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Abstract. Although the model-theoretic semantics of the languages
used in the Semantic Web are crisps, the need arise to extend them
to represent fuzzy data, in the same way fuzzy logic extend first-order-
logic. We will define a fuzzy counterpart of the RDF Model Theory for
RDF (section 2) and RDF Schema (section 3). Last, we show how to
implement the extended semantics in inference rules (section 4).
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1 Knowledge representation on the web

The Semantic Web is an extension of the current web in which information
is given well-defined meaning[1] by the use of knowledge representation (KR)
languages.

The KR languages used (RDF, RDF Schema and OWL) have the character-
istics that make them useful on the web[2]:

– the elements of the domain are represented by URI;
– there is no global coherence requirements, as local sources can make asser-

tions independently without affecting each other’s expressiveness.

The languages have the ability to describe, albeit not formally, much more
than their semantics can express. Their model theory captures only a formal no-
tion of meaning, captured by inference rules; the exact ‘meaning’ of a statement
can depend on many factors, not all accessible to machine processing[3]. This
feature can be useful to represent information from fields that require knowl-
edge representation paradigms other than the FOL-like RDF Model Theory or
the expressive Description Logic used by OWL. Amongst those paradigms there
is fuzzy logic, to represent vague or ambiguous knowledge.

2 Fuzzy RDF

RDF has its own model-theoretic semantics, similar to that of first-order logic.
To represent fuzzy data, we will define a syntactic and semantic extension of
RDF, similar to the extension from first-order logic to fuzzy logic.



Even if fuzzy data can be simply seen as a juxtaposition of a triple and a
number, the model-theoretic approach has well-known theoretical advantages.

We will try to be as plain as possible. Starting from RDF Syntax and RDF
Model Theory, we will make as few changes as possible. In the rest of the paper,
for the sake of brevity only the changes from RDF Semantics[3] are shown.

2.1 Syntax

The RDF syntax must be extended to add to the triple 〈subject, predicate,
object〉 a value. Such a value can be taken as a real number in the interval [0,
1], but every bounded real interval will do.

This is not an extension from a 3-elements tuple to a 4-elements tuple as it
may seem at a first glance. The added element has a syntactic nature different
from the others: it is not an element of the domain of the discourse, but a
property related to the formalism used by the language to represent uncertainty
and vagueness.

The simple concrete syntax we define is as an extension of the EBNF of
N-Triples as given in [4]. Our extension is given in table 1.

N-Triples is a line-based, plain text format for encoding an RDF Graph, used
for expressing RDF test cases. A statement has the form s p o., where s, p and
o are respectively the subject, the predicate and the object of the statement. Our
extended syntax add an optional prefix n: to a statement in N-triple notation,
where n is a decimal number representing the fuzzy truth-value of the triple.
The use of decimal numbers instead of real numbers is only a limitation of the
syntax and does not undermine the discussion.

The term triple, used in the EBNF for N-Triple, is replaced with the more
generic term statement. Triple and statement are often used in semantic web lit-
erature as a synonym, but we prefer to use the latter to avoid confusion between a
plain RDF statement (made actually of three parts) and a fuzzy RDF statement
(that, although is still a triple semantically, is made up of four elements).

The fuzzy value is defined as optional. This way, the syntax is backward-
compatible; the intended semantics is that a statement with the form s p o. is
equivalent to the statement 1: s p o.. With such a (syntactic only) default, we
could take an inference engine implementing fuzzy RDF, let it parse plain RDF
statements, and get the same results of a conventional RDF inference engine.
Furthermore, as it would be clear in the description of fuzzy RDF inference rules
(section 4), even the complexity of the computation would be of the same order.

