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Abstract. Although Semantic Web service discovery has been extensively 
studied in the literature ([7], [12], [15] and [10]), we are far from achieving an 
effective, complete and automated discovery process. Using the incidence cal-
culus [4], a truth-functional probabilistic calculus, and a lightweight brokering 
mechanism [17], the article explores the suitability of integrating probabilistic 
reasoning in Semantic Web services environments. We show how the combina-
tion of relaxation of the matching process and evaluation of web service capa-
bilities based on a previous historical record of successful executions enables 
new possibilities in service discovery.  

1   Introduction 

Discovery composition, invocation and interoperation are the core pillars of the 
deployment of Semantic Web services [9]. Discovery has been extensively studied in 
the literature ([7], [21], [12] and [15]). In a recent effort, the authors of [10] have 
focused on providing a coherent and formal model for Semantic Web services dis-
covery.  

Roughly speaking, the relaxation of the matching process between a goal (a func-
tional description of objectives that clients want to achieve using web services) and 
web services capabilities (functional descriptions of a service) has been based on the 
following set of matching notions [10]: (i) exact-match, a goal and matched web 
service capabilities are the same; (ii) plug-in-match, a goal is subsumed by matched 
web service capabilities; (iii) subsume-match, matched web service capabilities are 
subsumed by a goal; (iv) intersection-match, a goal and matched web service capa-
bilities have some elements in common; and (v) disjoint-match, a goal and matched 
web service capabilities does not follow any of the previous definitions. Although 
matching notions relax the identification of target web services, in a future scenario in 
which thousands of services can potentially fulfill (or partially fulfill) the objectives 
described in a goal, a fine-grained classification of matching notions may be neces-
sary for improving the degree of automation of the discovery process. One possible 



approach is to identify a degree of matching inside of each matching notion. Thus, if 
we found one thousand web services that follow an intersection-match pattern, we 
need to distinguish which are the web services that are closer to the goal requested 
capability. 

Brokers [5] bring another interesting approach to the problem of filtering the most 
promising web services. Brokers are intermediate systems between clients and service 
providers. They store web service capabilities and interfaces, execute matching proc-
esses for each goal that they have received, and manage the interaction between cli-
ents and selected web services. Thus after several interactions, brokers can gain valu-
able knowledge about which web services are providing a good service and which are 
not. A quality of service historical record can help in the identification of promising 
web services during the matching process executed in a broker. 

Current Semantic Web services frameworks (e.g. OWL-S1, WSMO2 and Meteor-
S3) use first order logic, description logics and logic programs to represent web ser-
vice and goal capabilities and execute matching processes mostly based on subsum-
tion checking or query-answering. In this article, we address the two problem areas 
raised above as part of a novel architecture for service matching, based on the inci-
dence calculus. The incidence calculus [4] is a truth-functional probabilistic calculus 
in which the probabilities of composite formulae are computed from intersections and 
unions of the sets of worlds for which the atomic formulae hold true. Incidence Cal-
culus can be easily integrated with other logic formalisms like propositional logic and 
logic programs and facilitate the implementation of a fine-grained matching mecha-
nism based on probabilities and quality of service records. 

The experiments were executed on a platform called F-X [17], a modular formal 
knowledge management system developed at University of Edinburgh. F-X has com-
mon roots with WSMO (both follows the main principles of UPML [3]), and can deal 
with WSMO/OWL-S ontologies and web services that fall into DLP fragment [8]. 
We will show how to specify service capabilities in F-Broker, and how incidence 
calculus can be nicely integrated 

The paper is structured as follows: section 2 introduces semantic web services, F-
X and Incidence Calculus. In section 3, the key implementation efforts are described, 
and testing results are discussed. Section 4 provides a short review of related work on 
probabilistic logic in the Semantic Web. Finally, conclusions and future work are 
included in section 5.  

