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Abstract—This paper describes a model for opinion dynamics
in multi-agent systems composed of two classes of agents. Each
class is characterized by distinctive values of the parameters that
govern opinion dynamics. The proposed model is inspired by
kinetic theory of gases, according to which macroscopic properties
of gases are described starting from microscopic interactions
among molecules. By interpreting agents as molecules of gases,
and their interactions as collisions among molecules, the equations
that govern kinetic theory can be reinterpreted to model opinion
dynamics in multi-agent systems. A key feature of the adopted
kinetic-based approach is that it allows macroscopic properties
of the system to be derived analytically. In order to take into
account that the considered multi-agent system is composedof
two classes of agents, kinetic theory of gas mixtures, which
deals with gases composed of different kinds of molecules, is
adopted. Presented results show that consensus is reached after
a sufficiently large number of interactions, which depends on the
parameters associated with the two classes of agents.

I. I NTRODUCTION

Opinion dynamics and consensus formation are well-
known problems that deal with the identification of interaction
rules which lead to proper distribution of opinion in multi-
agent systems [1]. Such problems are important topics of the
research on multi-agent systems and distributed computing
and they have applications in many areas, such as control
theory, physics, biology, and sociology (e.g., [2]). Various
approaches have been proposed in the literature to describe
opinion dynamics and consensus formation, among which
we can recall those based on thermodynamics (e.g., [3]), on
Bayesian networks (e.g., [4]), and on gossip-based algorithms
(e.g., [4]). The use of cellular automata to model consensus
formation has also been investigated; in this case, opinion
is modeled as a discrete variable and consensus is reached
through proper transition rules (e.g., [5]). Another important
framework which is useful to study opinion dynamics is related
to graph theory. (e.g., [6]).

In this paper, we consider a model for opinion dynamics
which is inspired bysociophysics, a discipline according to
which social interactions and opinion dynamics in multi-
agent systems can be described using the formalism of the
kinetic theory of gases [7]. Kinetic theory of gases aims at
analyzing the effects of microscopic collisions among the
molecules from a probabilistic point of view in order to derive
macroscopic properties of gases by means of a proper balance
equation, namely, the Boltzmann equation [8]. According to
sociophysics, a parallelism can be done between the molecules
of gases and agents in multi-agent systems: collisions among

the molecules are reinterpreted as interactions among agents.
A major advantage of the use of kinetic-based approaches
to model opinion dynamics and consensus is that analytic
results can be derived, while, at the opposite, opinion dynam-
ics in multi-agent systems is typically investigated through
simulations [9]. It is worth noting that common approaches
to the analysis of interactions in multi-agent systems (e.g.,
[10]) are normally more interested in formalizing complex
microscopic interactions rather than in studying the overall
emergent behavior of the system.

Standard kinetic theory typically assumes that all the
molecules are equal. However, gases are typically composed
of molecules of different types and, therefore, a more accurate
description of gases can be achieved using kinetic theory of
gas mixtures, which takes into account that different species
of molecules coexist in the same gas. Using the framework of
kinetic theory of gas mixtures, it is then possible to describe
multi-agent systems composed of different classes of agents,
each of which is associated with different values of the pa-
rameters used to model opinion dynamics. The most important
features that can be introduced to distinguish a specific type of
agents are the propensity to change opinion when interacting
with other agents, and the ability to change the opinions of
interacting agents. In addition, different classes of agents can
have different cardinalities and different initial distribution of
opinions. According to this approach, phenomena such as
extremismor skepticismcan be studied [6]. In this paper,
we consider multi-agent systems composed of two classes
of agents; however, the proposed approach is general and,
potentially, the number of classes of agents can be set equal
to the number of agents, thus having one agent for each class.

This paper is organized as follows. In Section II the opinion
dynamics problem is formulated using the kinetic framework.
In Section III macroscopic properties of the considered multi-
agent system are derived. Section IV shows some illustrative
results concerning the average opinions of specific multi-agent
systems. Section V concludes the paper.

