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Abstract—Open distributed multi-agent systems featuring
autonomous components demand coordination mechanisms for
both functional and non-functional properties. Heterogeneity of
requirements regarding interaction means and paradigms, stem-
ming from the diverse nature of components, should not affect
the effectiveness of coordination. Along this line, in this paper we
share our pragmatical experience in the integration of objective
and subjective, synchronous and asynchronous, reactive and pro-
active coordination approaches within two widely-adopted agent-
oriented technologies (JADE and Jason), enabling coordinating
components to dynamically adapt their interaction means based
on static preference or run-time contingencies.

I. INTRODUCTION

Open and distributed multi-agent systems (MAS) featur-
ing autonomous components demand efficient coordination
mechanisms for both functional and non-functional properties.
Heterogeneity of requirements regarding interaction means
and paradigms – e.g. message-passing vs. shared space, syn-
chronous vs. asynchronous, proactive vs. reactive, etc. – stem-
ming from the heterogeneous nature of components – e.g.
software agents vs. physical devices – implies that coordination
should be effective despite heterogeneity.

Coordination approaches in the literature can be classified
according to diverse criteria, such as the means through which
interaction happens – e.g. messages vs. tuples –, synchronism
of interaction primitives, enforced programming style—e.g.
reactive, such as with actors, vs. pro-active, such as with
agents. The most general classification distinguishes coordina-
tion approaches as either objective or subjective [1], depending
on who is responsible for the ”burden of coordination”: the
coordinable, or the coordination medium—following the meta-
model and the terminology proposed in [2].

Objective coordination [1] refers to the approach – typi-
cally stemming from the software engineering research field –
where coordination-related concerns are encapsulated within
dedicated abstractions, such as coordination artefacts [3] (the
medium), offering coordination as a service to coordinables
[4]. Thus, coordination abstractions take responsibility for
coordination, by steering agent societies – that is, ensemble
of cooperating/competing agents – towards the achievement
of social (shared) goals, through the suitable management of
the dependencies between agents’ activities [5], [6]—despite
agent’s individual goals, yet without harming their autonomy.

Subjective coordination [1] represents instead the dual
approach – typically adopted in the (distributed) artificial
intelligence field [7] – where coordination issues are directly
tackled by the agents themselves, determining their best course
of (inter-)action in the attempt to achieve their own goals.
Thus, the burden of coordination is here distributed among
coordinables, expressing their autonomy w.r.t. coordination
commitments through their own deliberation process.

Clearly, respecting agents’ autonomy is a foremost issue in
the design of coordination models for MAS, be them objective
or subjective. Also, the issue of autonomy emerges while
designing other facets of coordination model and technologies,
corresponding to the aforementioned classification criteria.

Enforcing a reactive programming style for handling in-
teractions – as typically done in the context of event-based
systems and actor-based frameworks – often leads to the
problem of inversion of control—namely, the fact that the flow
of interactions determines when the interacting components
should act and what they should do, thus definitely wipe out
pro-activeness of components. Also, on a lower level, the
management of the component control flow is taken out from
the programmers’ hands, and left to the framework. In the
overall, inversion of control results in a blatant example of
violation of the component autonomy.

Adopting a synchronous semantics for interaction primi-
tives invocation, without adequate mediating abstractions un-
coupling the invoker flow of control from the (possibly)
suspensive semantics of the primitive, is another way to violate
the components autonomy. A typical example can be observed
in any LINDA-like coordination model [8], where interacting
components are usually bound to withstand the outcomes of
the coordination process—e.g. getting stuck whenever a getter
primitive finds no matching tuple in the shared space.

Accordingly, in this paper we share our pragmatical ex-
perience in integrating objective and subjective, synchronous
and asynchronous, reactive and pro-active coordination ap-
proaches, enabling participating components to (deliberatively)
dynamically adapt their interaction means based on static
preference or run-time contingencies – while still having their
autonomy preserved –, in the context of two widely adopted
agent-oriented technologies, that is, JADE [9] and Jason [10],
featuring their own subjective coordination mechanisms, and
adopting the TuCSoN middleware as the provider of objective
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coordination. The goal is to provide MAS designers and
programmers with a flexible development framework capable
of seamlessly supporting multi-paradigm coordination, where
agents deliberatively choose which coordination paradigm and
interaction means to adopt for the current interactions—and,
more importantly, where such a choice does not affect nega-
tively the other interactive, or non-interactive, activities they
are (possibly, concurrently) undertaking.

