
Extensional Knowledge /

| ABox with Uncertainty |

Description
Language
with Uncertainty

Knowledoe Base with Uncertainty

Fig. 1. DL Framework with Uncertainty

In what follows, we focus more on the first two components and discuss them in
detail. The third component, the reasoning aspect, is under investigation. This
section ends with some examples illustrating how different notions of uncertainty
could be represented using our generic framework.

3.1 Description Language with Uncertainty

To provide a generic extension to a description language, one needs to develop
a way to represent certainty values, and assign semantics to each element in the
description language.

Representation of Certainty Values. To represent the certainty values, we
take a lattice-based approach followed in the parametric framework [11]. That is,
we assume that certainty values form a complete lattice shown as £ = (V, <),
where V is the certainty domain, and < is the partial order defined on V. We
also use b to denote the bottom or least element in V, and use ¢t to denote the
top or greatest value in V. The least upper bound operator (the join operator)
in £ is denoted by @, its greatest lower bound (the meet operator) is denoted
by ®, and its negation operator is denoted by ~.

The certainty lattice can be used to model both qualitative and quantitative
certainty values. An example for the former is classical logic which uses the
binary values {0,1}. For the latter, an example would be a family of multi-
valued logics such as fuzzy logic which uses [0, 1] as the certainty domain.

Assignment of Semantics to Description Language. The generic frame-
work treats each type of uncertainty formalism as a special case. Hence, it would
be restrictive to consider any specific function to describe the semantics of the
description language constructors (e.g., fixing min as the function to determine
the certainty of concept conjunction). An alternative is proposed in our generic
framework to allow a user to specify the functions that are appropriate to define
the semantics of the description language element at axiom or assertion level.
We elaborate more on this in section 3.2.

To make sure that the combination functions specified by a user make sense,
we assume the following properties for various certainty functions to be reason-
able. Most of these properties were recalled from [11], and are reasonable and
justified when we verify them against existing extensions of DL with uncertainty.
To present these properties, we consider the description language constructors
in ALC [1]. We assume that the reader has the basic knowledge about ALC.

Let Z = (AZ, -I) be an interpretation, where AZ is the domain and - is
an interpretation function that maps description language elements to some
certainty value in V.

Atomic Concept. The interpretation of an atomic concept A is a certainty value
in the certainty domain, i.e., AZ(a) € V, for all individuals a € AZ. For example,
in the fuzzy approach, the interpretation of an atomic concept A is defined as
AZ(a) € [0,1], that is, the interpretation function assigns to every individual a
in the domain, a value in the unit interval that indicates its membership to A.

Atomic Role. Similar to atomic concepts, the interpretation of an atomic role R
is a certainty value in the certainty domain, i.e., R (a,b) € V, for all individuals
a,be AL

Top/Universal Concept. The interpretation of the top or universal concept T is
the greatest value in V, that is, TZ = ¢. For instance, in fuzzy, probabilistic, and
possibilistic approaches, the interpretation of T is 1, or true in standard logic.

Bottom Concept. The interpretation of the bottom concept L is the least value
in V, that is, 17 = b. For example, in fuzzy, probabilistic, and possibilistic ap-
proaches, the interpretation of L is 0, or false in standard logic.

Concept Negation. Given a concept C, the interpretation of concept negation
—(C is defined by the negation function ~, which is a mapping from V to V, and
should satisfy the following properties:

— Boundary Conditions: ~b =% and ~t = b.
— Double Negation: For each certainty value o € V, we have that ~ (~a) = a.

In our presentation here, we consider the negation operator ~ in the certainty
lattice as the default negation function. Other properties of the negation func-
tion, such as monotonicity (i.e., Vo, 8 € V, if @ < f, then ~a =~), may be
imposed if necessary. The most common interpretation of —=C' is (1 — certainty
of C), where V = [0,1].

Before we present the properties of functions that are appropriate to describe
the semantics of concept conjunction and disjunction, we first identify a set of
desired properties which combination function f should satisfy. These functions
are used to combine a collection of certainty values into one value. We then
identify a subset of these properties suitable for describing the semantics of
logical formulas on the basis of concept conjunction and disjunction. Note that,
since f is used to combine a collection of certainty values into one, we describe
f as a binary function from V xV to V. This view is clearly without loss of
generality and, at the same time, useful for implementing functions.