II. K INETIC FORMULATION OF OPINION FORMATION

The identification of agents with the molecules of a gas
allows applying the framework of kinetic theory to different
fields and, in particular, to distributed artificial intelligence and
opinion dynamics in multi-agent systems. As in kinetic theory,
we assume that each agent can interact with any other agent in
the system and that each interaction involves two agents [11].
For this reason, we denote interactions asbinary. While the
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molecules of gases are typically related to their velocities, in
the context of opinion dynamics we assume that each agent is
associated with a scalar attributev that denotes its opinion. The
opinion of each agent is updated at each interaction, according
to proper rules. Various kinds of rules to update the opinionof
agents after interactions have been studied to model different
characteristics of agents [12], [13].

Let us denote asn(t) the total number of agents at timet
and asn1(t) andn2(t) the number of agents of the type1 and
2, respectively, so thatn(t) = n1(t) + n2(t). With no loss of
generality, we assume in the rest of this paper that the opinion
of each agent is defined in the intervalI = [−1, 1], where−1
and 1 represent extremal opinions. The considered model is
aimed at describing the temporal evolution of the opinion by
studying the effects of pairwise interactions.

A. Interaction Rules

In order to describe the microscopic effects of pairwise
interactions, let us define the interaction rules. Assume that an
agent of types with opinion v interacts with another agent
of typer with opinionw. The post-interaction opinions of the
two interacting agents depend on their pre-interaction opinions
according to the following rules

{
v∗ = v − γsr(v − w)

w∗ = w − γrs(w − v)
(1)

where v∗ and w∗ are the opinions of the two agents after
the interaction. Observe that the considered model involves
4 coefficients{γsr}2s,r=1, whereγsr measures the propensity
of an agent of types to change its opinion in favor of that
of an agent of typer. As a matter of fact, considering, for
instance, the first equation of (1) it is clear that an increment
of γsr increases the propensity of agents of types to change
their opinions when interacting with agents of typer. In the
following, we assume that the coefficients{γsr}2s,r=1 satisfy

0 < γsr <
1

2
∀ s, r ∈ {1, 2}. (2)

In agreement with the intended meaning ofγsr explained
above, according to (1), ifγsr is nearly0, the individuals of
type s are not inclined to change their opinion towards that
of agents of typer. For this reason, values ofγsr close to
0 characterize skeptical agents. At the opposite, if in the first
equation of (1) we setγsr ≃ 1/2, thenv∗ ≃ 1/2(v + w), so
that the first agent looses half of its opinion in favour of that
of the second, which characterize easily influenced agents.

The sum of the opinions of two interacting agents after the
interaction can be derived from (1) and it is given by

v∗ + w∗ = v + w + (γrs − γsr)(v − w). (3)

From (3), the opinion is not conserved and that it can change
depending on the sign of(γrs − γsr)(v − w), namely on the
values of the coefficientsγrs and γsr and on the values of
the pre-interaction opinionsv andw. From (1) it can also be
derived that the difference of the opinions of two interacting
agents after the interaction is

v∗ − w∗ = εrs(v − w). (4)

whereεrs = 1−(γrs+γsr). Since, from (2),γrs+γsr ∈ (0, 1),
it is easy to conclude thatεrs ∈ (0, 1). Therefore, from

(4) we can conclude that the difference between the post-
interaction opinions is smaller than the difference between
the pre-interaction opinions of the two agents. Hence, it is
reasonable to expect that, after a sufficiently large number
of interactions, all agents end up with the same opinion,
regardless of their class. Concerning differences of opinions,
it can also be concluded that the post-interaction opinion of an
agent is closer to its pre-interaction opinion than to the pre-
interaction opinion of the agent it interacts with. As a matter
of fact, from (2) and (1), one can derive that

|v∗ − v| = γsr|v − w| < (1− γsr)|v − w| = |v∗ − w|
|w∗ − w| = γrs|w − v| < (1− γrs)|w − v| = |w∗ − v|. (5)

We remark that, according to the model in (1), the post-
interaction opinionsv∗ andw∗ still belong to the intervalI
where the opinions are defined.

