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Abstract—This paper describes a model for opinion dynamics the molecules are reinterpreted as interactions amongsagen
in multi-agent systems composed of two classes of agents.cBa A major advantage of the use of kinetic-based approaches
class is characterized by distinctive values of the paramets that to model opinion dynamics and consensus is that analytic
govern opinion dynamics. The proposed model is inspired by resylts can be derived, while, at the opposite, opinion dyna
kinetic theory of gases, according to which macroscopic pperties jos iy muylti-agent systems is typically investigated trgbu
of gases are described starting from microscopic interactins simulations [9]. It is worth noting that common approaches

among molecules. By interpreting agents as molecules of gss to th lvsis of int fi . It t t
and their interactions as collisions among molecules, thegeations (0 the analysis of interactions in multi-agent systems.(e.g

that govern kinetic theory can be reinterpreted to model ophion  [10]) are normally more interested in formalizing complex
dynamics in multi-agent systems. A key feature of the adopte ~ Microscopic interactions rather than in studying the oVera
kinetic-based approach is that it allows macroscopic propeies emergent behavior of the system.

of the system to be derived analytically. In order to take inb Standard kinetic theorv tvpically assumes that all the
account that the considered multi-agent system is composeaf y yp y )

two classes of agents, kinetic theory of gas mixtures, which Molecules are equal. However, gases are typically composed
deals with gases composed of different kinds of moleculess i Of molecules of different types and, therefore, a more aateur

adopted. Presented results show that consensus is reacheitea  description of gases can be achieved using kinetic theory of
a sufficiently large number of interactions, which depends n the ~ gas mixtureswhich takes into account that different species

parameters associated with the two classes of agents. of molecules coexist in the same gas. Using the framework of
kinetic theory of gas mixtures, it is then possible to ddseri
I. INTRODUCTION multi-agent systems composed of different classes of agent

each of which is associated with different values of the pa-
‘rameters used to model opinion dynamics. The most important
features that can be introduced to distinguish a specifie tfp

rules which lead to proper distribution of opinion in multi- adents are the propensity to chanae opinion when intecactin
agent systems [1]. Such problems are important topics of thﬁ/?th other agenr'zs, F?:md tr{e ability %o cﬁange the opiniogr?s of

research on multi-agent systems and distributed Comp“tinﬁ?{teracting agents. In addition, different classes of &gean
and they have applications in many areas, such as contrgh e jiterent cardinalities and different initial disttion of

theory, physics, biology, and sociology (e.g., [2]). V&S0 ,,inigns ~According to this approach, phenomena such as
approaches have been proposed in the literature to descr'kégtremismor skepticismcan be studied [6]. In this paper,

opinion dynalllrrzlhcs arl;d c%nsentshus fogna“or?’ among %Nh'ck)ve consider multi-agent systems composed of two classes
\I,3ve can recat (Iise ase4 on dermo ynz?\mé)cs (%'g" [ ]?[ OB agents; however, the proposed approach is general and,
ayesian networks (€.g., [4]), and on gossip-based alyos otentially, the number of classes of agents can be set equal

(e.g., [4]). The use of cellular automata to model consensug, v nymber of agents, thus having one agent for each class.
formation has also been investigated; in this case, opinion

is modeled as a discrete variable and consensus is reached This paper is organized as follows. In Section Il the opinion
through proper transition rules (e.g., [5]). Another imot  dynamics problem is formulated using the kinetic framework
framework which is useful to study opinion dynamics is retht In Section Ill macroscopic properties of the consideredtimul

to graph theory. (e.g., [6]). agent system are derived. Section IV shows some illus&ativ