We will not give an abstract syntax, nor a RDF/XML based syntax, as
they would not be useful. It can be shown that all “physical“ data (i.e., data
transmitted between host or processes) can be encoded using plain RDF reified
statements. The extended syntax will be used only in the paper to write down
the examples.



fuzzyNtripleDoc ::= line*
line ::= ws* ( comment | statement )? eoln
comment ::= ‘#’ ( character − ( cr | lf ) )*
statement ::= (value ws+)? subject ws+ predicate ws+ object ws* ‘.’ ws*
value ::= 1 | 0.[0–9]+
subject ::= uriref | nodeID
predicate ::= uriref
object ::= uriref | nodeID | literal
uriref ::= ‘<’ absoluteURI ‘>’
nodeID ::= ‘_:’ name
literal ::= langString | datatypeString
langString ::= ‘"’ string ‘"’ ( ‘@’ language )?
datatypeString ::= ‘"’ string ‘"’ ‘^^’ uriref
language ::= [a–z]+ (‘-’ [a–z0–9]+ )*

encoding a language tag.
ws ::= space | tab
eoln ::= cr | lf | cr lf
space ::= #x20 /* US-ASCII space - decimal 32 */

cr ::= #xD /* US-ASCII carriage return - decimal 13 */

lf ::= #xA /* US-ASCII line feed - decimal 10 */

tab ::= #x9 /* US-ASCII horizontal tab - decimal 9 */

string ::= character* (with escapes as defined in section Strings of [4])
name ::= [A-Za-z][A–Za–z0–9]*
absoluteURI ::= character+ (with escapes as defined in section URI References

of [4])
character ::= [#x20–#x7E] /* US-ASCII space to decimal 126 */

Table 1. EBNF for Fuzzy N-Triples

2.2 Simple interpretation

The RDF Model Theory[3] is based on the concept of extension. An interpre-
tation satisfies a triple s p o. if the couple formed by the interpretation of
the subject and the interpretation of the object belongs to the extension of the
interpretation of the property.

In this fuzzy counterpart, a couple 〈subject, object〉 has a membership de-
gree to the extension of the predicate, given by the number prepended to the
statement. The extension is not an ordinary set of couples anymore, but a fuzzy
set of couples. In other words, a fuzzy RDF interpretation satisfies a statement
n: s p o. if the membership degree of the couple, formed by the interpreta-
tion of the subject and the interpretation of the object, to the extension of the
interpretation of the predicate, is greater or equal than n.

We have chosen not to make the mapping between vocabulary items and
domain fuzzy. Instead, the membership of a resource to the domain is fuzzy.
This is a step which poses some theoretical problems, in particular when we
have to deal with properties in simple interpretations. In RDF interpretation,
the property domain IP is a subset of the resource domain IR, so in fuzzy RDF



interpretations would be enough to make IP a fuzzy subset of IR; in simple
interpretations, instead, there is no formal relation between IP and IR, so when
the mapping IS from URI references to (IR ∪ IP ) becomes fuzzy we need a
further device. The chosen solution is to define a domain IDP for properties,
so that IP is a fuzzy subset of IDP , and to modify the definition of IS to a
mapping URI references ∈ V → (IR∪IDP ). RDF interpretations does not need
IDP , as IP can be shown to be a fuzzy subset of IR.

Definition of a simple interpretation A simple fuzzy interpretation I of a vocab-
ulary V is defined by:

1. A non empty set IR of resources, called the domain or universe of I
2. A non empty set IDP , called the property domain of I
3. A fuzzy subset IP of IDP , called the set of properties of I
4. A fuzzy mapping IEXT : IP → 2IR×IR, i.e. the fuzzy set of pairs 〈x, y〉

with x, y ∈ IR.
5. A mapping IS from URI references ∈ V → (IR ∪ IDP )
6. A mapping IL from typed literals ∈ V → IR
7. A distinguished subset LV ⊆ IR, called the set of literal values, which con-

tains all the plain literals of V

The belonging of an element to the properties domain is strictly related to
the use of such element as a property in a statement. Therefore, we have defined
a membership degree to the property domain, intuitively related to the truth
value of the statements in which the resource is used as a property.

2.3 Denotations for ground graphs

The next step is to define the semantic conditions an interpretation must satisfy
in order to be a model for a graph. We state the semantic conditions that relate
the membership degree of a couple 〈subject, object〉 to an extension and the
truth of a fuzzy statement.

We will use the abbreviated Zadeh’s notation A(x) = n, instead of µA(x) = n,
to state that the membership degree of the element x to the set A is equal to
n [5].