B. The Boltzmann Equation

Starting from the interaction rules in (1), it is possi-
ble to study opinion dynamics of multi-agent systems using
simulations. Instead, we now show how to obtain analytical
results by applying the framework of kinetic theory of gas
mixtures to the considered opinion dynamics scenario. For
this purpose, we introduce the Boltzmann equation, namely
an integro-differential equation that allows deriving macro-
scopic properties of gases. In the considered scenario, which
includes only two classes of agents, two equations need to
be considered, whose unknowns are non-negative functions
{fs(v, t)}2s=1 which represent the density of the opinionv ∈ I,
relative to agents of classs, at time t ≥ 0. The temporal
evolution of each distribution function can be described, in
spatially homogeneous conditions, as

∂fs
∂t

(v, t) = Is s ∈ {1, 2} (6)

whereIs is the collisional operator relative to the classs and
it is written as

Is =
2∑

r=1

Qsr(fs, fr) s ∈ {1, 2}. (7)

From (7) it is evident that the collisional operator relative
to each class of agents depends on the distribution functions
{fs}2s=1 of all species.

In order to obtain analytic results, the explicit expression
of the collisional operator is needed. To simplify notation, in
the derivation of the explicit expression of the collisional op-
erator we neglect the dependence of the distribution functions
{fs}2s=1 on time t, since all involved integrals are related to
the opinion variable. Let us denote as

W (v, w, v∗, w∗)dv∗dw∗ (8)

the probability that after the binary interaction of two agents
with opinion valuesv andw, the opinions of the two agents
becomev∗ andw∗, respectively. Hence, the loss of agents of
classs in v and, simultaneously, of agents of classr in w can
be denoted as

Qsr
−(fs, fr) = W (v, w, v∗, w∗)fs(v)fr(w)dvdwdv

∗dw∗.
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Analogously, the gain of agents of classs in v and, simulta-
neously, of agents of classr in w, is given by

Qsr
+(fs, fr) = W (v∗, w∗, v, w)fs(v∗)fr(w∗)dv∗dw∗dvdw

wherev∗ andw∗ are the pre-interaction opinions of agent of
classs andr, respectively, which lead tov andw as opinions
of the two agents after the interaction [14].

According to kinetic theory of gas mixtures, the collisional
operatorQsr relative to classess andr can be written as [15]

Qsr(v) =

∫

I3

W (v∗, w∗, v, w)fs(v∗)fr(w∗)dv∗dw∗dw

−
∫

I3

W (v, w, v∗, w∗)fs(v)fr(w)dwdv
∗dw∗

(9)

where the two integrals are obtained by integrating
Qsr

−(fs, fr) andQsr
+(fs, fr) with respect to all the variables

exceptv, and they represents the gain and the loss of agents
with opinion in (v, v + dv), respectively.

Let us now consider the weak form of the Boltzmann equa-
tion, which is obtained by multiplying (6) by a test function
φ(v), namely a smooth function with compact support, and
integrating the result with respect tov [16]. The weak form
of the Boltzmann equation is then given by

∫

I

∂fs
∂t

φ(v)dv =

2∑

r=1

∫

I

Qsr(fs, fr)φ(v)dv (10)

where, according to (9), the integral in the sum on the right
hand side can be written as

∫

I4

W (v∗, w∗, v, w)fs(v∗)fr(w∗)φ(v)dv∗dw∗dvdw

−
∫

I4

W (v, w, v∗, w∗)fs(v)fr(w)φ(v)dvdwdv
∗dw∗

(11)

By applying the change of variables

(v∗, w∗, v, w) → (v, w, v∗, w∗) (12)

in the first integral in (11) one obtains that the weak form of
the collisional operatorIs in (11) can be written as