The remainder of the paper is organised as follows. Sec-
tion II describes how the subjective coordination paradigm
may be instantiated within a message-based setting, also
wr.t. synchronism and programming style, by discussing the
concrete cases of JADE (Subsection II-A) and Jason (Subsec-
tion II-B). Section III describes how the objective coordination
paradigm may be implemented within a tuple-based setting,
by discussing the TuCSoN approach (Subsection III-A). Sec-
tion IV describes our solution for enabling multi-paradigm
coordination, by briefly describing TuCSoN4JADE (Subsec-
tion IV-A) – already presented in [11], but useful here for
comparison and generalisation purposes – and by thoroughly
discussing TuCSoN4Jason (Subsection IV-B)—also, an exam-
ple showcasing effectiveness of multi-paradigm coordination is
provided in Subsection IV-C. Finally, Section V briefly reports
on some similar works by fellow researchers, while Section VI
summarises the work, and outlines future improvements.

II. MESSAGE-BASED SUBJECTIVE COORDINATION

In this section we briefly describe the approach to subjec-
tive coordination adopted by two agent development frame-
works well-known within the MAS community: JADE (Sub-
section II-A) and Jason (Subsection II-B).

A. Subjective Coordination in JADE

JADE (Java Agent DEvelopment Framework) [9] is a Java-
based framework and infrastructure to develop and deploy
open, distributed, agent-based applications in compliance with
FIPA standard specifications for interoperable intelligent MAS.
In JADE, autonomy of agents is supported by the behaviour ab-
straction, whereas coordination adopts the subjective paradigm
thanks to an asynchronous message-passing layer – the Agent
Communication Channel (ACC) – on top of which FIPA inter-
action protocols are implemented and provided to developers—
as a callbacks framework.

A behaviour can be logically interpreted as “an activity
to perform with the goal of accomplishing a task”. Thus,
different courses of actions of a JADE agent are encapsulated
into distinct behaviours the agent executes simultaneously.
More technically, JADE behaviours are Java objects, which
are executed pseudo-concurrently within a single Java thread
by a built-in non-preemptive round-robin scheduler. During
JADE agent initialisation, behaviours are added to the ready
queue, ready to be scheduled. Then, method action() of
the first behaviour – implementing one of the agent’s course of
action – is executed. Behaviours switch occurs only when the
method returns; hence, in the meanwhile no other behaviour
can start execution (non-preemptive scheduler). Behaviours
removal from the ready queue occurs only when the done()
method returns true; otherwise, the behaviour is re-scheduled
at the end of the queue (round-robin scheduler). It is worth

noting that method action() is executed from the beginning
every time: there is no way to “stop-then-resume” a behaviour
during its execution.

The ACC is the middleware service in charge of asyn-
chronous message passing among agents: each agent has its
own mailbox where incoming communications are silently
put, waiting to be explictly (pro-actively) considered by the
receiving agent—for the sake of preserving its autonomy.
When and how to process the mailbox is up to the agent’s
own deliberation:

• method receive() attempts to asynchronously re-
trieve the first message, or a message compliant with a
given message template, from the mailbox—returning
nothing in case no message is found

• method blockingReceive(), as the name sug-
gests, attempts to synchronously retrieve the first mes-
sage, or a message compliant with a given message
template, from the mailbox—waiting until a message
is eventually found

Clearly, the first method preserves the autonomy of the agent
no matter what. The same does not hold for the second one,
because deciding to wait for a specific interaction potentially
hinders the ability of the agent to remain responsive to other
interactions—although based on a deliberate choice of the
agent itself.

The reason is that method blockingReceive() sus-
pends the agent as a whole, not only the calling behaviour.
Thus, the JADE Programmers Guide itself [12] suggests
the adoption of the following programming pattern: call
receive() instead of blockingReceive(), then call
method block() – of the Behaviour class – if no message
is found, so as to suspend only the calling behaviour—which
will be automatically resumed by JADE upon reception of any
message. Therefore, if programmers want their agents’ auton-
omy preserved while subjectively coordinating, they should
abide to the “block-then-resume” pattern just described.