2   Preliminaries 

Commonly in a Virtual Travel Agency scenario, customers require services in 
terms of goals (for instance, “I want to book the cheapest flight and hotel available. 
The destination is Galway and I want to go on the 4th of November and back to San 
Francisco on the 9th of November”). Airline companies and hotels provide services 
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(“to book a flight please provides: origin, destination, departure date, return date, 
valid passport id and credit-card”). The broker is the virtual travel agency that stores 
service descriptions related with hotel and flights booking and attend requests from 
customers. We will show in this section how F-X can become in an efficient virtual 
travel agency for representing, storing and matching services. First we will introduce 
F-Broker, the broker component, and then we will describe incidence calculus and 
how this formalism can be integrated in F-Broker to improve its matching capabili-
ties. 

2.1   F-Broker 

F-Broker [17] is an automated broker mechanism of F-X with the responsibility to 
identify the assemblies of knowledge components appropriate to a task we wish to 
achieve. This information is specified using F-Comp. In a multi-agent environment, 
agents advertise their competences (or capabilities, defined in the knowledge compo-
nents they contain) simply by sending these to F-Broker, which records the compe-
tences and the agents who claim to be able to supply them. 

When other agent sends a query, the broker processes it, and constructs an internal 
description, brokerable structure, based in the competences that previously it re-
corded which describes how the query might be answered. In the final stage the bro-
ker translates its brokerable structure into a sequence of performative statements 
describing the messages that will be necessary to establish a communication with the 
agents that can attend the query. The broker manages the communication between 
agents (request and providers) sending and receiving messages which the appropriate 
information to response the query [17]. 

[17] describes how capabilities and related brokerable structures are represented in 
previous versions of F-X. Four forms of capability, C, each of which is implemented 
within the expression cap(K, C) , denoting that the agent named K can deliver 
capability, C in at least one instance or, if not, will signal failure. Valid options for C 
are [17]: 
 A unit goal of the form P(A1,…,An) , where P is a predicate name and A1,…, An 

are its arguments. 
 A conjunctive goal of the form (C1∧…∧Cm) , where each Ci is a unit goal or a 

set expression. 
 A set expression of the form setof(X,C,S) , where C is either a unit goal or 

a conjunctive goal; X is a tuple of variables appearing in C; and S is a set of in-
stances of those tuples which satisfy C. 

 A conditional goal of the form Cc←Cp , where Cc is a unit goal which the agent, 
K, will attempt to satisfy (but will not guarantee to satisfy) if the condition, Cp , is 
satisfied. Cp is either a unit goal or a conjunctive goal. 

 
Although for simplicity, we will use this version of the capability language, in later 

versions of FX, capabilities are represented following the next pattern:  
service(Agent, Uri, Ontology, [Service1:-Preconditions1, In-

puts1, Outputs1,Externals1], [...],..., [...]). 



 
A simple brokerable structure has the form c(K, C), where K is the name of the 

agent which should be able to deliver the capability and C is a description of the 
sources of the capability. C can be in any of the following forms [17]: 
 A capability available directly from K. 
 A term of the form c(K, dq(Q,QC)), where Q is a capability obtainable 

from K conditional on its other capabilities and QC describes how these capabili-
ties are obtained. 

 A term of the form c(K, pdq(Q,QC,QP)), where Q is a capability obtainable 
from K conditional on its other capabilities and on capabilities external to K, and 
QC and QP describe how these internal and external capabilities (respectively) are 
obtained. 

 A term of the form c(conj, co(CQ1,CQ2)), where CQ1 and CQ2 are two 
capability structures which must jointly be satisfied. 

 A term of the form c(K, cn(Q, G, c(K1,Q1))), where K1 is the name of 
an agent different from K which allows capability structure Q to be delivered in 
combination with capability structure Q1 provided that the correspondence con-
straints given by G are satisfiable. 