. . - . _results concerning the average opinions of specific mgkiaa
In this paper, we consider a model for opinion dynamics 9 ge op P 9

which is inspired bysociophysicsa discipline according to systems. Section V concludes the paper.
which social interactions and opinion dynamics in multi- 0
agent systems can be described using the formalism of the
kinetic theory of gases [7]. Kinetic theory of gases aims at The identification of agents with the molecules of a gas
analyzing the effects of microscopic collisions among theallows applying the framework of kinetic theory to diffeten
molecules from a probabilistic point of view in order to deri  fields and, in particular, to distributed artificial intgdince and
macroscopic properties of gases by means of a proper balanoginion dynamics in multi-agent systems. As in kinetic ttyeo
equation, namely, the Boltzmann equation [8]. According towe assume that each agent can interact with any other agent in
sociophysics, a parallelism can be done between the meleculthe system and that each interaction involves two agenfs [11
of gases and agents in multi-agent systems: collisions gmorfor this reason, we denote interactionsbasary. While the

Opinion dynamics and consensus formation are well
known problems that deal with the identification of intefaict

KINETIC FORMULATION OF OPINION FORMATION
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molecules of gases are typically related to their velosjtie  (4) we can conclude that the difference between the post-
the context of opinion dynamics we assume that each agent isteraction opinions is smaller than the difference betwee
associated with a scalar attribut¢hat denotes its opinion. The the pre-interaction opinions of the two agents. Hence, it is
opinion of each agent is updated at each interaction, aoagprd reasonable to expect that, after a sufficiently large number
to proper rules. Various kinds of rules to update the opimibn of interactions, all agents end up with the same opinion,
agents after interactions have been studied to model eiffer regardless of their class. Concerning differences of opsii
characteristics of agents [12], [13]. it can also be concluded that the post-interaction opinfcamno
agent is closer to its pre-interaction opinion than to the- pr
interaction opinion of the agent it interacts with. As a reatt

of fact, from (2) and (1), one can derive that

Let us denote as(t) the total number of agents at time
and asnq (t) andns(t) the number of agents of the typeand
2, respectively, so that(t) = n1(t) + ne(t). With no loss of
generality, we assume in the rest of this paper that the @pini  |[v* — v| = v, |v — w| < (1 — v5)|v — w| = |v* — w)|
of each agent is defined in the intendak [—1, 1], where—1 lw* — w] = Yrsw — v] < (1 = yrs)Jw — 0] = [w* — ).
and 1 represent extremal opinions. The considered model is
aimed at describing the temporal evolution of the opinion by

studying the effects of pairwise interactions. We remark that, according to the model in (1), the post-

interaction opiniong* and w* still belong to the intervall
A. Interaction Rules where the opinions are defined.

In order to describe the microscopic effects of pairwise
interactions, let us define the interaction rules. Assuraédh
agent of types with opinion v interacts with another agent Starting from the interaction rules in (1), it is possi-
of typer with opinionw. The post-interaction opinions of the ble to study opinion dynamics of multi-agent systems using
two interacting agents depend on their pre-interactioniops  simulations. Instead, we now show how to obtain analytical

B. The Boltzmann Equation

according to the following rules results by applying the framework of kinetic theory of gas
v* = v — Yer (v — W) m@xtures to the cpnsidered opinion dynamics sc_enario. For
{ . " (1)  this purpose, we introduce the Boltzmann equation, namely

W' =w = (W — ) an integro-differential equation that allows deriving mac

where v* and w* are the opinions of the two agents after SCopic properties of gases. In the considered scenarighwhi
the interaction. Observe that the considered model ingolveincludes only two classes of agents, two equations need to
4 coefficients{~s,}2,_,, where~,, measures the propensity be considered, whose unknowns are non-negative functions
of an agent of types to change its opinion in favor of that {fs(v,?)}2-; which represent the density of the opinior 1,

of an agent of type. As a matter of fact, considering, for relative to agents of class, at timet¢ > 0. The temporal
instance, the first equation of (1) it is clear that an incneme evolution of each distribution function can be described, i
of v, increases the propensity of agents of typ® change spatially homogeneous conditions, as

their opinions when interacting with agents of typeln the of,
following, we assume that the coefficienfts.,}2,_, satisfy 8; (v,t)=Zs  se{1,2} (6)