Semantic conditions for ground graphs

– if E is a plain literal aaa ∈ V , then I(E) = aaa
– if E is a plain literal aaa@ttt ∈ V , then I(E) = 〈aaa, ttt〉
– if E is a typed literal ∈ V , then I(E) = IL(E)
– if E is a URI reference ∈ V , then I(E) = IS(E)
– if E is a ground triple n: s p o., then I(E) = true if s, p and o ∈ V ,

IP (I(p)) ≥ n and IEXT (I(p))(〈I(s), I(o)〉) ≥ n, otherwise I(E) = false.
– if E is a ground RDF graph, than I(E) = false if I(E′) = false for some

triple E′ ∈ E, otherwise I(E) = true



Only the condition of truth and falsity of a ground statement in the interpre-
tation is affected. The given formulation of the condition has as a consequence
that a graph where the same statement appears more than once, with differ-
ent membership degrees, is equivalent to a graph where the statement appears
only once, with a membership degree equal to the maximum of the membership
degrees.

Note that whether a statement is a model for a graph or not is not a fuzzy
concept; it is either true or false. However, it could be interesting to compute
the minimum and maximum membership degree to an extensions a couple must
have in an interpretation to be a model of a given graph. This minimum degree
has a role similar to the degree of truth of a statement in a knowledge base.

2.4 Simple entailment

The definition of simple interpretation is not affected. A set S of RDF graphs
(simply) entails a graph E if every interpretation which satisfies every member
of S also satisfies E.

Given a graph G and a triple 〈s, p, o〉, it could be interesting to compute
the minimum and maximum value of n such that G entails n: s p o.. Those
bounds must be taken in account when we compute the deductive closure of the
graph, as it is not unique.

Section 2 of RDF Semantics [3] shows many lemmas that apply to simple
interpretations. All of them retain their validity within fuzzy RDF Model Theory,
making some adjustments in the proof of some of them. We will show these.

The Empty Graph Lemma can be shown using the same proof. The definition
of an empty graph is the same as in plain RDF: an empty graph is a graph with no
statements at all. It is important to note that an empty graph can not be defined
as a graph with no not-zero-valued statements. Statements such as 0: s p o.,
although pretty useless, cannot be ignored, as the semantic requirement that s,
p and o must belong to the graph’s vocabulary still applies.

Subgraph Lemma, Instance Lemma and Merging Lemma retain both their
validity and their proofs with the new semantics.

Interpolation Lemma, Anonymity Lemma, Monotonicity Lemma and Com-
pactness Lemma make use in their proof of a way of constructing an interpre-
tation of a graph using lexical items in the graph itself, the so called Herbrand
interpretation [6]. To prove the lemmas, we need to construct a similar interpre-
tation for a fuzzy graph.

The (simple) Herbrand fuzzy interpretation of G, written Herb(G), can be
defined as follows.

– LVHerb(G) is the set of all plain literals in G;
– IRHerb(G) is the set of all names and blank nodes which occur in subject or

object position of statements in G;
– IDPHerb(G) is the set of URI references which occur in the property position

of statements in G;



– IPHerb(G)(p) is the maximum of n for all statements in which p occur in
property position;

– IEXTHerb(G)(〈s, o〉) is the maximum n for all the statements n: s p o. in
G

– ISHerb(G) and ILHerb(G) are both identity mappings on the appropriate
parts of the vocabulary of G.

Using this definition of Herbrand interpretation instead of that in Appendix
A of [3], the proofs for cited lemmas still apply.

2.5 RDF Interpretation

RDF Semantic Conditions

– IP (x) = IEXT (I(rdf : type))(〈x, I(rdf : Property))
– If ”xxx”∧∧rdf : XMLLiteral ∈ V and xxx is a well-typed XML literal string,

then

• IL(”xxx” ∧ ∧rdf : XMLLiteral) is the XML value of xxx;
• IL(”xxx” ∧ ∧rdf : XMLLiteral) ∈ LV ;
• IEXT (I(rdf : type))

(〈IL(”xxx” ∧ ∧rdf : XMLLiteral),
I(rdf : XMLLiteral)〉) = 1

– If ”xxx”∧∧rdf : XMLLiteral ∈ V and xxx is an ill-typed XML literal string,
then

• IL(”xxx” ∧ ∧rdf : XMLLiteral) /∈ LV ;
• IEXT (I(rdf : type))

(〈IL(”xxx” ∧ ∧rdf : XMLLiteral),
I(rdf : XMLLiteral)〉) = 0

The first RDF semantic condition has the consequence that IP must be a
subset of IR. Given such a fact, there is no more need of IDP , as it was for
simple interpretation. IP can be directly defined as a fuzzy subset of IR.