 
  Given a query posed by a client, a broker tries to find all the possible ways in which 
agents which have advertised their capabilities might be contacted in order to satisfy 
that query. It is necessary a formal representation of this sort of combination of capa-
bilities, for which we use what we call a brokerage structure, of the form c(K, C), 
where K is the name of the agent which should be able to deliver the capability and C 
is a description of the sources of the capability. C can be in any of the following 
forms [17]4: 
 

 
broker(Q,c(K,Q)) 

←cap(K,Q). 
broker(Q, c(K, dq(Q,QC))) 

←cap(K, (Q←C)) ∧  
  broker(C,QC). 

broker(Q, c(K1,pdq(Q,QC,QP))) 

←p_cap(K1, (Q←C), P) ∧  
  broker(C,QC) ∧  
  e_broker(P,K1,QP). 

broker((Q1,Q2), c(conj, 
co(CQ1,CQ2))) 

←broker(Q1,CQ1) ∧ 
  broker(Q2,CQ2). 

broker(Q2, c(K2, cn(Q2, G, 
c(K1,BQ)))) 

←corr(K1,Q1,K2,Q2,G) ∧ 
  Broker(Q1, c(K1,BQ)). 

e_broker(Q, Kn, c(K,Q)) 

←cap(K,Q) ∧ not(K=Kn). 
e_broker(Q, Kn, c(K, dq(Q,QC))) 

←cap(K, (Q←C)) ∧ not(K=Kn) ∧ 
  broker(C,QC). 

e_broker(Q, Kn, c(K1, 
pdq(Q,QC,QP))) 

←p_cap(K1, (Q←C), P) ∧ 
  not(K1=Kn) ∧ broker(C,QC) ∧  
  e_broker(P,K1,QP). 

e_broker((Q1,Q2), Kn, c(conj, 
co(CQ1, CQ2))) 

←e_broker(Q1,Kn,CQ1) ∧  
  e_broker(Q2,Kn,CQ2). 

e_broker(Q2, Kn, c(Kn, cn(Q2, G, 
c(K1,BQ)))) 

←corr(K1,Q1,Kn,Q2,G) ∧  
  broker(Q1, c(K1,BQ)). 

                                                           
4 “corr” represents a correspondence, the equivalent of a bridge in UPML [3]. 



2.3   Incidence Calculus 

Bundy [4] demonstrated that purely numeric probabilistic formalism can derive 
into contradictory results during the calculation of an uncertainty measure of complex 
formula. The key result of his analysis is that in general P(A∧B)•P(A)*P(B). 

Incidence Calculus [4] reviews the notions of probability theory and introduces an 
important novelty: “the probability of a sentence is based on a sample space of ele-
ments. Each element defines a situation in a possible world where a sentence can be 
true or false. The sample space, T, contains an exhaustive and disjoint set of elements 
that for computational reasons should be finite”. 

The incidence of a sentence A, i(A), is the subset of W in which sentence A is true. 
The dependence or independence of two sentences, A and B, is defined by the 
amount of common points of the result of the intersection between their incidences, 
i(A) ∩ i(B) . 

The axioms of Incidence Calculus [4] associate a set of theoretic function with 
each connective, propositional constant and quantifier of Predicate (Propositional) 
Logic so that the incidence of a complex sentence can be calculated from the inci-
dences of its sub-sentences. The probabilities of composite formulae are computed 
from intersections and unions of the sets of worlds for which the atomic formulae 
hold true. Bundy called the resulting system Predicate (Propositional) Incidence 
Logic [4]: 

i(T)  = {}    i(⊥) = {} 
i(A)  = i(A)   i(¬A)  = i(T)\i(A) 
i(A∧B)  = i(A)∩i(B)   i(A∨B) = i(A)∪i(B) 
i(A→B)  = i(¬A∨B) = (i(T)\ i(A))∪i(B) 
 
Thus, probabilities are calculated in the following way [4]: 
P(T)= |i(T)|  = 1   P(⊥)= |i(⊥)| = 0 
P(A)= |i(A)| / |i(T)|   P(¬A)= 1-|i(A)| / |i(T)| 
P(A∧B) = |i(A)∩i(B)| / |i(T)| 
P(A∨B) = (|i(A) ∪i(B)| - |i(A)∩i(B)|) / |i(T)| 
P(A|B) = |i(A)∩i(B)| / | i(B)| 
 