2∑

r=1

∫

I4

W (v, w, v∗, w∗)fs(v)fr(w)(φ(v
∗)− φ(v))d4v (13)

where, from now on,d4v denotes the products on the four
differentials dvdwdv∗dw∗. By substituting (13) in (10) the
weak form of the Boltzmann equation for each classs ∈ {1, 2}
can be finally written as

d

dt

∫

I

fs(v, t)φ(v)dv =

2∑

r=1

∫

I4

W (v, w, v∗, w∗)fs(v)·

fr(w)(φ(v
∗)− φ(v))d4v ∀ s ∈ {1, 2}

(14)

where on the left hand side we used the fact that for every test
function (see [16])
∫

I

∂fs
∂t

φ(v)dv =
d

dt

∫

I

fs(v, t)φ(v)dv ∀ s ∈ {1, 2}. (15)

III. A NALYTIC STUDY OF MACROSCOPICPROPERTIES

From standard kinetic theory, we can describe the temporal
evolution of the distribution functionfs(v, t) according to the
spatially homogeneous Boltzmann equation which, in case of
a gas mixture, corresponds to (6), where the right hand side
represents the collisional operatorIs relative to the classs. We
now show how the Boltzmann equation can be used to derive
macroscopic properties of the considered multi-agent system.
The number of agents of classs at timet can be expressed as

∫

I

fs(v, t)dv = ns(t) s ∈ {1, 2}. (16)

Similarly, the average opinion of agents of classs at time t
can be defined as

us(t) =
1

ns(t)

∫

I

fs(v, t)vdv s ∈ {1, 2}. (17)

Observe that the global (i.e., referred to all the agents) average
opinion is then defined as the sum of the average opinions of
each class weighed by the number of agents of the correspond-
ing class and divided byn, namely

u(t) =
1

n
(n1(t)u1(t) + n2(t)u2(t)) . (18)

Such definitions are related to two simple test functions
φ(v) in (14). More precisely, settingφ(v) = 1 in (14) leads to

d

dt

∫

I

fs(v, t)dv = 0 s ∈ {1, 2} (19)

where the0 on the right hand side is due to the fact that, since
φ(v) is a constant function, the differenceφ(v∗)−φ(v) inside
the integral is0. Since, from (16), the integral on the left hand
side of (19) representsns(t), equation (19) can be written as

d

dt
ns(t) = 0 s ∈ {1, 2} (20)

so that the number of individuals of each class is conserved.
Observe that equation (20) also implies that

d

dt
n(t) =

d

dt
(n1(t) + n2(t)) = 0 (21)

so that, as expected, that the total number of agents is constant.
For these reasons, in the rest of this paper we omit the
dependence ofn and {ns}2s=1 on t. The conservation of the
number of agents is a realistic property of the model.

Let us now consider the test functionφ(v) = v in order
to investigate the temporal evolution of the average opinion.
Settingφ(v) = v in (14) and using (17) we obtain

d

dt

∫

I

fs(v, t)vdv

=

2∑

r=1

∫

I4

W (v, w, v∗, w∗)fs(v)fr(w)(v
∗ − v)d4v.

(22)

Since, from (1), the differencev∗ − v can be expressed as
−γsr(v − w), the integral on the right hand side of equation
(22) che be written as

2∑

r=1

γsr

∫

I2

β(v, w)fs(v, t)fr(w, t)(w − v)dvdw (23)
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where

β(v, w) =

∫∫

I2

W (v, w, v∗, w∗)dv∗dw∗ (24)

represents the probability of interaction between an agentwith
opinion v and an agent with opinionw. Using this notation,
the weak form of the collisional operator withφ(v) = v is

2∑

r=1

γsr

∫

I2

β(v, w)fs(v, t)fr(w, t)(w − v)dvdw. (25)

We now assume thatβ does not depend onv andw, namely
that the probability of interactions between two agents does
not depend on their current opinion. Inserting (16) and (17)
into (25) and dividing both sides byns, the weak form of the
Boltzmann equation relative toφ(v) = v can be written as

d

dt
us(t) = β

2∑

r=1

γsrnr (ur(t)− us(t)) s ∈ {1, 2}. (26)