Monotonicity: f(ai,a2) X f(B1,82), whenever a; < 3;, for i =1,2.
Bounded Value (Above): f(ai,as) < a4, for i =1,2.

Bounded Value (Below): f(a1,as2) = ay, for i =1,2.

Boundary Condition (Above): Ya € V, f(a,b) = a and f(a,t) =t.
Boundary Condition (Below): Va € V, f(a,t) = a and f(«a,b) = b.
Commutativity: Vo, 8 € V, f(a, 8) = (8, a).

Associativity: Yo, 8,6 € V, f(a, £(8,6)) = f(f(a, 8),0).

N ok =

Concept Conjunction. Given concepts C' and D, the interpretation of concept
conjunction C'M D is defined by the conjunction function f. that should sat-
isfy properties 1, 2, 5, 6, and 7. The monotonicity property is required so that
the reasoning is monotone, i.e., whatever that has been proven so far will re-
main true for the rest of the reasoning process. The bounded value property
is included so that the interpretation of the certainty values makes sense. Note
that this property also implies the boundary condition (property 5). The com-
mutativity property supports reordering of the arguments of the conjunction
operator, and associativity ensures that different evaluation order of a conjunc-
tion of concepts does not change the result. These properties are useful during
the runtime evaluation used by the reasoning procedure. Examples of conjunc-
tions include the usual product x and min functions, and bounded difference
defined as bDif f(a, 3) = maz(0,a +5 —1).

Concept Disjunction. Given concepts C and D, the interpretation of concept
disjunction C'U D is defined by the disjunction function f; that should satisfy
properties 1, 3, 4, 6, and 7. The monotonicity, bounded value, boundary con-
dition, commutativity, and associativity properties are required for similar rea-
sons as the conjunction case. Some common disjunction functions are: the stan-
dard maz function, the probability independent function defined as ind(a, §)
= a + 8 — af, and the bounded sum function defined as bSum(a, 8) = min(1,
a+ f).

Role Value Restriction. Given a role R and a role filler C', the interpretation of
role value restriction VR.C is defined as follows:

Va € AT, (VR.C)*(a) = ®@pcaz{fa(~R*(a,b),C*(b))}
The intuition behind this definition is to view VR.C' as the open first order for-
mula Vb. R(a,b) — C(b), where R(a,b) — C(b) is equivalent to —R(a,b) vV C(b),

and V is viewed as a conjunction over the elements of the domain. To be more
specific, the semantics of —R(a, b) is captured using the negation function ~ as
~R%(a,b), the semantics of =R(a,b) vV C(b) is captured using the disjunction
function as fq(~R%(a,b),C? (b)), and Vb is captured using the meet operator in
the lattice ®pcaz-

Role Exists Restriction. Given a role R and a role filler C, the interpretation of
role exists restriction IR.C is defined as follows:
Va € AT, (3R.C)%(a) = ®peaz{f.(R%(a,b),CL (b))}

The intuition for this property is that we view IR.C as the open first order
formula 3b. R(a,b) A C(b), where 3 is viewed as a disjunction over the elements
of the domain. To be more specific, the semantics of R(a,b) A C(b) is captured
using the conjunction function as f.(R%(a,b),C% (b)), and 3b is captured using
the join operator in the lattice @y az.

Additional Inter-Constructor Properties. In addition to the above-mentioned
properties, we also assume that the following inter-constructor properties hold:

— De Morgan’s Rule: =(C U D) =-CMN-D and -(C N D)=-CU-D.
— Negating Quantifiers Rule: -3R.C' = VR.-~C and -VR.C = 3R.-C.

The above two properties are needed to convert a concept description into nega-
tion normal form (NNF), i.e., the negation operator appears only in front of a
concept name. Note that the above properties affect the type of negation, con-
junction, and disjunction functions that may be used in the generic framework.

3.2 Knowledge Bases with Uncertainty

As in the classical counterpart, a knowledge base X' in the generic framework is
a triple (T, R, A), where T is a TBox, R is an RBox, and A is an ABox.