As an illustration, consider the following set of incidences describing the weather 

of a given week adopted from [4]:  
Suppose there are two propositions, P={rainy, windy} and seven possible worlds, 

T ={sunday, monday, tuesday, wednesday, thursday, friday, saturday}. Suppose that 
each possible world is equally probable (i.e. 1/7), and we learn that rainy is true in 
four possible worlds (friday, saturday, sunday and  monday) and windy is true in 
three possible worlds (Monday, wednesday and  Friday). Therefore, we can derivate 
the following incidence sets [4]: 

i(rainy) = {friday, saturday, sunday, monday} 
i(windy)= {monday,wednesday, friday} 
i(windy∧rainy)= {monday, friday} 
 
Moreover, we can calculate their probabilities in the following way: 



P(rainy) = |i(rainy)| / |i(T)|=4/7 
P(windy) = |i(windy)| / |i(T)|=3/7 
P(windy∧rainy)= | i(windy)∩i(rainy)| / |i(T)|=2/7 
 

2.3   Travel Agency example, writing capabilities in F-Broker 

For simplicity we will use the capability language of an earlier version of F-Broker 
presented in [17]. We extend the capability language to store in a list the number of 
incidences in which each atomic capability was execute successfully (a client used 
this service for a given goal). Initially the set of incidences is empty and after several 
computations the broker is populating the sets of incidences according with the re-
sults in the requests attended. For our traveling scenario capabilities, we can model 
the services related with an airline company in the following way: 

n_requests = [1,2,3,4,5, … , 320]. 

p_capability(airline_aa, ((book_flight(Person, Flight, Ori-
gin, Destination, DepartureDate, ArrivalDate, PurchaseOrder, 
Price, Currency, PaymentMethod) :- flight(Flight, Origin, 
Destination, DepartureDate, ArrivalDate, Price, Currency)), 
pay_order(Person, Nationality, PurchaseOrder, Price, Cur-
rency, PaymentMethod))). 

capability(airline_aa, (flight(Flight, Origin, Destination, 
DepartureDate, ArrivalDate, Price, Currency), [3,4,5, … , 
301]). 

capability(airline_ib, (flight(Flight, Origin, Destination, 
DepartureDate, ArrivalDate, Price, Currency), [1,2, … , 
319]). 

capability(airline_ba, (flight(Flight, Origin, Destination, 
DepartureDate, ArrivalDate, Price, Currency) [6,7, … , 318). 

p_capability(financial_vs, pay_order(Person, PurchaseOrder, 
Price, Currency, PaymentMethod):- 
has_money(Person,Price,Currency, PaymentMethod), 
has_passport(Person, Nationality))). 

capability(financial_vs,, has_money(Person,Price,Currency, 
PaymentMethod), [2,3,4, … , 315]). 

capability(financial_ms,, has_money(Person,Price,Currency, 
PaymentMethod), [5,6 … , 320]). 

capability(financial_amex,, has_money(Person,Price,Currency, 
PaymentMethod)[100,105, …, 255]). 

capability(police, has_passport(Person, Nationality), [3,4,5, 
… , 301]). 



… 

3   Implementation and Results 

We present a set of extensions in F-X to allow the system to deal with many OWL-
S service profiles, take advantage of a probabilistic mechanism based on Incidence 
Calculus and relax the matching process.   

3.1   From Description Logics to Description Logic Programs. 

One of the objectives of the implementation was to test F-Broker with real exam-
ples of Semantic Web Services descriptions and also to integrate it in an industrial 
standard in order to find possible business applications. Many web services are anno-
tated using DAML-S Service Profile descriptions. So we thought that it could be a 
good idea to provide a translator that semi-automatically converts services descrip-
tions from DAML-S into F-Broker Service Description Language (SDL). One of the 
difficulties is how to translate DL logical statements into Prolog statements.  