0 < Yo < L Vs, re{1,2}. (2) whereZ; is the collisional operator relative to the clasand
2 it is written as

In agreement with the intended meaning @f. explained 9

above, according to (1), #,, is nearly0, the individuals of

type s are not inclined to change their opinion towards that Z sr(fsr fr) s €{1,2}. (7)

of agents of typer. For this reason, values of,, close to =t

0 characterize skeptical agents. At the opposite, if in thet fir From (7) it is evident that the collisional operator relativ
equation of (1) we set,, ~ 1/2, thenv* ~ 1/2(v +w),so to each class of agents depends on the distribution fursction
that the first agent looses half of its opinion in favour ofttha {fs}2_, of all species.

of the second, which characterize easily influenced agents. . . . .
y 9 In order to obtain analytic results, the explicit expressio

The sum of the opinions of two interacting agents after theof the collisional operator is needed. To simplify notatiam
interaction can be derived from (1) and it is given by the derivation of the explicit expression of the collisibop-
Vw0 = 04 W+ (Yrs — Yor) (v — ) 3) erator we neglect the dependence of the distribution fansti
reo e ’ {fs}?_, on timet, since all involved integrals are related to
From (3), the opinion is not conserved and that it can changthe opinion variable. Let us denote as
depending on the sign dfy,.s — 7s-)(v — w), namely on the PPN
values of the coefficients,.; and v, and on the values of W(v,w,v", w")dv*dw (8)
the pre-interaction opinions andw. From (1) it can also be
derived that the difference of the opinions of two intemgti ity opinion valuess andw, the opinions of the two agents
agents after the interaction is becomev* andw*, respectively. Hence, the loss of agents of
VY —w* =g (v —w). (4) classs in v and, simultaneously, of agents of clasg; w can
be denoted as

the probability that after the binary interaction of two atge

wherezs,.s = 1— (7,5 +7sr)- Since, from (2)y,s+7s € (0, 1),
it is easy to conclude that,s € (0,1). Therefore, from Qsr (fs, fr) = W(v,w,v*, w") fs(v) fr(w)dvdwdv* dw*.
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Analogously, the gain of agents of classn v and, simulta- I1l.  ANALYTIC STUDY OF MACROSCOPICPROPERTIES

neously, of agents of classin w, is given by From standard kinetic theory, we can describe the temporal

Qurt(for 1) = W (s, s, v, w) fs (v3) fr (wy )dv, dws dodw evolution of the distribution functiorf; (v, t) according to the
spatially homogeneous Boltzmann equation which, in case of
wherev, andw, are the pre-interaction opinions of agent of a gas mixture, corresponds to (6), where the right hand side
classs andr, respectively, which lead to andw as opinions represents the collisional operaffyrelative to the class. We
of the two agents after the interaction [14]. now show how the Boltzmann equation can be used to derive
macroscopic properties of the considered multi-agenesyst

According to kjnetic theory of gas mixtures, .the collisibna The number of agents of classat time¢ can be expressed as
operatorQ,, relative to classes andr can be written as [15]

/fs(v,t)dv = ng(t) s e {1,2}. (16)
Qsr(v) = [ W(vi, we, v, w) fs(vi) fr(wy ) dvedw, dw I
s (9)  Similarly, the average opinion of agents of classat time¢
— W (v, w,v*, w*) fs(v) fr(w)dwdv*dw* can be defined as
I3 1
where the two integrals are obtained by integrating us(t) = ns(t) /Ifs(v’t)vdv s € {12} (a7

Qs (fs, fr) and Q... T (fs, f.) with respect to all the variables
exceptv, and they represents the gain and the loss of agen
with opinion in (v, v + dv), respectively.