An interpretation Z satisfies a knowledge base X (or Z |= X)) iff it satisfies
each element of X' (i.e., T, R, and A). We say that X is satisfiable (or X ¥ 1)
iff there exists an interpretation Z that satisfies 3. Similarly, X' is unsatisfiable
(or X |= 1) iff there does not exist any interpretation Z that satisfies X.

To provide a generic extension to the knowledge base, there is a need to give
a syntactical and semantical extension to both the intensional (TBox and RBox)
and extensional knowledge (ABox).

A TBox T consists of a set of terminological axioms expressed in the form
(C C D,a){fe, fa, fp) or (C =D,a)(fc, fa, fp), where C and D are concepts,
a €V is the certainty that the axiom holds, f. is the conjunction function used
as the semantics of concept conjunction and part of the role exists restriction,
fa is the disjunction function used as the semantics of concept disjunction and
part of the role value restriction, and f, is the propagation function that is used
to propagate the truth value from the LHS of the subsumption to the RHS.

Similar to the description language case, we have identified a set of prop-
erties that should hold for a propagation function. In general, the propagation

function f, is a combination function, and should satisfy the monotonicity and
bounded value (above) properties, as specified in section 3.1. Note that these
two properties are a subset of those required by the conjunction functions, and
they are needed for similar reasons as the conjunction case. Some commonly
used propagation functions are the algebraic product x and the standard min
function.

As usual, the concept definition (C' = D, a){f., fa, fp) is defined as (C C D,
Oé) (fCa fd; fp) and <D CC, a)(fCa fda fp)

The RBox is similar to TBox except that we have role axioms instead of
terminological axioms. In addition, only a propagation function is specified, but
not a conjunction or disjunction functions. Since existing DL frameworks with
uncertainty do not allow role conjunction or role disjunction, we do not consider
them in the generic framework either.

An ABox A consists of a set of assertions of the form (a : C,a)(f., f4,—) or
{(a,b) : R,a)(—,—, —), where a and b are individuals, C' is a concept, R is a role,
a €V, f. is the conjunction function, and f; is the disjunction function. Note
that, unlike in axioms, the propagation function is not needed in the assertion,
hence we use “—” as the placeholder to keep the uniformity of the presentation.

3.3 Knowledge Representation

In this section, we first illustrate the capabilities of the generic framework for
representing classical DL. We then show how existing DLs with uncertainty can
be represented by the generic framework.

Ezample 1 (Classical DL). The classical DL knowledge base can be represented
in the generic framework as follows. The certainty lattice is defined as £ = (V, <),
where V = {0,1}, with maz as the join operator @ and min as the meet op-
erator ®. Also, the negation operator is defined as ~0 =1 and ~1 = 0. The
certainty value associated with each axiom and assertion is set to 1. Finally, the
conjunction function (f.) is min, the disjunction function (f4) is maz, and the
propagation function (f,) is min. For example, consider the following classical
knowledge base:
T={{Parent = Person N 3(hasChildByBirth.Person
U hasStepChild.Person LI hasAdoptedChild.Person)),
(Mother = Parent M Female)}
A={(Mary : Person 1 Female),
((Mary, Joe) : hasStepChild), (Joe : Person)}
This knowledge base can be represented in the generic framework as follows:
T={(Parent = Personm I(hasChildByBirth.Person LI hasStepChild.
Personll hasAdoptedChild.Person), 1) {(min, max, min),
(Mother = Parent M Female, 1){(min, —, min)}
A={{Mary : Person 1N Female,1){min,—, —),
((Mary, Joe) : hasStepChild, 1){—, —, —), (Joe : Person,1){(—,—, —)}

Ezample 2 (Fuzzy DL). Most of the proposed fuzzy DL (‘most’ because our
framework supports only ALC) can be represented in the generic framework by
setting the certainty lattice as £ = (V, <), where V = (][0, 1] is the set of closed
intervals [, 4] in [0, 1] such that @ < . The negation operator in this case is
defined as ~([ay,a3]) = [1 — a2,1 —a4]. In [5,13,15,16, 18], the meet operator is
inf (infimum) and the join operator is sup (supremum). On the other hand, [17]
uses min as the meet operator, and max as the join. The conjunction function
used in all these proposals is min, whereas the disjunction function uses max.
Note that existing proposals rarely allow certainty values to be associated with
both axioms and assertions. Moreover, they do not discuss how to combine the
certainty value of an assertion with the certainty value of an axiom, and hence
existing frameworks do not specify any propagation function.