Besides plain message passing, JADE provides to program-
mers a number of ready-to-use FIPA interaction protocols,
such as the Contract Net [13] and the general-purpose Achieve
Rational Effect [14], in the form of a callbacks framework:

• programmers declare which FIPA protocol their inter-
acting agents should commit to, by instantiating the
corresponding Java object

• then, they implement the actual body of the callback
methods corresponding to each interaction (message
to be received or sent) as expected according to the
specific FIPA protocol adopted

As any other framework adopting a callback scheme, JADE
FIPA protocols promote a reactive programming style, where
agents synchronously wait for messages to advance through the
protocol stages. Agents’ pro-activeness – so, their autonomy –
is thus limited. Nevertheless, JADE internally implements FIPA
protocols abiding to the block-then-resume pattern, so that
interacting agents stay responsive to concurrent interactions
while subjectively coordinating—besides being able to carry
out non-interactive activities through concurrent behaviours.
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Summing up, JADE support to subjective coordination is
provided through asynchronous message passing – respecting
agents’ autonomy thanks to the block-then-resume pattern –
and built-in FIPA protocols—limiting instead autonomy due
to reactiveness enforced by the callbacks framework.

B. Subjective Coordination in Jason

Jason [10] is both an agent language and an agent runtime
system. As a language, it implements a dialect of AgentSpeak
[15]; as a run-time system, it provides some services needed
to execute a MAS—e.g. agents’ reasoning engine and a non-
distributed execution platform. Although Jason is entirely
programmed in Java, it features BDI agents, so a higher-
level language (the Jason language) is used to program Jason
agents using BDI abstractions. In Jason, autonomy of agents
is supported by plan/intention concurrent execution machinery,
whereas coordination adopts the subjective paradigm1 thanks
to the asynchronous message passing layer.

Similarly to JADE behaviours, a Jason plan can be con-
ceptually interpreted as a course of action to be performed to
accomplish a task. Technically, a Jason plan differs consider-
ably from JADE behaviours: (i) it is scheduled for execution as
soon as a triggering event occurs, (ii) it is not directly executed
“as is” (in general), but is instantiated as an intention, then
executed, (iii) intentions are pseudo-concurrently executed one
action each, according to a round-robin scheduler. Therefore,
whereas in JADE the behaviour is the basic execution step,
in Jason the same role is played by the single action, not by
the plan/intention as a whole. Intentions may be suspended –
either by the programmer or by the Jason reasoning engine –
for a number of reasons—e.g. because the agent needs to wait
for a message, or an environmental event.

Jason agents can in fact exchange beliefs (but also plans
and goals), both synchronously and asynchronously through
the same .send() internal action, in the form of messages
encoded in a KQML-like language, with a very similar se-
mantics. Depending on the illocutionary force determining
the meaning of messages (e.g., askOne vs. tell), their
reception causes different events (e.g., test-goal addition vs.
belief addition) automatically triggering execution of the cor-
respondent plans. It is worth noting that there is no explicit
receive communication primitive involved, here, nor a mailbox
to explicitly monitor2. The basic illocutionary forces concerned
with exchanging beliefs are:

• tell, to share a (list of) belief(s) with a target (list of)
agent(s). Addition of the communicated information
to the belief base of the receiver agent, where it waits
to be pro-actively considered, causes a belief addition
event, handled by plans starting with the +b clause

• askOne to query another agent’s belief base—sort
of a “remote test-goal”3. The internal action askOne
comes in three flavours:

1While objective coordination could in principle be implemented on top
of Jason Environment Java API for programming MAS (computational)
environments, it is not considered here since no first-class support for
environment abstractions is provided.

2Actually, a mailbox exists, but the Jason agent is completely unaware of
it.

3Actually, a test-goal is executed on the receiver agent side, thus, if plans
starting with the +?b clause exist, they are triggered to handle the request.

◦ asynchronous, where the caller intention never
gets suspended, and the query result has to
be handled reactively through a proper plan
handling the belief addition event +b

◦ synchronous, where the caller intention gets
suspendend until the receiver’s reply becomes
available—that is, a matching belief appears in
its belief base

◦ timed synchronous, where the synchronism is
limited by a finite upper bound on waiting
time, whose expiration causes the intention to
be resumed—and labelled with a timeout
outcome

It is worth noting that intentions only (not the whole Jason
agent) are automatically suspended whenever they perform
a (communication) action which cannot complete – e.g. the
request for information following a test-goal attempt –, to
be resumed as soon as the action obtains its “completion
feedback” (see [10], page 86)—e.g. the message conveying the
requested information. This mechanism may be interpreted as
the equivalent of JADE block-then-resume pattern, which is
automatically handled here by the Jason runtime.