gbserve that the global (i.e., referred to all the agentsjane

opinion is then defined as the sum of the average opinions of

each class weighed by the number of agents of the correspond-
Let us now consider the weak form of the Boltzmann equaing class and divided by, namely

tion, which is obtained by multiplying (6) by a test function 1

#(v), namely a smooth function with compact support, and u(t) = — (ny(t)ur(t) + na(t)uz(t)). (18)

integrating the result with respect t0[16]. The weak form "

of the Boltzmann equation is then given by Such definitions are related to two simple test functions

¢(v) in (14). More precisely, setting(v) = 1 in (14) leads to

ofs -
QS’Ud’U: /er fs,frd)'l)dv (10) d
J B terte = 32 @t 000 Gfreon=0 sepa a9
where, according to (9), the integral in the sum on the rightyhere the) on the right hand side is due to the fact that, since
hand side can be written as #(v) is a constant function, the differenggv*) — ¢(v) inside
the integral i9). Since, from (16), the integral on the left hand
W (vs, i, v,w) o (vs) fr (ws ) p(v) dvsdw,dvdw side of (19) represents, (t), equation (19) can be written as
I4
(11) d
— [ W(,w,v*,w*)fs(v) fr(w)o(v)dvdwdv*dw* Ens(t) =0 se{1,2} (20)
74

so that the number of individuals of each class is conserved.
Observe that equation (20) also implies that

(U*,U}*,U,IU) — (U,U},y*’w*) (12) d i(nl(t) n n2(t)) —0 (21)

—n(t) =
in the first integral in (11) one obtains that the weak form of dt dt _

the collisional operatoZ, in (11) can be written as so that, as expected, that the total number of agents isartnst
For these reasons, in the rest of this paper we omit the

2 dependence of. and {ns}2_, ont. The conservation of the
> ; W (v, w,v", w”) fs(v) f(w)(¢(v") — ¢(v))dav (13)  number of agents is a realistic property of the model.
-

Let us now consider the test functiei{v) = v in order
where, from now ondsv denotes the products on the four to investigate the temporal evolution of the average opinio
differentials dvdwdv*dw*. By substituting (13) in (10) the Settingé(v) = v in (14) and using (17) we obtain
weak form of the Boltzmann equation for each class {1, 2}

can be finally written as i/fs(v t)vdv
de ;77
2

By applying the change of variables

d 2 . (22)
E/Ifs(vat)(b(v)dv = Zl . W (v, w,v*,w*) fs(v)- (14) = Z 5 W (v, w,v*, w*) fs(v) fr(w)(v* — v)dsv.
r= r=1

Fr(w)(9(v") = $(v))dar Yse{l,2} Since, from (1), the difference* — v can be expressed as
where on the left hand side we used the fact that for every test7s-(v — w), the integral on the right hand side of equation

function (see [16]) (22) che be written as
Ofs d 2
. 8f2; o(v)dv = E/Ifs(ut)(b(v)dv Vs e {1,2}. (15) ;%T /12 Bv,w) fs(v,t) fr(w, t) (w — v)dodw (23)
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where where{u]—(o)}ﬁz1 are the initial average values of the opinions

- of the two classes of agents. By subtracting the second
B(v,w) = / W (v, w,v*, w*)dv*dw* (24)  equation from the first one, it can be easily shown that
12

represents the probability of interaction between an agétht C' = u1(0) — u2(0) (36)
opinion v and an agent with opiniow. Using this notation,

the weak form of the collisional operator with(v) — v is and substituting this results in the first equation of (3%)egi

2 K =uy(0) + u2(0) .
> Aar / B(v, w) fs(v, t) fr(w, t) (w — v)dvdw.  (25) Hata T ata
r=1 IS

Finally, the solution of (28) obtained by taking into accbun
We now assume that does not depend on andw, namely  the initial conditions are

that the probability of interactions between two agentssdoe

az ai

(37)

not depend on their current opinion. Inserting (16) and (17) ui(t) =C N g(ar+aa)t + K
into (25) and dividing both sides by,, the weak form of the a1 +;;2 (38)
Boltzmann equation relative to(v) = v can be written as us(t) = —Cme*(‘“*‘“)t +K