The 2 equations in (26) represents a homogeneous system of
linear differential equations of first order which can be solved
analytically. As a matter of fact, let us introduce, for the sake
of simplicity, the two parameters

a1 = βγ12n2 a2 = βγ21n1. (27)

The two equations in (26) can then be written explicitly as
{
u̇1(t) = −a1(u1(t)− u2(t))

u̇2(t) = a2(u1(t)− u2(t)).
(28)

The solution of the system (28) can be found simply by
subtracting the second equation from the first one and, defining
x(t) = u1(t)− u2(t), we find that

ẋ(t) = −(a1 + a2)x(t) (29)

whose solution is

x(t) = Ce−(a1+a2)t (30)

andC is an arbitrary constant. Equation (30) implies that

u1(t) = u2(t) + Ce−(a1+a2)t. (31)

By substituting (31) in the second equation of (28) one finds

u̇2(t) = Ca2e−(a1+a2)t (32)

where the only unknown isu2(t) which turns out to be

u2(t) = −C
a2

a1 + a2
e−(a1+a2)t +K. (33)

Substituting this result in (31) one finds that the explicit
expression ofu1(t) is

u1(t) = C
a1

a1 + a2
e−(a1+a2)t +K. (34)

The two constantsC andK can be found by imposing that
the solutions satisfy the initial conditions, namely





u1(0) = C
a1

a1 + a2
+K

u2(0) = −C
a2

a1 + a2
+K

(35)

where{uj(0)}2j=1 are the initial average values of the opinions
of the two classes of agents. By subtracting the second
equation from the first one, it can be easily shown that

C = u1(0)− u2(0) (36)

and substituting this results in the first equation of (35) gives

K = u1(0)
a2

a1 + a2
+ u2(0)

a1
a1 + a2

. (37)

Finally, the solution of (28) obtained by taking into account
the initial conditions are





u1(t) = C
a1

a1 + a2
e−(a1+a2)t +K

u2(t) = −C
a2

a1 + a2
e−(a1+a2)t +K

(38)

whereC and K are defined in (36) and (37), respectively.
From (38) it is clear that the following limits hold

lim
t→+∞

u1(t) = lim
t→+∞

u2(t) = K. (39)

Observe that, according to (37) and (27), the value of the limit
K depends on the average intial opinions{us(0)}2s=1, on the
number of agents{ns}2s=1 in each class, and onγ12 andγ21.

We are now interested in studying the convergence time.
In particular, since|us(t)−K| represents the distance between
the average opinion of the classess at timet and its limit for
t → +∞, we consider the following inequalities

|u1(t)−K| ≤ ε |u2(t)−K| ≤ ε. (40)

From (38) the first inequality in (40) is equivalent to

e−(a1+a2)t ≤ ε
a1 + a2
|C|a1

. (41)

From (41) it can be concluded that

|u1(t)−K| ≤ ε ⇐⇒ t ≥ t1 =
1

a1 + a2
log

(
a1

a1 + a2

|C|
ε

)
.

Analogous elaborations show that

|u2(t)−K| ≤ ε ⇐⇒ t ≥ t2 =
1

a1 + a2
log

(
a2

a1 + a2

|C|
ε

)
.

Finally, one can evaluate the minimum time necessary to
ensure that the solutionu1(t) differs from u2(t) for no more
thanε. From (38) one obtains

|u1(t)− u2(t)| = |C|e−(a1+a2)t (42)

so that
|u1(t)− u2(t)| ≤ ε ⇐⇒ t ≥ tmin (43)

with

tmin =
1

a1 + a2
log

( |C|
ε

)
. (44)

Observe thattmin is the minimum value of the timet which
guarantees that the average opinions of the two classes of
agents differ less thanε. The condition (43) is only relative to
the average opinions and does not imply consensus.
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TABLE I. T HE CONSIDERED VALUES OF THE PARAMETERS FOR THE