Summing up, Jason support to subjective coordination
is provided through both asynchronous and synchronous
message passing, respecting agents’ autonomy thanks to
the intention suspension mechanism—unlike JADE, where
blockingReceive() suspends the agent as a whole.

III. ARTEFACT-BASED OBJECTIVE COORDINATION

In this section we briefly describe the approach to objective
coordination adopted by the TuCSoN coordination model and
technology, taken as a reference for artefact-based coordination
and exploited in Section IV as the provider of objective
coordination services.

A. Objective Coordination in TuCSoN

TuCSoN [16] is a Java-based, (logic) tuple-based coordi-
nation model and infrastructure for open, distributed MAS. It
provides objective coordination as service by implementing
and extending the LINDA model [8] with ReSpecT tuple
centres [17], the coordination artefacts [3] encapsulating coor-
dination mechanisms and policies, distributed over a network
of TuCSoN nodes.

TuCSoN preserves interacting agents’ autonomy through
the Agent Coordination Context (ACC) [18] abstraction—
mainly; TuCSoN architecture also contributes, as clarified
below by describing TuCSoN “two-steps” execution. ACC are
assigned to agents as they enter a TuCSoN-coordinated MAS,
with the responsibility, among the many others, to uncouple the
synchronism of a coordination operation invocation from the
suspensive semantics of the coordination primitive used – e.g.
LINDA in –, by mapping operations to events asynchronously
dispatched to the coordination media (ReSpecT tuple centres).

More precisely, the suspensive semantics of getter prim-
itives, as inherited by the LINDA model, implies that if no
matching tuple is found the operation waits indefinitely until
it becomes available. This semantics does not depend on
agent own deliberation: it is set by the coordination model
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at hand, and is what enables distributed synchronisation and
coordination, in the very hand. The synchronism of invocation
instead, couples (or uncouples) the fate of a coordination
operation with that of the invoker agent, and is subject to the
agent own deliberation. This means that:

• in case the agent chooses the synchronous invocation
mode, it gets suspended, too, if the operation gets
suspended

• if the asynchronous invocation mode is used, instead,
suspension policy is confined to the operation, whereas
the invoker agent can continue performing its activi-
ties, pro-actively inspecting the status of the operation
when preferred—and eventually getting the result

In order to do so, the execution of any TuCSoN operation
follows two steps:

• the request to carry out a given coordination operation
is performed by the agent through its ACC, which
then dispatches the corresponding operation event to
the target tuple centre—invocation step

• the response to the coordination operation invoked is
sent back to the requesting agent by the tuple centre
through its ACC, as soon as the response is available—
completion step

Put in other terms, any coordination service provided by
TuCSoN is asynchronous by default; nevertheless, interacting
agents may deliberately choose the invocation synchronism of
each coordination operation—potentially limiting their auton-
omy: either synchronous or asynchronous.

Summing up, TuCSoN coordination model preserves agent
autonomy by uncoupling the suspensive semantics of coordina-
tion operations from their invocation semantics (synchronism)
– actually promoting pro-activeness over reactiveness – thanks
to the ACC architectural abstraction.

IV. ENABLING MULTI-PARADIGM COORDINATION

In this section we describe two software modules enabling
TuCSoN-based multi-paradigm coordination for JADE and
Jason agents, namely, TuCSoN4JADE (Subsection IV-A) and
TuCSoN4Jason (Subsection IV-B) respectively, emphasising
the technical solutions adopted to preserve conceptual integrity
of the resulting development framework—especially, w.r.t. au-
tonomy of agents. Subsection IV-C provides an example about
how a widely spread and well-known coordination scenario,
that is, a Contract Net Protocol based interaction, may benefit
from a multi-paradigm coordination approach.

A. The case of TuCSoN4JADE

An autonomy preserving integration of JADE and TuCSoN
was already presented in [11], with an emphasis on the impact
that technical choices regarding concurrency and communi-
cation aspects have on the opportunities for objective and
subjective coordination integration—also accounting for the
conceptual issues of autonomy of interacting agents. There,
the main issue was making TuCSoN synchronous invocation
semantics compatible with JADE concurrency model based on
behaviours.