As an example, suppose we have the following fuzzy knowledge base:

T={((Old U WellEducated) N LikesLearning C Knowledgeable > 0.8)}

A={{John : Old > 0.6}, (John : WellEducated > 0.7),

(John : LikesLearning = 0.9)}

Then, we could infer that John is knowledgeable with degree in [0.7, 0.9].
This knowledge base can be represented in the generic framework as follows:

T={{(0ld U WellEducated) N LikesLearning C Knowledgeable,[0.8,1])

(min, maz, min)}

A={(John : Old,[0.6,1]){—, —, =), (John : WellEducated,[0.7,1]){(—, —, —),
(John : LikesLearning,[0.9,0.9])(—, —, —)}
We obtain (John : Knowledgeable, [0.7,0.9])(—, —, —) as the inference result.

Ezample 8 (Probabilistic DL). A possible certainty lattice for probabilistic DL
is £L=(V,<), where V = ([0, 1], with negation operator sets to be ~ ([a1,as])
=[1 —a2,1 — a;]. Note that this allows us to express both interval probability
(such as [0.4, 0.8]) and exact probability (e.g., [0.8, 0.8]).

Currently existing probabilistic extensions to DLs, such as [3,4, 7, 8], support
mainly conditional constraints. In the generic framework, we view a rule as a
conditional statement. As such, let a be some value from the certainty lattice,
a conditional constraint of the form P(A | B) : a can be expressed as the rule
A€ B in IB framework of logic programming, which in turn can be expressed
as (B C A,) in our generic framework.

For illustration purpose, we show how a simple knowledge base with condi-
tional constraints from [4] can be represented in our generic framework. Consider
a knowledge base with the following expressions:

T ={{PacemakerPatient C HeartPatient),

((3hasPrivateInsurance.{ Yes}| HeartPatient)[0.9, 1]) }

A={((PacemakerPatient|{ John})[0.8,1])}

Then, one could infer that {((FhasPrivateInsurance.{ Yes}|{John})[0.72,1])}
The above knowledge base can be expressed in the generic framework as follows:

T={{PacemakerPatient C HeartPatient,[1,1]){—, —, x),

(HeartPatient C JhasPrivateInsurance.{ Yes},[0.9,1])(—, —, x)}

A={(John : PacemakerPatient,[0.8,1]){—,—,—)}

With the first axiom and the first assertion, we infer that John is HeartPatient
with probability x([0.8,1],[1,1]) = [0.8,1] (since f, in the first axiom is x).
Then, this assertion together with the second axiom allow us to infer that John
has private insurance with probability x([0.8,1],[0.9,1]) = [0.72, 1] (since the f,
in the second axiom is x), as inferred in [4].

Unlike in other uncertainty formalisms, reasoning with probability requires
extra information/knowledge. Hence, although our framework can easily handle
simple probabilities, such as independent events and mutually exclusive events,
more complex probability modes such as positive/negative correlation [9], igno-
rance [9], and conditional independence [14] are still under investigation.

Ezample 4 (Possibilistic DL). Hollunder [6] is the only proposal that gives a
possibilistic extension to DL. Here, the possibility (II) and necessity (N) degrees
can be represented by the certainty lattice £ = (V, <), where V = C[0, 1], with
negation operator sets to be ~([a1,az2]) = [1 — a2,1 — a1]. The conjunction and
propagation functions are min, and the disjunction function is mazx.
As an example, in [6], we have the following knowledge base:
T={(Jowns.Porsche C RichPerson U CarFanatic > N0.8),
(RichPerson C Golfer > I10.7)}
A={{Tom : Jowns.Porsche > N1), {Tom : ~CarFanatic > N0.7)}
Then, according to [6], one could infer that (Tom : Golfer > I10.7).
The above knowledge base can be simulated in the generic framework as follows:
T={{Jowns.Porsche C RichPerson U CarFanatic,[0.8,1])
(min, max,min), (RichPerson C Golfer,[0.7,1])(—, —, min)}
A={{Tom : Jowns.Porsche,[1,1]){min, —, —),
(Tom : = CarFanatic,[0.7,1]){—, —, —)}
The result of the inference is { Tom : Golfer,[0.7,1]){—, —, —), as obtained in [6].

