
Discovery and Uncertainty in Semantic Web Services

Francisco Martín-Recuerda1 and Dave Robertson2

1 Digital Enterprise Research Institute (DERI), Leopold-Franzens Universität Innsbruck,
Technikerstraße 21a, 6020 Innsbruck, Austria
francisco.martin-recuerda@deri.org

http://www.deri.at/
2 University of Edinburgh, School of Informatics, Centre for Intelligence Systems and their

applications, Appleton Tower, Crichton Street, Edinburgh, EH89LE, Scotland
dr@inf.ed.ac.uk

http://www.cisa.informatics.ed.ac.uk/

Abstract. Although Semantic Web service discovery has been extensively
studied in the literature ([7], [12], [15] and [10]), we are far from achieving an
effective, complete and automated discovery process. Using the incidence cal-
culus [4], a truth-functional probabilistic calculus, and a lightweight brokering
mechanism [17], the article explores the suitability of integrating probabilistic
reasoning in Semantic Web services environments. We show how the combina-
tion of relaxation of the matching process and evaluation of web service capa-
bilities based on a previous historical record of successful executions enables
new possibilities in service discovery.

1 Introduction

Discovery composition, invocation and interoperation are the core pillars of the
deployment of Semantic Web services [9]. Discovery has been extensively studied in
the literature ([7], [21], [12] and [15]). In a recent effort, the authors of [10] have
focused on providing a coherent and formal model for Semantic Web services dis-
covery.

Roughly speaking, the relaxation of the matching process between a goal (a func-
tional description of objectives that clients want to achieve using web services) and
web services capabilities (functional descriptions of a service) has been based on the
following set of matching notions [10]: (i) exact-match, a goal and matched web
service capabilities are the same; (ii) plug-in-match, a goal is subsumed by matched
web service capabilities; (iii) subsume-match, matched web service capabilities are
subsumed by a goal; (iv) intersection-match, a goal and matched web service capa-
bilities have some elements in common; and (v) disjoint-match, a goal and matched
web service capabilities does not follow any of the previous definitions. Although
matching notions relax the identification of target web services, in a future scenario in
which thousands of services can potentially fulfill (or partially fulfill) the objectives
described in a goal, a fine-grained classification of matching notions may be neces-
sary for improving the degree of automation of the discovery process. One possible

approach is to identify a degree of matching inside of each matching notion. Thus, if
we found one thousand web services that follow an intersection-match pattern, we
need to distinguish which are the web services that are closer to the goal requested
capability.

Brokers [5] bring another interesting approach to the problem of filtering the most
promising web services. Brokers are intermediate systems between clients and service
providers. They store web service capabilities and interfaces, execute matching proc-
esses for each goal that they have received, and manage the interaction between cli-
ents and selected web services. Thus after several interactions, brokers can gain valu-
able knowledge about which web services are providing a good service and which are
not. A quality of service historical record can help in the identification of promising
web services during the matching process executed in a broker.

Current Semantic Web services frameworks (e.g. OWL-S1, WSMO2 and Meteor-
S3) use first order logic, description logics and logic programs to represent web ser-
vice and goal capabilities and execute matching processes mostly based on subsum-
tion checking or query-answering. In this article, we address the two problem areas
raised above as part of a novel architecture for service matching, based on the inci-
dence calculus. The incidence calculus [4] is a truth-functional probabilistic calculus
in which the probabilities of composite formulae are computed from intersections and
unions of the sets of worlds for which the atomic formulae hold true. Incidence Cal-
culus can be easily integrated with other logic formalisms like propositional logic and
logic programs and facilitate the implementation of a fine-grained matching mecha-
nism based on probabilities and quality of service records.

The experiments were executed on a platform called F-X [17], a modular formal
knowledge management system developed at University of Edinburgh. F-X has com-
mon roots with WSMO (both follows the main principles of UPML [3]), and can deal
with WSMO/OWL-S ontologies and web services that fall into DLP fragment [8].
We will show how to specify service capabilities in F-Broker, and how incidence
calculus can be nicely integrated

The paper is structured as follows: section 2 introduces semantic web services, F-
X and Incidence Calculus. In section 3, the key implementation efforts are described,
and testing results are discussed. Section 4 provides a short review of related work on
probabilistic logic in the Semantic Web. Finally, conclusions and future work are
included in section 5.