The simplest and most straightforward solution would
be letting JADE agents directly access TuCSoN services,
requiring nothing more than a correct usage of TuCSoN
API—since both technologies are implemented on top of Java.
Nevertheless, direct API access would inevitably hinder JADE
agents autonomy while resorting to objective coordination
synchronously: their control flow would be coupled to that
of the coordination operation requested, so that in case of sus-
pension the whole agent would get stuck, not just the invoker
behaviour. This way, roughly speaking, agents’ deliberate
choice to exploit objective coordination could negatively affect
their ongoing subjective coordination activities, as well as any
other non-interactive activity in process. This would represent
a glaring example of an artificial dependency (unintentionally)
created by a “non-autonomy-preserving” approach to multi-
paradigm coordination.

Instead, an appropriate integration between TuCSoN and
JADE was achieved in [11] by developing a bridge compo-
nent in charge of suitably suspending and resuming JADE
behaviours depending on the outcome of the requested TuC-
SoN coordination operation—besides providing a suitable
API wrapping TuCSoN services to JADE agents: the TuC-
SoN4JADE bridge4.

In particular, the bridge is based on the fact that whenever
any JADE behaviour is re-scheduled its action() method
is re-started, thus the synchronous invocation of TuCSoN
coordination operation is repeated. The whole TuCSoN4JADE
machinery works because the invocation – through TuC-
SoN4JADE API method synchronousInvocation() –
transparently checks whether the operation just invoked can be
completed: in case the operation result is not available, yet, the
request is actually dispatched by TuCSoN ACC to the target
tuple centre, and the invoker behaviour is suspended by calling
method block(). As soon as the operation result becomes
available, the bridge component resumes the suspended be-
haviour and hands off the completion event—so that the second
invocation, due to behaviour restart, immediately succeeds.

Summing up, TuCSoN4JADE lets JADE agents free to
choose, for every single interaction event, which coordination
paradigm suits their needs best, based on both design-time
preference and run-time contingencies, without possibly hin-
dering other ongoing coordination activities.

B. The case of TuCSoN4Jason

In the case of Jason, the main integration issue is to
make TuCSoN synchronous invocation semantics compatible
with Jason concurrency model based on intentions. In fact,
simply wrapping the TuCSoN API into suitable Jason abstrac-
tions, such as internal actions, would inevitably hinder Jason
agents autonomy while resorting to objective coordination syn-
chronously: their control flow would be coupled to that of the
coordination operation requested, thus in case of suspension
the whole agent would get stuck, not only the invoker intention.

Yet again, agent deliberate choice to exploit objective
coordination negatively affects their ongoing subjective co-
ordination activities, thus resulting in another failed attempt

4http://apice.unibo.it/xwiki/bin/view/TuCSoN/4JADE
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Figure 1: TuCSoN4Jason architecture

to fully enable multi-paradigm coordination. Thus, an ade-
quate integration between TuCSoN and Jason requires a fine-
grained integration of TuCSoN two-steps execution mecha-
nism with Jason intention suspension mechanism, properly
suspending/resuming intentions based on coordination oper-
ations outcome: the TuCSoN4Jason bridge is the Java library
providing such integration5.

First of all, we analyse the integration solution provided
by TuCSoN4Jason from the architectural point of view, high-
lighting its main components—Figure 1:

• a custom agent architecture enabling customisation of
each Jason agent inner reasoning engine

• an operation completion listener enabling TuCSoN to
couple Jason intention suspension mechanism with its
invocation semantics

• a set of custom internal actions enabling Jason agents
to request TuCSoN coordination services and inspect
operations outcome

The custom agent architecture, implemented by class
T4JnArchImpl, is responsible for dispatching coordination
operation requests from Jason agents to the TuCSoN service,
keeping track of pending as well as completed operations (in
collaboration with the other components), and coordinating the
other TuCSoN4Jason components.

The operation completion listener, implemented by class
TucsonResultsHandler, is responsible for handling no-
tifications of operations completion coming from TuCSoN,
for tracking them within the custom agent architecture, (au-
tomatically) resuming suspended intentions when their result
becomes available, and unifying TuCSoN tuples (the operation
results) with Jason variables.