4 Conclusion and Future Work

We have proposed a generic framework that allows us to unify and/or generalize
various extensions of DLs with uncertainty, taking an axiomatic approach. In
particular, we abstracted away both the underlying notion of uncertainty (fuzzy
logic, probability, possibilistic logic), and the way in which the constructors in
the description language are interpreted. This was done by identifying the es-
sential properties that various combination functions should possess in order
to realize our unifying framework. We are currently investigating ways to spec-
ify generic reasoning services that the proposed framework should support, for
which we have some partial result. Other future work includes extending this
framework to a more expressive DL, for instance SHOZN . A study of suitable
query processing and optimization techniques is an important future work. An
implementation of the proposed generic framework is underway.

Acknowledgements: This work is supported in part by Natural Sciences and
Engineering Research Council (NSERC) of Canada, and by ENCS, Concordia
University.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider,
P. F., editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific Amer-
ican, 284(5), May 2001.

Ding, Z., Peng, Y., and Pan, R. A Bayesian approach to uncertainty modeling in
OWL ontology. In Proceedings of AISTA-04, Luxembourg, November 2004.
Giugno, R. and Lukasiewicz, T. P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the Semantic Web. In Proceedings of
the JELIA-02, pages 86-97, London, UK, 2002. Springer-Verlag. Lecture Notes In
Computer Science; Vol. 2424.

Holldobler, S., Khang, T. D., and Storr, H.-P. A fuzzy description logic with hedges
as concept modifiers. In Proceedings of InTech/VJFuzzy-02, pages 25-34, Hanoi,
Vietnam, 2002. Science and Technics Publishing House.

Hollunder, B. An alternative proof method for possibilistic logic and its application
to terminological logics. In Proceedings of UAI-94, pages 327-335, San Francisco,
CA, 1994. Morgan Kaufmann.

Jaeger, M. Probabilistic reasoning in terminological logics. In Proceedings of KR-
94, pages 305-316, 1994.

Koller, D.; Levy, A. Y., and Pfeffer, A. P-CLASSIC: A tractable probablistic
description logic. In Proceedings of AAAI-97, pages 390-397, Providence, Rhode
Island, July 1997. AAAI Press.

Lakshmanan, L.V.S. and Sadri, F. Probabilistic deductive databases. In Proceed-
ings of ILPS-94, pages 254-268, Ithaca, NY, November 1994. MIT Press.
Lakshmanan, L.V.S. and Shiri, N. Logic programming and deductive databases
with uncertainty: A survey. In Enclyclopedia of Computer Science and Technology,
volume 45, pages 153-176. Marcel Dekker, Inc., New York, 2001.

Lakshmanan, L.V.S. and Shiri, N. A parametric approach to deductive databases
with uncertainty. IEEE Transactions on Knowledge and Data Engineering,
13(4):554-570, 2001.

Parsons, S. Current approaches to handling imperfect information in data
and knowledge bases. IEEE Transactions on Knowledge and Data Engineering,
8(3):353-372, 1996.

Sanchez, D. and Tettamanzi, A. G. B. Generalizing quantification in fuzzy descrip-
tion logics. In Proceedings of Fuzzy Days-04. Springer-Verlag, 2004.

Shenoy P.P. Conditional independence in valuation-based systems. Journal of
Approzimate Reasoning, 10(3):203-234, 1994.

Straccia, U. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137-166, 2001.

Straccia, U. Transforming fuzzy description logics into classical description logics.
In Proceedings of JELIA-04, pages 385—399. Springer-Verlag, 2004. Lecture Notes
In Computer Science; Vol. 3229.

Stracia, U. A fuzzy description logic. In Proceedings of AAAI-98, pages 594-599,
Menlo Park, CA, USA, 1998. AAAI Press.

Tresp, C. and Molitor, R. A description logic for vague knowledge. In Proceedings
of ECAI-98, pages 361-365, Brighton, UK, 1998. John Wiley and Sons.

Zadeh, L. A. Fuzzy sets. Information and Control, 8:338-353, 1965.

Zadeh, L. A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systemns, 1(1):3-28, 1978.