TWO CLASSES OF AGENTS: NUMBER OF AGENTS(FIRST AND SECOND

COLUMN); INITIAL DISTRIBUTIONS OF THE OPINION(THIRD AND FOURTH

COLUMN); PARAMETERSγsr (FIFTH AND SIXTH COLUMN).

n1 n2 f1(v, 0) f2(v, 0) γ12 γ21

500 500 U ((−1; 1/3)) U ((−1/3; 1)) 5/100 10/100

750 250 U ((−1; 1/3)) U ((−1/3; 1)) 5/100 10/100

900 100 U ((−1; 1)) U ((3/4; 1)) 10/100 1/100

IV. V ERIFICATION OF RESULTS BY SIMULATION

In this section, we show simulation results concerning the
opinion dynamics according to the framework proposed in
Section II. We remark that such results are obtained by imple-
menting the microscopic equations in (1), thus neglecting the
analytic framework relative to the Boltzmann equation. From
now on we denote as{ũs(t)}2s=1 the values of the average
opinions of the classs found by simulation while{us(t)}2s=1
represent the analytic solutions in (38). We consider a system
composed ofn = 103 agents. Table I shows the values of
the parameters relative to the two classes of agents which are
considered to derive analytic and simulation results in this
section. In particular, different values of the parametersare
considered for: (i) the number of agents{ns}2s=1; (ii ) the initial
distribution of opinion; and (iii ) the values of{γsr}2s,r=1.

First, we consider the parameters shown in the first row
of Table I. In this case,n1 = n2 = 500, namely the two
classes of agents have the same number of agents. The initial
opinions of the agents of class1 are uniformly distributed in
the interval(−1; 1/3), so that the initial average opinion of
the agents of class1 is u1(0) = −1/3. The initial opinions
of the agents of class2, instead, are uniformly distributed
in the interval(−1/3; 1), and, therefore, their initial average
opinion is u2(0) = 1/3. The two classes of agents are not
only distinguished by their initial opinion distribution but they
are also characterized by different propensity at changingtheir
opinions when interacting with other agents. More precisely,
the value ofγ12 is 5/100 while the value ofγ21 is 10/100.
Since γ21 = 2γ12, the agents of class2 are more inclined
to change their opinion than those of class1. Fig. 1 shows
the average opinionu1(t) of the agents of class1 (blue line)
and the average opinionu2(t) of the agents of class2 (red
line). As expected from (37),u1(t) andu2(t) converge to the
same value, which, according to this choice of parameters,
corresponds toK = −1/9. Fig. 1 also shows the values
of {ũs(t)}2s=1 obtained by simulation. More precisely, the
dashed cyan line refers tõu1(t) while the dashed magenta
line refers toũ2(t). It can be observed that analytic results
are in agreement with those obtained by simulating pairwise
interactions according to (1). In Fig. 1, the value of the average
opinionu(t) defined in (18) is also shown (dash-dotted black
line). As expected from Section III,u(t) also converges toK.

Fig. 2 shows the distributionf1(v, t) (blue lines) and
f2(v, t) (red lines) of the opinions of the two classes of
agents obtained by simulating the multi-agent system with
the parameters shown in the first line of Table I. More
precisely: Fig. 2 (a) shows the distributionsfs(v, t) after 104

interactions; Fig. 2 (b) shows the distributionsfs(v, t) after
2 · 104 interactions; Fig. 2 (c) shows the distributionsfs(v, t)
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Fig. 1. The average opinionsu1(t) (blue line) andu2(t) (red line) derived
analytically with the parameters in the first row of Table I are shown. The
corresponding average opinionu(t) is also shown (dash-dotted black line).
The values ofũ1(t) (dashed cyan line) and̃u2(t) (dashed magenta line)
obtained by simulation are shown.
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Fig. 2. The opinion distributionsf1(v, t) (solid blue line) andf2(v, t)
(dashed red line) relative to the parameters in the first row of Table I are
shown: (a) after104 interactions; (b) after2 ·104 interactions; (c) after3 ·104
interactions; (d) after105 interactions.

after3 ·104 interactions; and Fig. 2 (d) shows the distributions
fs(v, t) after 105 interactions. From Fig. 2 it can be observed
that not only the average opinionsus(t) converge to the same
value K, but also that, as discussed in previous sections,
consensus among agents is reached, since the opinions of each
agents tend to the same value.