Description Logic Programs (DLP)[8], is an expressive fragment of the intersec-
tion of Description Logics (DL) [2] and Logic Programs (LP) [13]. An important 
result of the development of this formalism is DLP-fusion, a bidirectional translation 
of premises and inferences from DLP fragment of DL to LP, and vice versa from 
DLP fragment of LP to DL that allows Prolog to describe on expressive subset of DL. 
The implementation of DLP-Fusion in Prolog is straightforward [14] and with this 
translator F-Broker is able to import and export knowledge represented using De-
scription Logics. 

3.2   Extending matching algorithm 

This section describes the necessary extensions to the matching algorithm of F-
Broker in order to incorporate subsumption reasoning, matching notions (exact, plug-
in, subsume, intersection and disjoint), a fine-grained degree of matching for some of 
these matching notions, and finally a evaluation algorithm based on historical records. 
We follow a bottom-up approach in which any new functionality is tested before we 
continue with the implementations of new refinements.  

Subsumption reasoning. A Meta-interpreter for a language is an interpreter for 
the language written in the language itself [20]. Meta-interpreters are powerful tools 
that were widely used for implementing the inference engines of many expert sys-
tems. Using these features the programmers can modify the behaviour of the inter-
preter of the language. Goal reduction is the best known and most widely used meta–
interpreter that in Prolog is called Vanilla [20]. Vanilla does not support subsumption. 
So, the first step during the implementation process was the integration of substitution 
of vanilla meta-interpreter by the simple subsumption meta-interpreter. The integra-



tion of the subsumption mechanism with the brokering algorithm is very simple. It is 
only to add a clause subs in any of the brokerable predicates that compound the bro-
kering algorithm for subsumption checking of terms: 
brokerable(Q, c(S,Q)) :- 
capability(S, Q1), 
subs(Q1,Q). 
 
Matching notions. The algorithm that evaluates the degree of matching basically 

compares two lists of terms that belong to a web service capability and a goal, verifies 
the number of common and no common terms, determines the appropriate notion of 
matching following the previous classification and returns a value with the notion of 
matching identified. According to the view described in [10], abstract services and 
goals are both represented as sets of objects during the service discovery step. Thus, 
the calculation of the notion of match can be naturally calculated using incidence 
calculus. The implementation is also simple. We substitute the subsumption clause in 
the brokerable predicates implemented before for a new clause that call a new algo-
rithm that evaluates and return the notion of match between a capability and goal: 

 
brokerable(Q, c(S,Q,Nmatch)) :- 
capability(S, Q1), 
matchingnotion(Q1,Q,Nmatch), 
Nmatch<>”disjoint”. 
 
Instead of carrying out strings like “disjoint” or “exact”, it should be interesting to 

carry numeric values that can be reused for the calculation of a joint probability of 
several composed services. 

 
Degree of matching notion. The previous algorithm can be improved by using a 

degree of matching that qualified the goodness of the matching notion identified. To 
do this, we include a new return variable in the matchingnotion predicate with the 
value that the incidence calculus algorithm calculates during the evaluation of com-
mon terms between capability and goal.  

 
brokerable(Q, c(S,Q,Nmatch, Dmatch)) :- 
capability(S, Q1), 
matchingnotion(Q1,Q,Nmatch, Dmatch), 
Nmatch<>”disjoint”. 
 
