
Game Engines to Model MAS:
A Research Roadmap

Stefano Mariani
DISI, ALMA MATER STUDIORUM–Università di Bologna

via Sacchi 3, 47521 Cesena, Italy
Email: s.mariani@unibo.it

Andrea Omicini
DISI, ALMA MATER STUDIORUM–Università di Bologna

via Sacchi 3, 47521 Cesena, Italy
Email: andrea.omicini@unibo.it

Abstract—Game engines are gaining increasing popularity in
various computational research areas, and in particular in the
context of multi-agent systems (MAS)—for instance, to render
augmented reality environments, improve immersive simulation
infrastructures, and so on. Existing examples of successful inte-
gration between game engines and MAS still focus on specific
technology-level goals, rather than on shaping a general-purpose
game-based agent-oriented infrastructure. In this roadmap paper,
we point out the conceptual issues to be faced while attempting
to exploit game engines as agent-oriented infrastructures, and
outline a possible research roadmap to follow, backed up by some
early experiments involving the Unity3D engine.

I. RESEARCH LANDSCAPE

As a preparatory background for the remainder of the pa-
per, in this section we briefly recall agent-oriented abstractions
(Subsection I-A) and overview early attempts to exploit game
engines within multi-agent systems (Subsection I-B), motivat-
ing the need for further advancing their pioneer experience
(Subsection I-C).

A. Agents & MAS

Agent-oriented models and technologies represent the rich-
est sources of abstractions and mechanisms for the engineering
of complex software systems—in particular, those demanding
for advanced features such as distribution, interoperability,
intelligence, mobility, and autonomy [1]. Multi-agent systems
(MAS) in particular provide a well-established technological
framework for all those scenarios mandating for decentral-
isation, fault-tolerance, adaptiveness, situatedness, and self-
organisation. As its basic design abstractions, any MAS fea-
tures agents as the proactive components of the system, the
environment as the (mainly) reactive, either virtual or physical
context where the agents are situated, and agent societies as
a way to capture and possibly govern agents relationships of
any sort [2].

More in detail, agents are computational entities whose
defining feature is autonomy [3]. Agents model activities
within a MAS, expressed in terms of their actions along
with their motivations—namely, the goals and intentions that
prompt and set the agent’s course of actions. Agent societies
represent then the groups where MAS collective behaviours
are coordinated towards the achievement of the overall system
goals. Coordination models and languages are then the most
suitable tools to tackle complexity in MAS [4], as they are
explicitly meant to supply the abstractions that “glue” agents
together [5], [6] by governing agent interaction [7].

Besides agents and societies, environment is an essential
abstraction for MAS modelling and engineering [2], to be
suitably represented, and related to agents. On the one side,
the notion of environment captures the unpredictability of the
MAS context, by modelling the external resources and features
that are relevant for the MAS, along with their evolution over
time. On the other side, it makes it possible to model the
resources, tools, services that agents and MAS need to carry
on their own activities. Along with the notion of situated
action – as the realisation that coordinated, social, intelligent
action arises from strict interaction with the environment,
rather than from rational practical reasoning [8] – this leads to
the requirement of situatedness for agents and MAS, often
translated into the need of being sensitive to environment
change [9].

B. Game Engines

Game Engines (GE) are increasingly popular in many
different areas of computer science. In particular, they are
mostly used in order to implement two MAS abstractions,
that is, agents and MAS environment—typically, in specific
domains, aimed at achieving some specific goals. For instance,

• QuizMASter [10] focusses on the agent abstraction by
linking MAS agents to game engines characters, in the
context of educational learning

• CIGA [11] considers both agents and environment
modelling, for general-purpose virtual agents in virtual
environments

• GameBots [12] focusses on the agent abstraction, but
still considers environment while providing a develop-
ment framework and runtime for multi-agent systems
testing in virtual environments

• UTSAF [13] focusses on environment modelling in
the context of distributed simulations in the military
domain1

Although they clearly represent examples of (partially) suc-
cessful integration of MAS within GE, the aforementioned
works share a few shortcomings w.r.t. the goal we pursue in
this paper:

1Agents are considered, but only as an integration means between different
simulation platforms, not in the context of the GE exploited for simulation
rendering.