2 Preliminaries

Commonly in a Virtual Travel Agency scenario, customers require services in
terms of goals (for instance, “I want to book the cheapest flight and hotel available.
The destination is Galway and I want to go on the 4th of November and back to San
Francisco on the 9th of November”). Airline companies and hotels provide services

1 http://www.daml.org/services/owl-s/
2 http://www.wsmo.org/
3 http://lsdis.cs.uga.edu/projects/meteor-s/

(“to book a flight please provides: origin, destination, departure date, return date,
valid passport id and credit-card”). The broker is the virtual travel agency that stores
service descriptions related with hotel and flights booking and attend requests from
customers. We will show in this section how F-X can become in an efficient virtual
travel agency for representing, storing and matching services. First we will introduce
F-Broker, the broker component, and then we will describe incidence calculus and
how this formalism can be integrated in F-Broker to improve its matching capabili-
ties.

2.1 F-Broker

F-Broker [17] is an automated broker mechanism of F-X with the responsibility to
identify the assemblies of knowledge components appropriate to a task we wish to
achieve. This information is specified using F-Comp. In a multi-agent environment,
agents advertise their competences (or capabilities, defined in the knowledge compo-
nents they contain) simply by sending these to F-Broker, which records the compe-
tences and the agents who claim to be able to supply them.

When other agent sends a query, the broker processes it, and constructs an internal
description, brokerable structure, based in the competences that previously it re-
corded which describes how the query might be answered. In the final stage the bro-
ker translates its brokerable structure into a sequence of performative statements
describing the messages that will be necessary to establish a communication with the
agents that can attend the query. The broker manages the communication between
agents (request and providers) sending and receiving messages which the appropriate
information to response the query [17].

[17] describes how capabilities and related brokerable structures are represented in
previous versions of F-X. Four forms of capability, C, each of which is implemented
within the expression cap(K, C) , denoting that the agent named K can deliver
capability, C in at least one instance or, if not, will signal failure. Valid options for C
are [17]:
 A unit goal of the form P(A1,…,An) , where P is a predicate name and A1,…, An

are its arguments.
 A conjunctive goal of the form (C1∧…∧Cm) , where each Ci is a unit goal or a

set expression.
 A set expression of the form setof(X,C,S) , where C is either a unit goal or

a conjunctive goal; X is a tuple of variables appearing in C; and S is a set of in-
stances of those tuples which satisfy C.

 A conditional goal of the form Cc←Cp , where Cc is a unit goal which the agent,
K, will attempt to satisfy (but will not guarantee to satisfy) if the condition, Cp , is
satisfied. Cp is either a unit goal or a conjunctive goal.

Although for simplicity, we will use this version of the capability language, in later

versions of FX, capabilities are represented following the next pattern:
service(Agent, Uri, Ontology, [Service1:-Preconditions1, In-

puts1, Outputs1,Externals1], [...],..., [...]).

A simple brokerable structure has the form c(K, C), where K is the name of the

agent which should be able to deliver the capability and C is a description of the
sources of the capability. C can be in any of the following forms [17]:
 A capability available directly from K.
 A term of the form c(K, dq(Q,QC)), where Q is a capability obtainable

from K conditional on its other capabilities and QC describes how these capabili-
ties are obtained.

 A term of the form c(K, pdq(Q,QC,QP)), where Q is a capability obtainable
from K conditional on its other capabilities and on capabilities external to K, and
QC and QP describe how these internal and external capabilities (respectively) are
obtained.

 A term of the form c(conj, co(CQ1,CQ2)), where CQ1 and CQ2 are two
capability structures which must jointly be satisfied.

 A term of the form c(K, cn(Q, G, c(K1,Q1))), where K1 is the name of
an agent different from K which allows capability structure Q to be delivered in
combination with capability structure Q1 provided that the correspondence con-
straints given by G are satisfiable.