5http://apice.unibo.it/xwiki/bin/view/TuCSoN/4Jason

The set of internal actions, implemented by the
public classes within package t4jn.api extending
TucsonInternalActionImpl, is responsible for
providing Jason agents with the means to request TuCSoN
coordination services, that is, basically, the set of available
coordination primitives. Besides the usual tuple space
primitives such as out, rd, and in, primitive getResult
deserves special attention: it is responsible for uncoupling
the request of a coordination operation from its completion,
handling (automatic) intention suspension when the result of
a getter primitive (such as in) is not yet available.

Figure 2: TuCSoN4Jason flow of interactions
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Collaboration between components – as depicted in Fig-
ure 2 – makes TuCSoN4Jason bridge capable of enabling
autonomy-preserving multi-paradigm coordination for Jason
agents, by carefully coupling Jason intention suspension mech-
anism with TuCSoN two-step execution of suspensive primi-
tives.

Whenever a TuCSoN operation is requested (message 1),
through Jason custom internal actions, the bridge component
– in particular, the custom agent architecture represented by
interface T4JnArch – takes care of asynchronously dispatch-
ing the request to TuCSoN (message 1.1) by exploiting TuC-
SoN services devoted to asynchronous operation invocation—
not depicted to keep the picture simple. Then it tracks the
pending state of the requested operation (message 1.2) and
spawns a dedicated handler for its completion (message 1.3)—
TucsonResultsHandler. As soon as the operation is
ready to be completed, the handler is notified by TuCSoN with
the result (message 2), so that the state of the corresponding
operation can be changed from “pending” to “completed”
(message 2.1), and, if needed, resume the suspended intention
within which TuCSoN4Jason getResult() internal action
was called (message 2.3, Figure 4).

It is worth noting that the notification may happen at any-
time, without prior knowledge on whether getResult() has
either been called or not. Dually, from the Jason agent stand-
point, there is no prior (design-time) knowledge on whether the
operation succeeded until getResult() is (synchronously)
called.

In fact, any Jason custom internal action has an asyn-
chronous invocation semantics, that is, it does not wait for
operation completion, so that the agent is free to choose when
to ask for it whenever it pleases (message 3)—deliberatively.
When doing so, the TuCSoN4Jason bridge checks if the
operation result is available (message 3.1): if it is, the agent
gets it and the current intention can proceed (message 3.2);
otherwise, the calling intention gets suspended (message 3.3,
Figure 3), until the result becomes available.

Figure 3 shows a code excerpt taken from the
getResult() custom internal action implementation. There,
TuCSoN4Jason manipulates the state of the Jason reasoner be-
hind any Jason agent – thanks to T4JnArchImpl extending
Jason AgArch – so as to make it suspend the intention within
which getResult() was called, in case no result is available
yet. In particular, line 4 retrieves from the reasoner the current
execution context (Circumstance), line 6 gets the current
intention (the one where getResult() was called), lines
8− 13 actually suspend the intention.

Figure 4, instead, shows a code excerpt taken from the
TucsonResultsHandler() component implementation.
There, TuCSoN4Jason manipulates the state of the Jason
reasoner so as to make it resume the intention within which
getResult() was called, as soon as its result becomes
available. In particular, line 4 tracks that such an intention
is no longer pending, line 8 retrieves from the reasoner the
current execution context, lines 10 − 15 iterate over pending
intentions according to the reasoner state, line 17 finds the
intention to be resumed among the ones being iterated over,
lines 18− 21 actually resume the intention.

Summing up, TuCSoN4Jason lets Jason agents free to

1 ...
2 // result NOT available
3 if (!(results.containsKey(actionId))) {
4 Circumstance c = ts.getC();
5 // suspend calling intention
6 Intention i = c.getSelectedIntention();
7 this.suspendIntention = true;
8 i.setSuspended(true);
9 c.addPendingIntention(

10 jason.stdlib.suspend.SELF_SUSPENDED_INT
11 + i.getId(), i);
12 // track suspended intention
13 arch.getSuspendedIntentions().put(actionId, i);
14 mutex.unlock(); // thread-safety
15 return true;
16 }
17 ...