106



• with the only exception of CIGA (which recognises
the conceptual gap between MAS and GE, and pro-
poses solutions to deal with it—although on the tech-
nological level), the only layer taken into account
while pursuing integration is the technological one—
no model, no architecture, no language

• integration is mostly domain- and goal-specific—as it
happens for instance in QuizMASter and UTSAF, and
even in GameBots to some extent2

• whereas most approaches provide programmers with
some abstractions to deal with agents and environ-
ment, no attention is given to social abstractions

C. Motivation

Besides the lack of completeness and generality just high-
lighted, and the increasing interest in the topic, a few other
considerations motivate worthiness of our research efforts.

First of all, there is huge gap in the technological advance-
ment GE have reached w.r.t. the technological level of agent-
oriented infrastructures born within the academic community.
This should not surprise anyone: the gaming scene may rely
on a billionaire industry and on millions of developers and
testers (besides gamers), which are well paid to push stability,
performance, usability of their products to unprecedented
and incomparable levels of quality. Therefore, it is worth to
consider the possibility of taking advantage of such a finely-
optimised products for improving the overall quality of MAS
technologies.

Second, and dually, there is a huge gap in the conceptual
and design abstractions GE provides to developers w.r.t. far
richer abstractions agent-oriented software engineering pro-
vides. All the GE we considered in this paper provide really
low level abstractions, especially on the agent side, where,
for instance, programming cyclic behaviour amounts to write
coroutines spanning multiple rendering stages.

Third, integrating MAS with GE may provide novel so-
lutions to deal with the typical issues of augmented reality
scenarios, such as those targeted by the mirror worlds model
[14], in which coordination is requested to be space-aware and
spatially situated in a physical environment.

For the above reasons, in this paper we provide the
foundation for a research roadmap towards a well-founded
integration of GE and MAS, with particular emphasis on
how GE could be exploited so as to model MAS constituent
abstractions not just as a solution to a rendering problem,
but as they provide rather rich features and stimulating op-
portunities, in general. Accordingly, Section II tries to map
MAS abstractions upon those provided by two exemplary and
widespread GE—Unity3D (Subsection II-A) and Unreal En-
gine (Subsection II-B); Section III discusses the general issue
of exploiting GE to model MAS given the aforementioned
analysis, providing a first working prototype of a tuple-based
coordinated MAS [15] implemented in Unity3D as a proof-of-
concept; finally Section IV provides final remarks along with
a research roadmap for organising exploration of such a novel
research line.

2It focusses on rapid prototyping and testing MAS in virtual worlds.

II. AGENTS, ENVIRONMENT, AND SOCIETIES
IN GAME ENGINES

Game Engines (GE) are frameworks for supporting de-
sign and development of games. Modern GE are all-around
frameworks geared toward every aspect of game design and
development, such as 2D/3D rendering of game scenes, physics
engines for environmental dynamics (movements, particles dy-
namics, collision detection, obstacle avoidance, etc.), sounds,
behavioural scripting, characters’ artificial intelligence, and
much more.

As meaningful examples well representing the full range
of available platforms, in this section we examine two of the
most popular and used GE – Unity3D and Unreal Engine –
with the aim of:

• detecting those abstractions and mechanisms most
likely to have a counterpart in MAS, or at least those
which seem to provide some support in re-formulating
MAS missing abstractions

• highlighting opportunities for closing conceptual/tech-
nical gaps hindering integration of the two worlds

A. Unity3D

Unity3D3 is developed by Unity Technologies, and (as
of version 5.3.4) it features a few abstractions worth to be
mentioned here:

• the game object, which actually is the only first-class
citizen in Unity3D world, being everything a scene
contains a game object: a human player, a Non-Player
Character (NPC), an environmental item, everything

• the script, which is a piece of code defining the
behaviour to be attached to a game object; scripts are
executed by the unique Unity3D game loop, which
sequentially executes once each script at each game
frame rendered—no concurrency, all the scripts must
be executed within each frame rendering step

• the co-routine, which acts as a sort of workaround to
sequentiality imposed to scripts, by enabling develop-
ers to partition a computation and distribute its pieces
over multiple frame rendering steps, suspending and
resuming execution at precise points within the code
through explicit API calls

Looking at MAS, the abstraction gap is quite wide, being
Unity3D totally missing an agenthood abstraction as well as
dedicated abstractions to handle sociality.

The only MAS abstraction somehow represented and di-
rectly supported is that of environment, through game objects.
Indeed, in some sense, its support to environment modelling,
control, and interaction is far superior w.r.t. the average MAS
technology – e.g. JADE[16], Jason [17], RETSINA [18],
TuCSoN [19], CArtAgO [20] –, since Unity3D is capable of
directly supporting many forms of agent-environment interac-
tion, such as shaping movement pathways, handling obstacle
avoidance and collision detection, and the like.