 Given a query posed by a client, a broker tries to find all the possible ways in which
agents which have advertised their capabilities might be contacted in order to satisfy
that query. It is necessary a formal representation of this sort of combination of capa-
bilities, for which we use what we call a brokerage structure, of the form c(K, C),
where K is the name of the agent which should be able to deliver the capability and C
is a description of the sources of the capability. C can be in any of the following
forms [17]4:

broker(Q,c(K,Q))

←cap(K,Q).
broker(Q, c(K, dq(Q,QC)))

←cap(K, (Q←C)) ∧
 broker(C,QC).

broker(Q, c(K1,pdq(Q,QC,QP)))

←p_cap(K1, (Q←C), P) ∧
 broker(C,QC) ∧
 e_broker(P,K1,QP).

broker((Q1,Q2), c(conj,
co(CQ1,CQ2)))

←broker(Q1,CQ1) ∧
 broker(Q2,CQ2).

broker(Q2, c(K2, cn(Q2, G,
c(K1,BQ))))

←corr(K1,Q1,K2,Q2,G) ∧
 Broker(Q1, c(K1,BQ)).

e_broker(Q, Kn, c(K,Q))

←cap(K,Q) ∧ not(K=Kn).
e_broker(Q, Kn, c(K, dq(Q,QC)))

←cap(K, (Q←C)) ∧ not(K=Kn) ∧
 broker(C,QC).

e_broker(Q, Kn, c(K1,
pdq(Q,QC,QP)))

←p_cap(K1, (Q←C), P) ∧
 not(K1=Kn) ∧ broker(C,QC) ∧
 e_broker(P,K1,QP).

e_broker((Q1,Q2), Kn, c(conj,
co(CQ1, CQ2)))

←e_broker(Q1,Kn,CQ1) ∧
 e_broker(Q2,Kn,CQ2).

e_broker(Q2, Kn, c(Kn, cn(Q2, G,
c(K1,BQ))))

←corr(K1,Q1,Kn,Q2,G) ∧
 broker(Q1, c(K1,BQ)).

4 “corr” represents a correspondence, the equivalent of a bridge in UPML [3].

2.3 Incidence Calculus

Bundy [4] demonstrated that purely numeric probabilistic formalism can derive
into contradictory results during the calculation of an uncertainty measure of complex
formula. The key result of his analysis is that in general P(A∧B)•P(A)*P(B).

Incidence Calculus [4] reviews the notions of probability theory and introduces an
important novelty: “the probability of a sentence is based on a sample space of ele-
ments. Each element defines a situation in a possible world where a sentence can be
true or false. The sample space, T, contains an exhaustive and disjoint set of elements
that for computational reasons should be finite”.

The incidence of a sentence A, i(A), is the subset of W in which sentence A is true.
The dependence or independence of two sentences, A and B, is defined by the
amount of common points of the result of the intersection between their incidences,
i(A) ∩ i(B) .

The axioms of Incidence Calculus [4] associate a set of theoretic function with
each connective, propositional constant and quantifier of Predicate (Propositional)
Logic so that the incidence of a complex sentence can be calculated from the inci-
dences of its sub-sentences. The probabilities of composite formulae are computed
from intersections and unions of the sets of worlds for which the atomic formulae
hold true. Bundy called the resulting system Predicate (Propositional) Incidence
Logic [4]:

i(T) = {} i(⊥) = {}
i(A) = i(A) i(¬A) = i(T)\i(A)
i(A∧B) = i(A)∩i(B) i(A∨B) = i(A)∪i(B)
i(A→B) = i(¬A∨B) = (i(T)\ i(A))∪i(B)

Thus, probabilities are calculated in the following way [4]:
P(T)= |i(T)| = 1 P(⊥)= |i(⊥)| = 0
P(A)= |i(A)| / |i(T)| P(¬A)= 1-|i(A)| / |i(T)|
P(A∧B) = |i(A)∩i(B)| / |i(T)|
P(A∨B) = (|i(A) ∪i(B)| - |i(A)∩i(B)|) / |i(T)|
P(A|B) = |i(A)∩i(B)| / | i(B)|

As an illustration, consider the following set of incidences describing the weather

of a given week adopted from [4]:
Suppose there are two propositions, P={rainy, windy} and seven possible worlds,

T ={sunday, monday, tuesday, wednesday, thursday, friday, saturday}. Suppose that
each possible world is equally probable (i.e. 1/7), and we learn that rainy is true in
four possible worlds (friday, saturday, sunday and monday) and windy is true in
three possible worlds (Monday, wednesday and Friday). Therefore, we can derivate
the following incidence sets [4]:

i(rainy) = {friday, saturday, sunday, monday}
i(windy)= {monday,wednesday, friday}
i(windy∧rainy)= {monday, friday}

Moreover, we can calculate their probabilities in the following way:

P(rainy) = |i(rainy)| / |i(T)|=4/7
P(windy) = |i(windy)| / |i(T)|=3/7
P(windy∧rainy)= | i(windy)∩i(rainy)| / |i(T)|=2/7

2.3 Travel Agency example, writing capabilities in F-Broker

For simplicity we will use the capability language of an earlier version of F-Broker
presented in [17]. We extend the capability language to store in a list the number of
incidences in which each atomic capability was execute successfully (a client used
this service for a given goal). Initially the set of incidences is empty and after several
computations the broker is populating the sets of incidences according with the re-
sults in the requests attended. For our traveling scenario capabilities, we can model
the services related with an airline company in the following way:

n_requests = [1,2,3,4,5, … , 320].

p_capability(airline_aa, ((book_flight(Person, Flight, Ori-
gin, Destination, DepartureDate, ArrivalDate, PurchaseOrder,
Price, Currency, PaymentMethod) :- flight(Flight, Origin,
Destination, DepartureDate, ArrivalDate, Price, Currency)),
pay_order(Person, Nationality, PurchaseOrder, Price, Cur-
rency, PaymentMethod))).

capability(airline_aa, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency), [3,4,5, … ,
301]).

capability(airline_ib, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency), [1,2, … ,
319]).

capability(airline_ba, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency) [6,7, … , 318).

p_capability(financial_vs, pay_order(Person, PurchaseOrder,
Price, Currency, PaymentMethod):-
has_money(Person,Price,Currency, PaymentMethod),
has_passport(Person, Nationality))).

capability(financial_vs,, has_money(Person,Price,Currency,
PaymentMethod), [2,3,4, … , 315]).

capability(financial_ms,, has_money(Person,Price,Currency,
PaymentMethod), [5,6 … , 320]).

capability(financial_amex,, has_money(Person,Price,Currency,
PaymentMethod)[100,105, …, 255]).

capability(police, has_passport(Person, Nationality), [3,4,5,
… , 301]).

…

3 Implementation and Results

We present a set of extensions in F-X to allow the system to deal with many OWL-
S service profiles, take advantage of a probabilistic mechanism based on Incidence
Calculus and relax the matching process.

3.1 From Description Logics to Description Logic Programs.

One of the objectives of the implementation was to test F-Broker with real exam-
ples of Semantic Web Services descriptions and also to integrate it in an industrial
standard in order to find possible business applications. Many web services are anno-
tated using DAML-S Service Profile descriptions. So we thought that it could be a
good idea to provide a translator that semi-automatically converts services descrip-
tions from DAML-S into F-Broker Service Description Language (SDL). One of the
difficulties is how to translate DL logical statements into Prolog statements.

Description Logic Programs (DLP)[8], is an expressive fragment of the intersec-
tion of Description Logics (DL) [2] and Logic Programs (LP) [13]. An important
result of the development of this formalism is DLP-fusion, a bidirectional translation
of premises and inferences from DLP fragment of DL to LP, and vice versa from
DLP fragment of LP to DL that allows Prolog to describe on expressive subset of DL.
The implementation of DLP-Fusion in Prolog is straightforward [14] and with this
translator F-Broker is able to import and export knowledge represented using De-
scription Logics.

3.2 Extending matching algorithm

This section describes the necessary extensions to the matching algorithm of F-
Broker in order to incorporate subsumption reasoning, matching notions (exact, plug-
in, subsume, intersection and disjoint), a fine-grained degree of matching for some of
these matching notions, and finally a evaluation algorithm based on historical records.
We follow a bottom-up approach in which any new functionality is tested before we
continue with the implementations of new refinements.

Subsumption reasoning. A Meta-interpreter for a language is an interpreter for
the language written in the language itself [20]. Meta-interpreters are powerful tools
that were widely used for implementing the inference engines of many expert sys-
tems. Using these features the programmers can modify the behaviour of the inter-
preter of the language. Goal reduction is the best known and most widely used meta–
interpreter that in Prolog is called Vanilla [20]. Vanilla does not support subsumption.
So, the first step during the implementation process was the integration of substitution
of vanilla meta-interpreter by the simple subsumption meta-interpreter. The integra-

tion of the subsumption mechanism with the brokering algorithm is very simple. It is
only to add a clause subs in any of the brokerable predicates that compound the bro-
kering algorithm for subsumption checking of terms:
brokerable(Q, c(S,Q)) :-
capability(S, Q1),
subs(Q1,Q).