1 2

d : where C' and K are defined in (36) and (37), respectively.
dtus(t) N 5;75rnr (ur(t) = us(2)) s {12} (26) From (38) it is clear that the following limits hold
The 2 equations in (26) represents a homogeneous system of t_lj+moo ui(t) = f_ligrnoo us(t) = K. (39)
linear differential equations of first order which can bevsdl )
analytically. As a matter of fact, let us introduce, for tteke  Observe that, according to (37) and (27), the value of thé lim
of simplicity, the two parameters K depends on the average intial opiniojns,(0)}2_,, on the
number of agent$§n,}2_, in each class, and of2 and~s;.
a1 = fByiene  az = fyaing. (27)
) ) ) o We are now interested in studying the convergence time.
The two equations in (26) can then be written explicitly as | particular, sincéu,(t) — K| represents the distance between
(1) = —ay (ur (t) — us(t)) the average opinion of the classgat time? apd its limit for
{ug(t) — as(ur () — us(t)). (28) t — 400, we consider the following inequalities

The solution of the system (28) can be found simply by

subtracting the second equation from the first one and, aefini £rom (38) the first inequality in (40) is equivalent to
(1) = 1 (2) — us(t), we find that (38) quality in (40) is eq
ai + az

#(t) = —(ax + an)a(t) (29) et S e (4

lui(t) — K| <e lug(t) — K| < e. (40)

whose solution is From (41) it can be concluded that
x(t) = Ce(@ta)t (30)

1 c
luy(t) — K| <e < t>1t = 10g< a u)
a1 + as

andC' is an arbitrary constant. Equation (30) implies that ar+az €

ur(t) = us(t) + Ce(a1+az)t (31) Analogous elaborations show that

By substituting (31) in the second equation of (28) one finds|u2(t) —K|<e e t>ty= 1 lo ( 92 @) .
o a a1 + ag

a1 +ag €
lip(t) = Cage™(m1Fa2)t B2 . i
_ _ Finally, one can evaluate the minimum time necessary to
where the only unknown ig;(t) which turns out to be ensure that the solutiom, (¢) differs from ux(t) for no more

thane. From (38) one obtains

us(t) = —C—22 _g(mtaz)t 4 g (33)
o a Jur (£) = uz(t)] = |Cler(eHee (42)
Substituting this result in (31) one finds that the explicit
expression ofuy (t) is so that
a [ur(t) —u2(t)| <& <= t > tmn (43)
ui () = C— ;a g (ata2)t 4 [ G4
1 2
The two constant€’ and K can be found by imposing that tomin = 1 log (ﬂ) . (44)
the solutions satisfy the initial conditions, namely ar +az €
0) = oM K Observe that, is the minimum value of the time which
T Y +a guarantees that the average opinions of the two classes o
w(0)=Co———+ hat th inions of th | f
A K (35) agents differ less than The condition (43) is only relative to
u2(0) = — ai + as + the average opinions and does not imply consensus.
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TABLE I. THE CONSIDERED VALUES OF THE PARAMETERS FOR THE 1

TWO CLASSES OF AGENTSNUMBER OF AGENTS(FIRST AND SECOND 08

COLUMN); INITIAL DISTRIBUTIONS OF THE OPINION(THIRD AND FOURTH
COLUMN); PARAMETERS~s, (FIFTH AND SIXTH COLUMN).