Figure 3: Suspension of a Jason intention, due to
getResult() being called with no result available yet

1 ...
2 // corresponding action caused suspension
3 if (this.suspendedIntentions.containsKey(this.actionId)) {
4 Intention suspendedIntention = this.suspendedIntentions
5 .remove(this.actionId);
6 this.mutex.unlock(); // thread-safety
7 ... // parse result
8 Circumstance c = this.ts.getC();
9 // scan pending intentions

10 Iterator<String> ik = c.getPendingIntentions().keySet()
11 .iterator();
12 while (ik.hasNext()) {
13 String k = ik.next();
14 if (k.startsWith(suspend.SUSPENDED_INT)) {
15 Intention i = c.getPendingIntentions().get(k);
16 // find corresponding intention
17 if (i.equals(suspendedIntention)) {
18 i.setSuspended(false);
19 ik.remove();
20 ... // other reasoner-related stuff
21 c.resumeIntention(i);
22 }
23 }
24 }
25 }
26 ...

Figure 4: Resuming a previously suspended intention to due
its result becoming available

choose, for every single interaction event, the coordination
paradigm that best suits their needs, based on both design-
time preference and run-time contingencies, without hindering
any other ongoing coordination activities.

Subjective coordination based on asynchronous message
passing, handled with a reactive programming style based on
belief addition events (+b), can be seamlessly and simulta-
neously exploited by Jason agents while they are objectively
coordinating based on either

• synchronous TuCSoN operations, emulated by fol-
lowing an operation invocation – asynchronous by
deafult – with an immediate call to getResult()

• asynchronous TuCSoN operations handled adopt-
ing a pro-active programming style, e.g. calling
getResult() as part of the Jason plan when the
information is actually needed
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• asynchronous TuCSoN operations handled adopt-
ing a reactive programming style, e.g. calling
getResult() in a separate parallel plan dedicated
solely to handling the operation result—e.g. storing
it as a belief, thus triggering belief addition plans,
or explicitly triggering dedicated plans processing the
result

C. Multi-paradigm CNP with TuCSoN4Jason

As a simple yet expressive example of multi-paradigm
coordination, we describe a book trading scenario implemented
as a Jason MAS—the example is included in TuCSoN4Jason
distribution. In particular, we re-interpret the well-known Con-
tract Net Protocol (CNP) [13] in a multi-paradigm coordination
setting, where part of the protocol relies on synchronous tuple-
based objective coordination – delivered by TuCSoN – and
part on asynchronous message-based subjective coordination—
built-in in Jason.

In short, n seller agents advertise their catalogue of books,
whereas m buyer agents browse such catalogues looking for
books. The whole interaction chain naturally follows FIPA
Contract Net Interaction Protocol [20]: buyers start a call-for-
proposals, sellers reply with actual proposals, buyers choose
which one to accept, the purchase is carried out. A fundamental
requirement – called concurrency property in the following –
is that sellers should stay reactive to call-for-proposals even
in the middle of a purchase transaction—otherwise they could
lose potential revenues. The book trading scenario is thus taken
here as a paradigmatic example of the practical relevance of
preserving autonomy while enabling multi-paradigm coordina-
tion.

Accordingly, we re-think the CNP by integrating objective
and subjective coordination approaches: tuple-based call-for-
proposals with message-based purchase. In fact, since the call-
for-proposals should reach all the sellers, putting a single call-
for-proposals tuple in a shared contract-net space is more effi-
cient than messaging each seller individually. On the contrary,
since the purchase is typically a 1-to-1 interaction, messaging
can efficiently do the job. As a result, this approach is not just
conceptually correct, but also more efficient—less messages,
less network operations, etc.

For the purpose of comparison, we first attempt to imple-
ment the MAS without exploiting TuCSoN4JADE, just directly
calling TuCSoN API from within Jason with Jason internal
actions without further concerns (Figure 5); then we repeat
the same exercise by relying on TuCSoN4Jason (Figure 6).
As one could expect, the result is that in the former case the
concurrency property – thus, agent autonomy – is lost, whereas
it is preserved as expected in the latter.

Figure 5 depicts one possible instance of the run-time
interactions between a given seller and a given buyer. In
particular, the seller is replying to a previous call-for-proposals
(message 3b). Meanwhile, it is also ready to serve new
incoming call-for-proposals (3a). Here is the problem: the
suspensive coordination operation rd gets stuck until a call-
for-proposals is issued by a buyer. This is fine: it is exactly
for this suspensive semantics that the LINDA model works.
What is not-so-fine is that the rd is stuck on a network-level
call and no “defensive” programming mechanism has been

implemented to shield the caller intention. Thus it is stuck too,
hindering the caller agent from scheduling other intentions in
the meanwhile—in particular, the “purchase” interaction chain
(4b-5b) cannot carry on until a new call-for-proposals is issued.