The second and third conditions equal to see the well-formedness of an XML
Literal as crisp truth-valued. We could conceive an external machinery that can
be considered completely trustworthy as it classify an XML literal as well-formed
or not.

RDF axiomatic triples By definition, we give axiomatic triples a unit truth
value. Given the (syntactic) convention that a triple s p o. is equivalent to the
fuzzy statement 1: s p o., we can take the table of axiomatic triples of RDF in
section 3.1 of [3] and copy it as-is as the table of axiomatic statements of fuzzy
RDF.



3 Fuzzy RDF Schema

The path from RDF Schema to Fuzzy RDF Schema follows the same guidelines
of the previous section.

The RDFS semantics is conveniently stated in terms of a new semantic con-
struct: the class [3]. A class is a resource with a class extension, ICEXT , which
represents a set of things in the universe which all have that class as the object
of their rdf:type property. Thus, the definition of a class roots in the definition
of extension.

In fuzzy RDF, extensions are fuzzy set of couples; in fuzzy RDFS, class
extensions are fuzzy sets of domain’s elements.

3.1 RDFS Interpretation

A RDFS interpretation define the domains for resources (IR), literals (IL) and
literal values (LV ) in terms of classes. In fuzzy RDFS they are fuzzy subdomains
of IR.

We will give RDFS semantic conditions and axiomatic triples, then we will
try to explain the more problematic definitions: domains/ranges (section 3.2)
and subproperties/subclasses (section 3.3).

RDFS semantic conditions

– ICEXT (y)(x) = IEXT (I(rdf : type))(〈x, y〉)

• IC = ICEXT (I(rdfs : Class))
• IR = ICEXT (I(rdfs : Resource))
• IL = ICEXT (I(rdfs : Literal))

– ICEXT (y)(u) ≥ min(IEXT (I(rdfs : domain))(〈x, y〉), IEXT (x)(〈u, v〉))
– ICEXT (y)(u) ≥ min(IEXT (I(rdfs : range))(〈x, y〉), IEXT (x)(〈u, v〉))
– IEXT (I(rdfs : subPropertyOf)) is transitive and reflexive on IP

– If IEXT (rdfs : subPropertyOf)(〈x, y〉) = n, then IP (x) ≥ n, IP (y) ≥ n,
min〈a,b〉{1− IEXT (x)(〈a, b〉) + IEXT (y)(〈a, b〉)} ≥ n

– IEXT (I(rdfs : subClassOf))(〈x, I(rdfs : Resource)〉) = IC(x)
– If IEXT (rdfs : subClassOf)(〈x, y〉) = n, then IC(x) ≥ n, IC(y) ≥ n,

mina{1− IC(x)(a) + IC(y)(a)} ≥ n.
– IEXT (I(rdfs:subClassOf)) is transitive and reflexive on IC

– IEXT (I(rdfs : subPropertyOf))(〈x, I(rdfs : member)〉) =
ICEXT (I(rdfs : ContainerMembershipProperty))(x)

– ICEXT (I(rdfs : Datatype))(x) =
IEXT (I(rdfs : subClassOf))(〈x, I(rdfs : Literal)〉)

RDFS axiomatic triples As for RDF axiomatic triples, fuzzy RDFS axioms are
the same of plain RDFS, from section 4.2 of RDF Semantics [3].



3.2 Domains and ranges

The semantic condition on domains looks quite complicated. To explain it, we
will proceed by grades.

In plain RDF Schema, if 〈x, y〉 ∈ IEXT (I(rdfs : domain)) and 〈u, v〉 ∈
IEXT (x) then u ∈ ICEXT (y).

In fuzzy set theory, let R be a fuzzy relation on X × Y . Then the domain
is defined as dom(R)(x) = supyR(x, y) [7], i.e. the least upper bound of R(x, y)
for all y.

In fuzzy RDFS, we have to deal both with a fuzzy notion of domain, and
with a fuzzy assignment of a domain to a property.