0.6

Z 04

‘nl na f1(v,0) f2(v,0) H Tz | Y21

-0.2

500|500]| 4 ((—1;1/3)) | 4 ((—1/3;1)) || 5/100 | 10/100

average opinions
o
o
/
!
i
i

" 04

750|250|| ¢4 ((—1;1/3)) | U ((—1/3;1)) || 5/100 | 10/100

-0.6

900|100|| ¢ ((—1;1)) | ©((3/4;1)) || 10/200| 1/100 -08

IV.  VERIFICATION OF RESULTS BY SIMULATION

. . . . . Fig. 1. The average opinions; (t) (blue line) anduz(t) (red line) derived
In this section, we show simulation results concerning theynalytically with the parameters in the first row of Table & @hown. The

opinion dynamics according to the framework proposed ircorresponding average opinian(t) is also shown (dash-dotted black line).
Section II. We remark that such results are obtained by impleThe values ofa:(¢) (dashed cyan line) and2(t) (dashed magenta line)
menting the microscopic equations in (1), thus neglectirgg t °Ptained by simulation are shown.
analytic framework relative to the Boltzmann equation.rfiro ‘ s ,
now on we denote ai(t)}?_, the values of the average L, . }
opinions of the class found by simulation while{u(t)}2_, :

|
i
\\
[ i

represent the analytic solutions in (38). We consider aegyst o /M L ;
composed ofn = 10° agents. Table | shows the values of ) - M
the parameters relative to the two classes of agents wheh ar e e B Y O

considered to derive analytic and simulation results irs thi @ ()
section. In particular, different values of the parametmes
considered for:ij the number of agents: }2_1; (ii) the initial
distribution of opinion; andiif) the values of{ys,}2,._;.

First, we consider the parameters shown in the first row

of Table I. In this casen; = ns = 500, namely the two .

classes of agents have the same number of agents. The initial © @
opinions of the agents of cladsare uniformly distributed in ) o o ) )

Fig. 2. The opinion distributionsf (v, t) (solid blue line) andfz(v,t)

the Interval(_l; 1/3)’ so that the initial average opinion of (dashed red line) relative to the parameters in the first rbWable | are

the agents of class is UI.(O) = —1/3. Th_e initial qpir]ions shown: (a) aftel0? interactions; (b) afte2- 104 interactions; (c) aftes- 104
of the agents of clasg, instead, are uniformly distributed interactions; (d) aftet05 interactions.

in the interval(—1/3;1), and, therefore, their initial average
opinion isuz(0) = 1/3. The two classes of agents are not
only distinguished by their initial opinion distributiorubthey
are also characterized by different propensity at chantjian
opinions when interacting with other agents. More pregjse
the value ofy;5 is 5/100 while the value ofy,; is 10/100.
Sincevo1 = 2719, the agents of clas& are more incline
to change their opinion than those of classFig. 1 shows We now consider the parameters shown in the second row
the average opinion; (¢) of the agents of class (blue line)  of Table I. In this case, the two classes of agents differ not o
and the average opiniom(t) of the agents of clas8 (red  because of their initial distribution of opinions and theatues
line). As expected from (37)(t) anduy(t) converge to the of ~,, (which are equal to those previously considered), but
same value, which, according to this choice of parameterslso because of the number of agents. More precisely, agents
corresponds toK = —1/9. Fig. 1 also shows the values of classl represent5% of the population. Fig. 3 (a) shows the

of {u,(t)}7_, obtained by simulation. More precisely, the average opinion(t) of the agents of class (blue line) and
dashed cyan line refers to,(¢) while the dashed magenta the average opiniom,(t) of the agents of class (red line).

line refers toay(t). It can be observed that analytic results As expected from (37), the valuesof (t) andus(t) converge

are in agreement with those obtained by simulating pairwisgo the same value, which, with these new valuegwof}?_,,
interactions according to (1). In Fig. 1, the value of therage  corresponds td¢ ~ —0.24. The values ofi, () (dashed cyan
opinionu(t) defined in (18) is also shown (dash-dotted blackline) and i, (t) (dashed magenta line) obtained by simulation
line). As expected from Section Il(t) also convergest&’.  are also shown in Fig. 3 and they are in agreement with those