Figure 6 depicts the same scenario, now programmed upon
the TuCSoN4Jason bridge, thus preserving autonomy. Since
the rd call is shielded by a proper mechanism within the
bridge, the suspensive semantics is confined to the caller inten-
tion. This means that only the caller intention is suspended –
using the proper mechanisms provided by Jason (see Figure 3)
– whereas other activities can carry on concurrently—e.g., the
purchase transaction already in place (4b-5b).

The wide applicability of the CNP, as well as its suitability
for implementation as a multi-paradigm coordination protocol
– drawing from both objective and subjective, synchronous,
and asynchronous approaches – makes the concept of multi-
paradigm coordination quite relevant in the context of agent
development frameworks and coordination technologies—also
making the need for suitable middleware components such as
TuCSoN4Jason quite apparent.

V. DISCUSSION & RELATED WORKS

In [21], CArtAgO [22] is integrated with three differ-
ent agent development frameworks: Jason, 2APL [23], and
simpA [24]. The approach taken is an example of autonomy-
preserving integration: e.g., in the case of Jason-CArtAgO,
Jason intentions suspension mechanism is successfully inte-
grated with CArtAgO artefacts by exploiting CArtAgO agent
body abstraction. In particular, whenever a Jason agent re-
quests execution of an operation on a CArtAgO artefact, the
caller intention is automatically suspended until the “effector
feedback” is received. Thus, nothing can hinder Jason agent
autonomy if they simultaneously operate on artefacts while
exchanging messages with other agents.

In [19], integration between JADE and TuCSoN tech-
nologies is successfully achieved, allowing JADE agents to
exploit TuCSoN coordination services as part of the JADE
platform. However, without preserving autonomy. JADE model
of autonomy and TuCSoN model of coordination [11] were
not considered: in fact, if a coordination operation gets sus-
pended, the caller behaviour is unavoidably suspended, too,
because of its single thread of control being stuck waiting for
operation completion. This inevitably leads to the suspension
of all other behaviours the agent is (possibly) concurrently
executing. Roughly speaking, the agent choice to rely on
objective coordination may affect its ongoing subjective co-
ordination activities. This is a clear example of an artificial
dependency (unintentionally) created by a “non autonomy-
preserving” approach.

VI. CONCLUSION & OUTLOOK

Enabling multi-paradigm coordination along a number of
orthogonal dimensions of coordination – such as objective
vs. subjective stance, synchronism of coordination primitive
invocation, reactiveness of the programming style promoted
by the API – potentially brings about a wide range of
communication, synchronisation, namely, coordination-related
requirements to be satisfied, whenever the coordinables are
provided with the ability to change the way they exploit
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Figure 5: Non autonomy-preserving approach taken in [19]: rd suspensive semantics extends to the caller behaviour, then to the
caller agent, blocking all its activities.

Figure 6: TuCSoN4Jason autonomy-preserving approach to multi-paradigm coordination: rd suspensive semantics is confined
to the caller intention only, thus the caller agent can carry on its other concurrent intentions.

coordination services at run-time, depending on preference or
ever-changing, unpredictable contingencies.

For these reasons, technologies like TuCSoN4Jason and
TuCSoN4JADE may be key-enablers in all those application
scenarios featuring distributed and heterogeneous components
which, on the one hand, heavily depends on communication
and coordination to carry out their duties, on the other hand,
may need to adopt diverse coordination paradigms depending
on both their own capabilities and run-time contingencies.
Such a sort of scenarios are usually dealt with by pervasive

MAS [25], where, besides distribution and heterogeneity, also
autonomy and (situated) intelligence typically play a key
role: autonomy, for infusing the system with non-functional
properties such as tolerance to failures, situated intelligence
for improving the system effectiveness by leveraging reasoning
over, e.g., contextual information.

The fact that Jason adopts the BDI model for agents,
coupled with TuCSoN choice of working with first-order
logic tuples, makes TuCSoN4Jason even more relevant for
the aforementioned class of systems.
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In the near future, we plan to further strengthen integration
between TuCSoN and both Jason and JADE: for the former,
private tuple spaces as belief bases and shared tuple spaces
as environmental resources are both directions we wish to
explore; for the latter, we envision automatic translation back
and forth FIPA ACL messages and first-order logic tuples, as
well as support for tuple-based FIPA interaction protocols.
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