3http://unity3d.com

107



As far as agenthood is concerned, no first-class abstraction
is provided by Unity3D. However, there is still an opportunity
for bridging the gap, although mostly through a workaround:
the combination of a game object with an attached behavioural
script (and possibly a co-routine too) is the best we can ask
for to Unity3D. However, most of the behavioural logic would
have to be implemented by the developer with little or even
no support from Unity3D.

To conclude analysis of Unity3D, also a societal abstraction
is missing among first-class ones. However, the possibility to
leverage some sort of message passing4 among game objects,
in various forms such as unicast based on objects unique
names, multicast based on tags attributed to arbitrary group
of objects, and broadcast by generally referring to the scene,
makes it possible to implement message-based interaction—
and coordination, to some extent (see Subsection III-A).

Summing up, both agenthood and sociality present a quite
large abstraction gap to fill in order to conceptually frame an
integration effort, whereas on the environment side, although
the gap is less apparent, mapping is still far from being perfect.
On a more technical level, there are opportunities for exploiting
workarounds, but the implementation effort to reconstruct even
a primitive support to agenthood is expected to be huge, the
same holding for more complex forms of interaction, such as
asynchronous conversations and full-fledged protocols.

B. Unreal Engine

Unreal Engine5 is developed by Epic Games, and (as of
version 4) it features a few abstractions worth to be described
for the purpose of the paper:

• the game object, similar to Unity3D game objects,
except they are not the only first-class abstractions—
see below

• the actor, which is any game component which can
be rendered, and whose behaviour is enacted by a
controller, either interfacing a human player or an ar-
tificial intelligence (bot); characters are a special kind
of actor with humanoid resemblance and capabilities
(e.g. walking)

• the blueprint, similar to Unity3D script, being more
or less the code6 specifying the behaviour of an actor

• the direct blueprint communication, which enables
blueprints to communicate one-to-one; also, the event
is a game-related happening (e.g. level started, damage
taken, shots fired, etc.) which may trigger execution
of blueprints code; finally, the event dispatcher plays
the role of producer in a publish/subscribe-like com-
munication architecture, where blueprints always play
the role of consumers

As far as the MAS model is concerned, the abstraction gap
is still considerable—yet possibly smaller, if compared to
Unity3D.

4Actually, sending a message to an entity requires to specify which method
the receiver is expected to execute to handle reception.

5http://www.unrealengine.com
6Actually, blueprints are programmed visually, by wiring functions, data,

etc. in a graphical editor.

In fact, agenthood can be reconstructed based on actors and
blueprints, whereas social interaction may be engineered on
top of event dispatchers and direct blueprint communications—
although still with considerable conceptual and technical ef-
fort. Finally, on the environment side, the situation is almost
identical to the one described for Unity3D.

III. GE & MAS: TOWARDS THE INTEGRATION

Based on the analysis reported in Section II, integration
between GE and MAS is certainly interesting, likely useful,
and seemingly possible—although with considerable effort
according to the state of art.

It is worth to note here that besides trying to reconstruct
MAS abstractions by (ab)using GE features, another path
toward integration is available, promoted by, e.g., literature on
mirror worlds [14], that is, virtual representations of the real
world—which in this case might be virtual too. In fact, it is
possible to imagine MAS agents exploiting GE to represent the
physical/virtual environment they are immersed in (situated)
so as to delegate to the GE handling of, e.g., movement,
environment-mediated interaction, discovery, and the like. The
social dimension may be kept within the MAS world if direct
communication between agents is needed, or expanded to the
GE virtual world if communication mediated by the environ-
ment is what MAS designers are looking for. Nevertheless,
the virtual world managed by the GE may influence social
interactions, e.g., by either facilitating or hindering discovery.

In the following section, we report on an early experiment
conducted to verify feasibility of the aforementioned approach.

A. A Case Study

We test the extent to which workarounds can be exploited
to reconstruct some (approximated) MAS notions – agenthood,
social interaction, and environment mediation – in Unity3D by
implementing the most well-known scenario involving all the
aforementioned facets of a MAS: the Dining Philosophers (DP)
coordination problem, tackled in a shared-space setting.