We now consider the parameters shown in the second row
of Table I. In this case, the two classes of agents differ not only
because of their initial distribution of opinions and theirvalues
of γsr (which are equal to those previously considered), but
also because of the number of agents. More precisely, agents
of class1 represent75% of the population. Fig. 3 (a) shows the
average opinionu1(t) of the agents of class1 (blue line) and
the average opinionu2(t) of the agents of class2 (red line).
As expected from (37), the values ofu1(t) andu2(t) converge
to the same value, which, with these new values of{ns}2s=1,
corresponds toK ≃ −0.24. The values of̃u1(t) (dashed cyan
line) andũ2(t) (dashed magenta line) obtained by simulation
are also shown in Fig. 3 and they are in agreement with those
obtained analytically. Fig. 3 (a) also shows the value of the
average opinionu(t) (dash-dotted black line) defined in (18),
which converges to the same valueK.

Finally, we consider the parameters shown in the third row
of Table I. In this case,n1 = 900 andn2 = 100, i.e., agents
of class2 represent only10% of the entire population. Under
this assumption we consider that the initial opinions of the
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Fig. 3. The average opinionsu1(t) (blue line) andu2(t) (red line) derived analytically are compared toũ1(t) (dashed cyan line) and̃u2(t) (dashed magenta
line) obtained by simulation when considering the parameters: (a) in the second row of Table I and (b) in the third row of Table I. The corresponding average
opinion u(t) is also shown (dash-dotted black line).

agents of class1 are uniformly distributed in the intervalI (so
that u1(0) = 0) and the initial opinions of the agents of class
2 are uniformly distributed in the interval(3/4; 1) (so that
u2(0) = 7/8). This choice corresponds to considering agents
of class2 as extremists, since their opinions are very close to
one of the extremes of the intervalI. In agreement with the
idea that extremal opinions are typically more difficult to be
changed, we assume that the value ofγ21 is smaller thanγ12.
More precisely, we considerγ12 = 1/10 andγ21 = 1/100, so
that γ21 is equal to a tenth ofγ12. According to the choice
γ21 = 1/100, agents of class2 are skeptical.

Fig. 3 (b) shows the average opinionu1(t) of the agents of
class1 (blue line) and the average opinionu2(t) of the agents
of class2 (red line) as functions of timet. As in the previous
cases,u1(t) and u2(t) converge to the same value, which,
according to this choice of parameters and (37), corresponds
to K ≃ 0.46. Fig. 3 (b) also shows the values of̃u1(t)
(dashed cyan line) and̃u2(t) (dashed magenta line) obtained
by simulation. Once again, analytic results obtained according
to the kinetic approach are in agreement with those obtained
by simulations. For the sake of completeness, Fig. 3 (b) also
shows the value of the average opinionu(t) (dash-dotted green
line) defined in (18). As expected,u(t) also converges toK.
A wide variety of choices for the parameters of the model
could be taken and the results shown here are only illustrative
of some particular configurations. The agreement between
analytic and simulation results indicates that the framework
based on kinetic theory is consistent and, therefore, it canbe
properly used to analytically study opinion dynamics.

V. CONCLUSIONS

In this paper, we study analytically a model for opinion
dynamics based on kinetic theory. We start from the descrip-
tion of the effects of microscopic interactions among agents,
which are assumed to be binary, and we describe macroscopic
properties related to opinion dynamics in the considered multi-
agent system, using proper balance equations. More precisely,
we take inspiration from kinetic theory of gas mixtures, which
allows describing the behavior of gases composed of different
kinds of molecules. Similarly, we aim at describing a multi-
agent system composed of different classes of agents. The
considered different classes of agents have different charac-
teristics, namely: (i) cardinality, (ii ) initial average opinions,
and (iii ) propensity to change opinions.
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