Matching notions. The algorithm that evaluates the degree of matching basically

compares two lists of terms that belong to a web service capability and a goal, verifies
the number of common and no common terms, determines the appropriate notion of
matching following the previous classification and returns a value with the notion of
matching identified. According to the view described in [10], abstract services and
goals are both represented as sets of objects during the service discovery step. Thus,
the calculation of the notion of match can be naturally calculated using incidence
calculus. The implementation is also simple. We substitute the subsumption clause in
the brokerable predicates implemented before for a new clause that call a new algo-
rithm that evaluates and return the notion of match between a capability and goal:

brokerable(Q, c(S,Q,Nmatch)) :-
capability(S, Q1),
matchingnotion(Q1,Q,Nmatch),
Nmatch<>”disjoint”.

Instead of carrying out strings like “disjoint” or “exact”, it should be interesting to

carry numeric values that can be reused for the calculation of a joint probability of
several composed services.

Degree of matching notion. The previous algorithm can be improved by using a

degree of matching that qualified the goodness of the matching notion identified. To
do this, we include a new return variable in the matchingnotion predicate with the
value that the incidence calculus algorithm calculates during the evaluation of com-
mon terms between capability and goal.

brokerable(Q, c(S,Q,Nmatch, Dmatch)) :-
capability(S, Q1),
matchingnotion(Q1,Q,Nmatch, Dmatch),
Nmatch<>”disjoint”.

Evaluation of historical records. The proposal described in the current section

focus the evaluation of the brokerable structures according to an historical record of
previous goals. Associated with any atomic service capability there is a list of suc-
cessful previous goals. This notion of a set of points (previous goals) fits perfectly
with the probabilistic mechanism Incidence Calculus introduced in the previous sec-
tion. In this case, the implementation requires the modification the atomic capabilities
that have to maintain a list of values:

brokerable(Q, c(S, Q, L)) :-
capability(S, Q1, L),

A predicate called evaluate finds all the possible broker structures that can satis-

fied a request and evaluate the different structures according with the information of
the history record. During the interaction with the client, the broker should modify the
set of previous request of the service that successfully attend the demand of the client:

|?- evaluate(time(T), L).
L = [c(sd,time(A),[1,2]),2/4] ?
yes

3.3 Discussion

The extended version of F-Broker was tested with a modified version of the eco-
logic knowledge base [19] and slightly adapted versions of several web services ex-
amples from DAML5, Mindswap6 and Carnegie-Mellon7. [14] shows that the use of
incidence calculus does not make significantly worse the performances of the broker
with respect to the original version of F-Broker, and the relaxation of the matching
process and the filtering of services based on a list of previous experiences of goals
improve the matching abilities of the matching algorithm.

In [11] the use of incidence calculus was tested with a more advanced version of
F-Broker that includes a lightweight coordination calculus (LCC) [16], a method for
specifying agent interaction protocols. Lambert and Robertson use incidence calculus
for the evaluation of services based on an historical record. The use of incidence
calculus clearly helps to identify most promising services and thus satisfied client
goals more efficiently.

[14] identified an important limitation of the use of incidence calculus to evaluate
web services based on an historical record of previous goals. This is the incapacity of
the system to handle the changes that the environment undergoes in a specific periods
of time. For instance, the provider of a service with a large and excellent history re-
cord can fall. Any request of the clients that asks for this service will be processed by
the broker and the answer will include the service that the provider cannot supply.
After many requests another service could overcome the re-cord of the unavailable
service, but before this moment the broker will try to execute the wrong service.

4 Related Work

The use of probabilistic logic in the context of the Semantic Web has not been ex-
plored in detail. Even the inventor of the Semantic Web, Sir Tim Berners-Lee, men-
tioned during the dev day lunchtime session at WWW2004 conference8, that the Se-

5 http:// www .daml.org/services/examples.html
6 http://www.mindswap.org/2002/services/
7 http://www. daml.ri.cmu.edu/ont/TaskModeler/TMont-index.html# Request Realtor1
8 http://esw.w3.org/mt/esw/archives/000055.html

mantic Web stack does not need a representation of uncertainty. The first serious
attempt to incorporate probabilistic reasoning in the Semantic Web was done with P-
SHOQ[18]. Unfortunately, this work was not taken into consideration by the Seman-
tic Web Community. A detailed description of an early version of this work can be
found in my master thesis, "Dealing with uncertainty in semantic web services" [14].
This work was the first attempt to incorporate incidence calculus in a broker for se-
mantic web services. [11] based on this previous experience incorporates the use of
incidence calculus in an advance version of F-Broker that includes a lightweight
coordination calculus (LCC) [16], a method for specifying agent interaction proto-
cols.