In the DP scenario, depicted in Figure 1, five philoso-
phers are sharing a table with a big spaghetti bowl, five
smaller bowls, five chopsticks, and five chairs (one for each
philosopher)—the scenario can be easily extended to an ar-
bitrary number of philosophers. Thus, there are agents –
the philosophers – and an environment with a few shared
resources—the chopsticks and the chairs. On the society side,
philosophers interact and coordinate by exploiting environment
mediation: in fact, we choose to solve the dining philoso-
phers coordination problem adopting a tuple-based approach
[15]. Accordingly, the table plays the role of the tuplespace,
chopsticks of shared tuples, and chairs decouple and mediate
interaction, while enabling situated coordination.

First of all, the tuple space is implemented by decorating
the table game object with a few properties: a tupleSet
(list of strings) representing the tuple storage medium, a
inputQueue tracking requests for tuples (Unity3D messages)
as soon as they arrive, and a pendingQueue tracking requests
yet unsatisfied. Three request types are supported: out, in,
rd. Operationally, at every frame rendering step, the table
script does the following:

108



Figure 1. Dining philosophers in Unity3D. Grey philosophers are thinking. Green chairs are free.

1) the pendingQueue is considered first, and the request
type is checked

• in case of an out, the pendingQueue is checked
looking for pending requests having a matching
template
◦ in case there is a pending request, it is served

and removed from the queue
◦ in case there is not, the tuple is inserted in

the tupleSet

• in case of an in, if it is satisfiable, that is, a
tuple matching the given template (simple regular
expressions on strings) exists, the tuple is removed
from the tupleSet and given to the requestor—
whose reference is dynamically retrieved

• in case of a rd, if it is satisfiable the tuple is not
removed and given to the requestor

2) the inputQueue is considered then, and the request type
is checked as above

3) in case requests cannot be satisfied, they are ei-
ther removed from the inputQueue and put into the
pendingQueue, or kept in the latter

Agent game objects are implemented to request the three
coordination primitives provided by the table synchronously,
exploiting Unity3D co-routines: for every request sent, the
agent waits for a reply, suspending execution (actually, de-
laying to next frame rendering step) until it arrives.

Chairs work as decouplers of interaction as well as situat-
edness enablers, by letting philosophers dynamically acquire
the right chopsticks based on their position at the table. In
fact, philosopher agents asks for chopsticks to the chair they
are currently sit on, rather than directly to the table, and do
not explicitly refer chopsticks: not by name, neither by address,
nor by any other means. Each chair dynamically knows where
it is w.r.t. the table and therein placed chopsticks thanks to
raytracing, enabling game objects to detect nearby objects.
Then, it is the chair that asks the table for the right pair of
chopsticks on behalf of the philosopher agent that is currently

sitting on it.

The scenario works as follows:

1) each philosopher thinks until it gets hungry
2) when this happens, it looks for a free chair to sit—

exploiting raytracing
3) when a free chair is found, the philosopher goes there –

movement pathway and collision avoidance are a “free
lunch” when using GE – and sits, waiting to acquire the
chopsticks required according to the position of the chair
w.r.t. the table

4) when a chair gets occupied, it acquires information about
which chopsticks should be handed over to the hungry
philosopher – through raytracing – and performs the
corresponding requests to the table—on behalf of the
agent

• in case the requests are satisfied, the philosopher
starts eating (Figure 2)—and leaves the chair to
think again when done, thus restarting its thinking-
eating loop

• in case at least one request cannot be satisfied, the
philosopher waits as described above (Figure 3)

All interactions happen through Unity3D messaging facilities.

IV. DISCUSSION & ROADMAP

The implementation effort described in Subsection III-A,
although rather successful on the technical side, raises many
conceptual issues regarding MAS and GE integration in the
same infrastructure.

First of all, agent autonomy is all but trivial to preserve:
regardless of the approach taken to marry MAS and GE
– either the reconstruction one or the mirror worlds one –
autonomy is likely to be the toughest issue to tackle. For GE
very own nature, the flow of control should be in their hands
no matter what, because fluidity of the rendering process is the
foremost concern. This is an obvious clash with the definition
of autonomy as encapsulation of the flow of control and of the

109



Figure 2. Eating philosophers. Green philosophers are those eating. Red chairs are occupied (reserved) by philosophers willing to eat.

Figure 3. Waiting philosophers. Red philosophers are willing to eat, but obliged to wait until chopsticks become available.

criteria to handle it. However, co-routines in Unity3D and the
actor abstraction in Unreal Engine may be exploited to build
some notion of autonomy, and/or for linking virtual agents in
a mirror world with their MAS counterparts while preserving
their autonomy.