Fig. 2 shows the distributionf; (v, ) (blue lines) and obtained analytically. Fig. 3 (a) also shows the value of the

F2(v,4) (red lines) of the opinions of the two classes of verage opinionu(t) (dash-dotted black line) defined in (18),

agents obtained by simulating the multi-agent system witﬁNhICh converges to the same valie

the parameters shown in the first line of Table |I. More Finally, we consider the parameters shown in the third row
precisely: Fig. 2 (a) shows the distributiofig(v,t) after 10* of Table I. In this casep; = 900 andns = 100, i.e., agents
interactions; Fig. 2 (b) shows the distributiorig(v,t) after  of class2 represent only0% of the entire population. Under
2 - 10* interactions; Fig. 2 (c) shows the distributiofigv, t) this assumption we consider that the initial opinions of the

o kN w & o o

&
°
°
@
&
°
°
@
-

after3-10* interactions; and Fig. 2 (d) shows the distributions

fs(v,t) after 10° interactions. From Fig. 2 it can be observed

that not only the average opinions(t) converge to the same

| value K, but also that, as discussed in previous sections,
consensus among agents is reached, since the opinionshof eac

d agents tend to the same value.
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average opinions

(@)

average opinions

0 05 1 15 2

(b)

Fig. 3. The average opinions; (¢) (blue line) anduz(¢) (red line) derived analytically are comparedit(¢) (dashed cyan line) andz(t) (dashed magenta
line) obtained by simulation when considering the pararset@) in the second row of Table | and (b) in the third row obl€al. The corresponding average

opinion u(t) is also shown (dash-dotted black line).

agents of clas$ are uniformly distributed in the intervdl (so
that«,(0) = 0) and the initial opinions of the agents of class 1]
2 are uniformly distributed in the interval3/4;1) (so that
u2(0) = 7/8). This choice corresponds to considering agents
of class2 as extremists, since their opinions are very close to
one of the extremes of the interval In agreement with the [2]
idea that extremal opinions are typically more difficult te b
changed, we assume that the valueygf is smaller thany,,.

More precisely, we consider;; = 1/10 and~z; = 1/100, so

that vo; is equal to a tenth ofy;5. According to the choice 4]
~v21 = 1/100, agents of clasg are skeptical.

Fig. 3 (b) shows the average opinion(t) of the agents of
classl (blue line) and the average opiniaa(t) of the agents 5
of class2 (red line) as functions of timé. As in the previous
cases,u;(t) and ux(t) converge to the same value, which,
according to this choice of parameters and (37), correspond
to K ~ 0.46. Fig. 3 (b) also shows the values @f (¢) (6]
(dashed cyan line) and.(t) (dashed magenta line) obtained
by simulation. Once again, analytic results obtained atingr 7
to the kinetic approach are in agreement with those obtainec}
by simulations. For the sake of completeness, Fig. 3 (b) alsog
shows the value of the average opinigfi) (dash-dotted green
line) defined in (18). As expectedt) also converges tds. [9]
A wide variety of choices for the parameters of the model
could be taken and the results shown here are only illugrati
of some particular configurations. The agreement between
analytic and simulation results indicates that the frantewo (10
based on kinetic theory is consistent and, therefore, ithman
properly used to analytically study opinion dynamics.

V. CONCLUSIONS [11]

In this paper, we study analytically a model for opinion
dynamics based on kinetic theory. We start from the descrip-
tion of the effects of microscopic interactions among agent [12]
which are assumed to be binary, and we describe macroscopic
properties related to opinion dynamics in the considereftimu
agent system, using proper balance equations. More phecisel13]
we take inspiration from kinetic theory of gas mixtures, i
allows describing the behavior of gases composed of differe [14]
kinds of molecules. Similarly, we aim at describing a multi-
agent system composed of different classes of agents. Theg
considered different classes of agents have differentachar
teristics, namely: i cardinality, {i) initial average opinions,

and {ii) propensity to change opinions. [16]
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