5 Conclusions and Future Work

The relaxation of the matching process and the evaluation web service capabilities
based on a previous historical record of successful executions show the feasibility of
the use of probabilistic logic in Semantic Web services. Uncertainty is present in
functional aspects of Web Services like discovery, composition, interoperation, me-
diation, monitoring and compensation [1]. In this paper, we focused only in discov-
ery, and in [14], composition is also studied.

Incidence calculus was an excellent choice because its simplicity, rigor and com-
patibility with other classical logic formalisms. F-Broker provides an excellent test
platform for the evaluation of incidence calculus in semantic web services. Although
simple, F-Broker provides all basic functionality of a broker and allows the composi-
tion of web services capabilities and the execution of services based on an elementary
vocabulary inspired in KQML. The code is very compact and clean, and new exten-
sions are easily to include.

Future work will concentrate in the migration of the test platform to more realistic
scenarios and the evaluation of other probabilistic logic formalism that combines
logic programming with description logics.

Acknowledgements

This work has been partially supported by the SFI (Science Funds Ireland) under the
DERI-Lion project, and the European Commission under the project Knowledge
Web.

References

1. S. Arroyo and D. Fensel (2004). The Semantic Web Service Usage Process. No published.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Descrip-

tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

3. V. R. Benjamins, D. Fensel, E. Motta, S. Decker, M. Gaspari, R. Groenboom, W. Grosso,
M. Musen, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga. The Unified Problem-solving
Method Development Language UPML, February 1999. Esprit Project 27169 IBROW 3
(An Intelligent Brokering Service for Knowledge-Component Reuse on the World-Wide
Web.

4. A. Bundy. Incidence Calculus. In Encyclopedia of Artificial Intelligence, pages 663–668.
1992.

5. K. Decker and K. Sycara. Middle-Agents for the Internet. In Proceedings of ICJCAI-97,
January 1997.

6. T. Finin, Y. Labrou, and J. Mayfield. KQML as a Agent Communication Language. Sof-
ware Agents, 1997. J.M. Bredshaw, AAAI Press/MIT Press.

7. J. Gonzalez-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. In KI-2001 Workshop on Applications of Description Logics, September 2001.

8. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proc. of the Twelfth International World Wide
Web Conference (WWW 2003), pages 48–57, 2003.

9. H. Haas and A. Brown (2004). Web Services Glossary. 2004. http://www.w3.org/TR/ws-
gloss/

10. U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Technical re-
port, DERI, November 2004.

11. D. Lambert and D. Robertson. Matchmaking and Brokering Multi-Party Interactions Using
Historical Performance Data. To appear in the Fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems, Utrecht 2005.

12. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. In WWW’03, Budapest, Hungary, May 2003.

13. J.W. Lloyd. Foundations of logic programming (second extended edition). Springer series
in symbolic computation. Springer-Verlag, New York, 1987.

14. F. Martin-Recuerda. Dealing with uncertainty in Semantic Web services. MSc Thesis.
University of Edinburgh. 2003.

15. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service
Capabilities. In ISWC, pages 333–347. Springer Verlag, 2002.

16. Robertson, D.: A lightweight method for coordination of agent oriented web services. In:
Proceedings of the 2004 AAAI Spring Symposium on Semantic Web Services, California,
USA (2004)

17. D. Robertson. F-X: A Formal Knowledge Management System. (unpublished), August
2001.

18. Thomas Lukasiewicz and Rosalba Giugno. P-SHOQ (Dn) : A Probabilistic Extension of
SHOQ(Dn) for Probabilistic Ontologies in the Semantic Web. Technical report. Institut f¨ur
Informations systeme, Technische Universität Wien,

April 2002. Technical Report Nr. 1843-02-06.
19. D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, and M Uschold. Eco-Logic: Logic-

Based Approaches to Ecological Modeling. MIT Press (Logic Programming Series), 1991.
20. L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques, 2nd

Edition. MIT Press, 1994.
21. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Sys-
tems, pages 173–203, 2002.