As far as situatedness is concerned, thus focussing on the
environment abstraction, things get better: being environmental
resources and agent-environment interaction first-class citizens
in any GE, any MAS willing to exploit GE facilities is
likely to benefit of some free lunch—e.g. movement pathways
computation, objects discovery, collision avoidance.

Finally, when focussing on the social side, issues differ
depending the kind of interaction: for direct interactions among
agents, support provided by GE is limited to basic message-
passing facilities; for environment-mediated interactions, sup-
port is a lot better thanks to situatedness-related features such

as discovery, routing, etc.

Summing up, from the early conceptual speculations and
practical experimentations undertaken in this work, we can
guess that integration is likely to happen, at least at first, mainly
through environmental abstractions, since they are the most
well represented in the GE world. Accordingly, we conclude
the paper by outlining the research roadmap we think is the
more likely to lead to some successful results.

First of all, the mirror worlds approach seems the most
appropriate, given that the reconstruction approach is hindered
by the constraints on the flow of control imposed by state-of-
art-GE technologies.

Then, environmental abstractions as provided by MAS and
GE should be carefully analysed to seek for mapping oppor-
tunities, with the aim of drawing correspondences between

110



the GE-based virtual representation of the MAS world—which
could be virtual, physical, hybrid. An interesting path to follow
in this sense is represented by, e.g., the artefact abstraction [20]
as defined in the A&A meta-model for MAS [3].

Once that the environment layer of the envisioned GE-
based MAS is settled, agenthood could be (re)shaped around
this, by exploiting GE capabilities regarding situated inter-
action. For instance, whereas the goal-directed/oriented be-
haviour of agents could be still programmed on top of the
more expressive mechanisms provided by traditional MAS
paradigms, such as BDI reasoning, it could also take advantage
of GE features for, e.g., practical reasoning and situated
planning, relying on GE virtual world representation to, e.g.,
estimate the effects of actions.

Sociality too can be (re)shaped around the environmental
layer: for instance, whereas direct communication between
agents may be still allowed and based on traditional MAS
mechanisms, accessory facilities may be delegated to the GE
part of the system, such as discovery of recipients based on
spatial proximity.

This way, a GE-based MAS infrastructure could in princi-
ple be designed, by suitably integrating the different mecha-
nisms and paradigms brought by GE and MAS around environ-
mental abstractions, while avoiding to abuse either technology
so as to carrying out activities and pursuing goals it was
not meant to deal with—such as, for instance, attempting to
reconstruct some notion of autonomy for GE agents.

ACKNOWLEDGEMENTS

We would like to thank Mattia Cerbara and Nicola Poli
for their analysis of Unity3D and Unreal Engine, and for the
prototype implementation of the case study. Also, our gratitude
goes to the reviewers, stimulating the discussion in Section IV
with their stimulating questions and thoughtful remarks.

REFERENCES

[1] F. Zambonelli and A. Omicini, “Challenges and research directions
in agent-oriented software engineering,” Autonomous Agents and
Multi-Agent Systems, vol. 9, no. 3, pp. 253–283, Nov. 2004, Special
Issue: Challenges for Agent-Based Computing. [Online]. Available:
http://link.springer.com/10.1023/B:AGNT.0000038028.66672.1e

[2] D. Weyns, A. Omicini, and J. J. Odell, “Environment as a first-
class abstraction in multi-agent systems,” Autonomous Agents and
Multi-Agent Systems, vol. 14, no. 1, pp. 5–30, Feb. 2007, Special
Issue on Environments for Multi-agent Systems. [Online]. Available:
http://link.springer.com/10.1007/s10458-006-0012-0

[3] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the A&A
meta-model for multi-agent systems,” Autonomous Agents and
Multi-Agent Systems, vol. 17, no. 3, pp. 432–456, Dec. 2008,
special Issue on Foundations, Advanced Topics and Industrial
Perspectives of Multi-Agent Systems. [Online]. Available: http:
//link.springer.com/10.1007/s10458-008-9053-x

[4] P. Ciancarini, A. Omicini, and F. Zambonelli, “Multiagent system
engineering: The coordination viewpoint,” in Intelligent Agents VI.
Agent Theories, Architectures, and Languages, ser. LNAI, N. R.
Jennings and Y. Lespérance, Eds. Springer, 2000, vol. 1757, pp. 250–
259. [Online]. Available: http://link.springer.com/10.1007/10719619 19

[5] D. Gelernter and N. Carriero, “Coordination languages and their
significance,” Communications of the ACM, vol. 35, no. 2, pp. 97–107,
1992. [Online]. Available: http://dl.acm.org/citation.cfm?doid=129635