Evaluation of historical records. The proposal described in the current section 

focus the evaluation of the brokerable structures according to an historical record of 
previous goals. Associated with any atomic service capability there is a list of suc-
cessful previous goals. This notion of a set of points (previous goals) fits perfectly 
with the probabilistic mechanism Incidence Calculus introduced in the previous sec-
tion. In this case, the implementation requires the modification the atomic capabilities 
that have to maintain a list of values: 

 
brokerable(Q, c(S, Q, L)) :- 
capability(S, Q1, L), 



 
A predicate called evaluate finds all the possible broker structures that can satis-

fied a request and evaluate the different structures according with the information of 
the history record. During the interaction with the client, the broker should modify the 
set of previous request of the service that successfully attend the demand of the client: 

 
|?- evaluate(time(T), L). 
L = [c(sd,time( A),[1,2]),2/4] ? 
yes 

3.3   Discussion 

The extended version of F-Broker was tested with a modified version of the eco-
logic knowledge base [19] and slightly adapted versions of several web services ex-
amples from DAML5, Mindswap6 and Carnegie-Mellon7. [14] shows that the use of 
incidence calculus does not make significantly worse the performances of the broker 
with respect to the original version of F-Broker, and the relaxation of the matching 
process and the filtering of services based on a list of previous experiences of goals 
improve the matching abilities of the matching algorithm. 

In [11] the use of incidence calculus was tested with a more advanced version of 
F-Broker that includes a lightweight coordination calculus (LCC) [16], a method for 
specifying agent interaction protocols. Lambert and Robertson use incidence calculus 
for the evaluation of services based on an historical record. The use of incidence 
calculus clearly helps to identify most promising services and thus satisfied client 
goals more efficiently.  

[14] identified an important limitation of the use of incidence calculus to evaluate 
web services based on an historical record of previous goals. This is the incapacity of 
the system to handle the changes that the environment undergoes in a specific periods 
of time. For instance, the provider of a service with a large and excellent history re-
cord can fall. Any request of the clients that asks for this service will be processed by 
the broker and the answer will include the service that the provider cannot supply. 
After many requests another service could overcome the re-cord of the unavailable 
service, but before this moment the broker will try to execute the wrong service. 

4   Related Work 

The use of probabilistic logic in the context of the Semantic Web has not been ex-
plored in detail. Even the inventor of the Semantic Web, Sir Tim Berners-Lee, men-
tioned during the dev day lunchtime session at WWW2004 conference8, that the Se-

                                                           
5 http:// www .daml.org/services/examples.html    
6 http://www.mindswap.org/2002/services/ 
7 http://www. daml.ri.cmu.edu/ont/TaskModeler/TMont-index.html# Request Realtor1 
8 http://esw.w3.org/mt/esw/archives/000055.html  



mantic Web stack does not need a representation of uncertainty. The first serious 
attempt to incorporate probabilistic reasoning in the Semantic Web was done with P-
SHOQ[18]. Unfortunately, this work was not taken into consideration by the Seman-
tic Web Community. A detailed description of an early version of this work can be 
found in my master thesis, "Dealing with uncertainty in semantic web services" [14]. 
This work was the first attempt to incorporate incidence calculus in a broker for se-
mantic web services. [11] based on this previous experience incorporates the use of 
incidence calculus in an advance version of F-Broker that includes a lightweight 
coordination calculus (LCC) [16], a method for specifying agent interaction proto-
cols. 

5   Conclusions and Future Work 

The relaxation of the matching process and the evaluation web service capabilities 
based on a previous historical record of successful executions show the feasibility of 
the use of probabilistic logic in Semantic Web services. Uncertainty is present in 
functional aspects of Web Services like discovery, composition, interoperation, me-
diation, monitoring and compensation [1]. In this paper, we focused only in discov-
ery, and in [14], composition is also studied. 

Incidence calculus was an excellent choice because its simplicity, rigor and com-
patibility with other classical logic formalisms. F-Broker provides an excellent test 
platform for the evaluation of incidence calculus in semantic web services. Although 
simple, F-Broker provides all basic functionality of a broker and allows the composi-
tion of web services capabilities and the execution of services based on an elementary 
vocabulary inspired in KQML. The code is very compact and clean, and new exten-
sions are easily to include. 

Future work will concentrate in the migration of the test platform to more realistic 
scenarios and the evaluation of other probabilistic logic formalism that combines 
logic programming with description logics.  
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