Let consider a resource u and a class y. For each property x, we take the mini-
mum between IEXT (I(rdfs : domain))(〈x, y〉) and IEXT (x)(〈u, v〉). Then, fol-
lowing the original RDFS condition, ICEXT (y)(u) must be greater or equal
than this value.

The previous condition must hold for every property x, so it’s equivalent to
state that must be taken the maximum value.

The conditions for ranges are analogous.

3.3 Subproperties and subclasses

Subproperties and subclasses are fully analogous concepts. The set inclusion is
between extensions for the former, between class extensions of the latter.

To define the semantics of subClassOf and subPropertyOf, we need a rela-
tion of set inclusion between fuzzy sets that takes into account also the degree
of the relation of inclusion itself. This relation must be transitive and reflexive.

Zadeh’s definition of fuzzy subset [8]3 (A ⊆ B ⇐⇒ ∀x ∈ X A(x) ≤ B(x))
is transitive and reflexive, but is not a fuzzy relation: either the set A is a subset
of B, or not. What we need is instead a weaker fuzzy subset relation; a relation
that reduces to the Zadeh’s one when the subclass/subproperty relation has a
unit truth value. It must also maintain the reflexivity and transitivity properties.

Dubois and Prade [7] define weak inclusion �α as

A �α B ⇐⇒ x ∈ (A ∪B)α ∀x ∈ X ,

where α is a parameter and (·)α is the α-cut4. This relation is transitive only for
α > 1

2 .
Other definitions of weak inclusion make use of inclusion grades. An inclusion

grade I(A,B) is a scalar measure of the inclusion of the set A in the set B.
In general, A ⊆α B iff I(A,B) ≥ α, where ⊆α denote a weak inclusion with
inclusion grade α.

We have chosen to use the inclusion grade defined as [7]:

3 Again, we use the abbreviation A(x) for the membership function µA(x).
4 The α-cut Aα of A is the set of all elements with a membership value to A greater

than α, with α ∈ (0, 1] Aα = {x|A(x) ≥ α}



I(A,B) = infx∈X(A | − | B)(x)

where inf is the infimum and | − | is the bounded difference5.
When A ⊆ B, I(A,B) = 1 [7].
This inclusion grade could also be written as I(A,B) = infx∈X(1−max(0, A(x)−

B(x))) = infx∈Xmin(1, (1−A + B)).
Furthermore, let’s suppose that there is at least an x such that A(x) > B(x).

Then I(A,B) could be written as infx∈X(1 − A + B). The semantic condition
requires such measure to be greater than or equal to n, where n is the truth
value of the statement. In this case the semantic condition reduces to

infx∈X(1−A + B) ≥ n .

It could be interesting to ask how much this definition differs from the con-
dition for classical fuzzy subsets, A(x) ≤ B(x).

If A ⊆ B, then I(A,B) = 1, so the semantic condition holds for any n ∈ [0, 1].
Let’s call d(x) the difference d(x) = A(x)−B(x), so that 1−A+B = 1−d. We

suppose that there is at least an x such that A(x) > B(x), so d(x) has at least a
positive value. The semantic condition could then be written infx∈X(1−d(x)) ≥
n. The maximum positive value of the difference d equal to 1− n.

As n is the truth value of the statement that asserts the relation of subprop-
erty or subclass, and 1−n represent the lack of truth of the same statement, we
can conclude that the maximum allowable positive difference between A(x) and
B(x) is equal to the lack of truth on the subproperty or subclass relation.

4 Fuzzy RDF entailment rules

RDF Model Theory’s entailment rules [3] are all of the same form: add a state-
ment to a graph when it contains triples conforming to a pattern. Each rule
has only one or two antecedent statements and derive only one new inferred
statement; either P ` R or P,Q ` R.

Given the way fuzzy RDF semantics is defined, the corresponding inference
rules for fuzzy RDF are analogous; only the fuzzy truth values of inferred state-
ments must be computed. The simplest possible choice that respect the semantics
is:

– With rules as P ` Q, having only one antecedent, the truth value of the
consequent Q is taken to be the same of the antecedent P .

– With rules as P,Q ` R, the truth value of R is the minimum between the
truth values of P and Q.