[6] P. Ciancarini, “Coordination models and languages as software
integrators,” ACM Computing Surveys, vol. 28, no. 2, pp. 300–302, Jun.
1996. [Online]. Available: http://dl.acm.org/citation.cfm?doid=234732

[7] P. Wegner, “Coordination as constrained interaction,” in Coordination
Languages and Models, ser. Lecture Notes in Computer Science,
P. Ciancarini and C. Hankin, Eds. Springer, 1996, vol. 1061, pp. 28–33.
[Online]. Available: http://link.springer.com/10.1007/3-540-61052-9
37

[8] L. A. Suchman, “Situated actions,” in Plans and Situated Actions: The
Problem of Human-Machine Communication. New York, NYU, USA:
Cambridge University Press, 1987, ch. 4, pp. 49–67.

[9] J. Ferber and J.-P. Müller, “Influences and reaction: A model of situated
multiagent systems,” in 2nd International Conference on Multi-Agent
Systems (ICMAS-96), M. Tokoro, Ed. Tokio, Japan: AAAI Press, Dec.
1996, pp. 72–79.

[10] J. Blair and F. Lin, “An approach for integrating 3D virtual
worlds with multiagent systems,” in Advanced Information Networking
and Applications (WAINA), 2011 IEEE Workshops of International
Conference on, Mar. 2011, pp. 580–585. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5763564

[11] J. van Oijen, L. Vanhée, and F. Dignum, CIGA: A Middleware
for Intelligent Agents in Virtual Environments. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 22–37. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32326-3 2

[12] G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati,
A. N. Marshall, A. Scholer, and S. Tejada, “GameBots: A flexible
test bed for multiagent team research,” Communications of the
ACM, vol. 45, no. 1, pp. 43–45, Jan. 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=502293

[13] P. Prasithsangaree, J. Manojlovich, S. Hughes, and M. Lewis,
“UTSAF: A multi-agent-based software bridge for interoperability
between distributed military and commercial gaming simulation,”
Simulation, vol. 80, no. 12, pp. 647–, 2004. [Online]. Available:
http://sim.sagepub.com/content/80/12/647

[14] A. Ricci, A. Croatti, P. Brunetti, and M. Viroli, “Programming mirror
worlds: An agent-oriented programming perspective,” in Engineering
Multi-Agent Systems, ser. Lecture Notes in Computer Science,
M. Baldoni, L. Baresi, and M. Dastani, Eds. Springer, 2015, vol.
9318, pp. 191–211, 3rd International Workshop, EMAS 2015, Istanbul,
Turkey, May 5, 2015, Revised, Selected, and Invited Papers. [Online].
Available: http://link.springer.com/10.1007/978-3-319-26184-3 11

[15] D. Rossi, G. Cabri, and E. Denti, “Tuple-based technologies
for coordination,” in Coordination of Internet Agents: Models,
Technologies, and Applications, A. Omicini, F. Zambonelli, M. Klusch,
and R. Tolksdorf, Eds. Springer, Jan. 2001, ch. 4, pp. 83–109. [Online].
Available: http://link.springer.com/10.1007/978-3-662-04401-8 4

[16] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-
Agent Systems with JADE. Wiley, Feb. 2007. [Online]. Available:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470057475.html

[17] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge, Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons,
Ltd, Oct. 2007. [Online]. Available: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-0470029005.html

[18] K. Sycara, M. Paolucci, M. Van Velsen, and J. Giampapa, “The
RETSINA MAS infrastructure,” Autonomous Agents and Multi-Agent
Systems, vol. 7, no. 1, pp. 29–48, 2003. [Online]. Available:
http://link.springer.com/10.1023/A:1024172719965

[19] A. Omicini and F. Zambonelli, “Coordination for Internet application
development,” Autonomous Agents and Multi-Agent Systems, vol. 2,
no. 3, pp. 251–269, Sep. 1999, special Issue: Coordination Mechanisms
for Web Agents. [Online]. Available: http://link.springer.com/10.1023/
A:1010060322135

[20] A. Ricci, M. Piunti, and M. Viroli, “Environment programming in
multi-agent systems – an artifact-based perspective,” Autonomous
Agents and Multi-Agent Systems, vol. 23, no. 2, pp. 158–192, Sep.
2011, Special Issue: Multi-Agent Programming. [Online]. Available:
http://link.springer.com/10.1007/s10458-010-9140-7

111