The inference rules for RDF/RDFS are shown in table 2. They were derived
from the rules used by the Sesame[10] forward-chaining inferencer.

5 ∀x ∈ X, (A | − | B)(x) = max(0, A(x)−B(x)) [9]



Sesame is a generic architecture for storing and querying RDF and RDF
Schema. It makes use of a forward-chaining inferencer to compute and store the
closure of its knowledge base whenever a transaction adds data to the reposi-
tory[11]. Sesame applies RDF-MT inference rules in a optimized way, making
use of the dependencies between them to eliminate most redundant inferencing
steps.

To obtain a fuzzy RDF storage and inference tool it is only a matter of
modify Sesame RDF-MT inferencer, making it compute the correct truth values
for inferred statements, and to extend the underlying storage to make room for
a truth value (i.e., a number) for each statement.

This shows how a simple proof-of-concept fuzzy RDF inferencer is easy to
implement. The starting point is the code base of an inference engine that im-
plements the RDF model theory.

It can be shown that an inference engine implementing such rules is correct:
all its rules are valid, in the sense that a graph entails any larger graph that is
obtained by applying the rules to the original graph. There is no formal proof
that it is also complete, but there is not such a proof for plain RDF Model
Theory inference rules either.
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# antecedents consequent

1 iii: xxx aaa yyy iii: aaa rdf:type rdf:Property

2.1 iii: xxx aaa yyy kkk: xxx rdf:type zzz
jjj: aaa rdfs:domain zzz where kkk = min(iii, jjj)

2.2 iii: aaa rdfs:domain zzz kkk: xxx rdf:type zzz
jjj: xxx aaa yyy where kkk = min(iii, jjj)

3.1 iii: xxx aaa uuu kkk: uuu rdf:type zzz
jjj: aaa rdfs:range zzz where kkk = min(iii, jjj)

3.2 iii: aaa rdfs:range zzz kkk: uuu rdf:type zzz
jjj: xxx aaa uuu where kkk=min(iii, jjj)

4a iii: xxx aaa yyy jjj: xxx rdf:type rdfs:Resource

4b iii: xxx aaa uuu iii: uuu rdf:type rdfs:Resource

5a.1 iii: aaa rdfs:subPropertyOf bbb kkk: aaa rdfs:subPropertyOf ccc
jjj: bbb rdfs:subPropertyOf ccc where kkk=min(iii, jjj)

5a.2 iii: bbb rdfs:subPropertyOf ccc kkk: aaa rdfs:subPropertyOf ccc
jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)

5b iii: xxx rdf:type rdf:Property iii: xxx rdfs:subPropertyOf xxx
reflexivity of rdfs:subPropertyOf

6.1 iii: xxx aaa yyy kkk: xxx bbb yyy
jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)

6.2 iii: aaa rdfs:subPropertyOf bbb kkk: xxx bbb yyy
jjj: xxx aaa yyy where kkk=min(iii, jjj)

7a iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf rdfs:Resource

7b iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf xxx
reflexivity of rdfs:subClassOf

8.1 iii: xxx rdfs:subClassOf yyy kkk: xxx rdfs:subClassOf zzz
jjj: yyy rdfs:subClassOf zzz where kkk=min(iii, jjj)

8.2 iii: yyy rdfs:subClassOf zzz kkk: xxx rdfs:subClassOf zzz
jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)

9.1 iii: xxx rdfs:subClassOf yyy kkk: aaa rdf:type yyy
jjj: aaa rdf:type xxx where kkk=min(iii, jjj)

9.2 iii: aaa rdf:type xxx kkk: aaa rdf:type yyy
jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)

10 iii: xxx rdf:type iii: xxx rdfs:subPropertyOf rdfs:member
rdfs:ContainerMembershipProperty

11 iii: xxx rdf:type rdfs:Datatype jjj: xxx rdfs:subClassOf rdfs:Literal

X1 iii: xxx rdf:_* yyy jjj: rdf:_* rdf:type rdfs:ContainerMembershipProperty
This is an extra rule for list membership
properties ( _1, _2, _3, ...). The RDF MT
does not specify a production for this.

Table 2. Fuzzy RDF inference rules


